1
|
Mathias C, Rodrigues AC, Baal SCS, de Azevedo ALK, Kozak VN, Alves LF, de Oliveira JC, Guil S, Gradia DF. The landscape of lncRNAs in cell granules: Insights into their significance in cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1870. [PMID: 39268566 DOI: 10.1002/wrna.1870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024]
Abstract
Cellular compartmentalization, achieved through membrane-based compartments, is a fundamental aspect of cell biology that contributes to the evolutionary success of cells. While organelles have traditionally been the focus of research, membrane-less organelles (MLOs) are emerging as critical players, exhibiting distinct morphological features and unique molecular compositions. Recent research highlights the pivotal role of long noncoding RNAs (lncRNAs) in MLOs and their involvement in various cellular processes across different organisms. In the context of cancer, dysregulation of MLO formation, influenced by altered lncRNA expression, impacts chromatin organization, oncogenic transcription, signaling pathways, and telomere lengthening. This review synthesizes the current understanding of lncRNA composition within MLOs, delineating their functions and exploring how their dysregulation contributes to human cancers. Environmental challenges in tumorigenesis, such as nutrient deprivation and hypoxia, induce stress granules, promoting cancer cell survival and progression. Advancements in biochemical techniques, particularly single RNA imaging methods, offer valuable tools for studying RNA functions within live cells. However, detecting low-abundance lncRNAs remains challenging due to their limited expression levels. The correlation between lncRNA expression and pathological conditions, particularly cancer, should be explored, emphasizing the importance of single-cell studies for precise biomarker identification and the development of personalized therapeutic strategies. This article is categorized under: RNA Export and Localization > RNA Localization RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Carolina Mathias
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | - Ana Carolina Rodrigues
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | - Suelen Cristina Soares Baal
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | | | - Vanessa Nascimento Kozak
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | | | | | - Sonia Guil
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
| | - Daniela Fiori Gradia
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| |
Collapse
|
2
|
Arends T, Tsuchida H, Adeyemi RO, Tapscott SJ. DUX4-induced HSATII transcription causes KDM2A/B-PRC1 nuclear foci and impairs DNA damage response. J Cell Biol 2024; 223:e202303141. [PMID: 38451221 PMCID: PMC10919155 DOI: 10.1083/jcb.202303141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/02/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024] Open
Abstract
Polycomb repressive complexes regulate developmental gene programs, promote DNA damage repair, and mediate pericentromeric satellite repeat repression. Expression of pericentromeric satellite repeats has been implicated in several cancers and diseases, including facioscapulohumeral dystrophy (FSHD). Here, we show that DUX4-mediated transcription of HSATII regions causes nuclear foci formation of KDM2A/B-PRC1 complexes, resulting in a global loss of PRC1-mediated monoubiquitination of histone H2A. Loss of PRC1-ubiquitin signaling severely impacts DNA damage response. Our data implicate DUX4-activation of HSATII and sequestration of KDM2A/B-PRC1 complexes as a mechanism of regulating epigenetic and DNA repair pathways.
Collapse
Affiliation(s)
- Tessa Arends
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Hiroshi Tsuchida
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Richard O. Adeyemi
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Stephen J. Tapscott
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Chromosomal Heteromorphisms and Cancer Susceptibility Revisited. Cells 2022; 11:cells11203239. [PMID: 36291106 PMCID: PMC9600968 DOI: 10.3390/cells11203239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/21/2022] Open
Abstract
Chromosomal heteromorphisms (CHs) are a part of genetic variation in man. The past literature largely posited whether CHs could be correlated with the development of malignancies. While this possibility seemed closed by end of the 1990s, recent data have raised the question again on the potential influences of repetitive DNA elements, the main components of CHs, in cancer susceptibility. Such new evidence for a potential role of CHs in cancer can be found in the following observations: (i) amplification and/or epigenetic alterations of CHs are routinely reported in tumors; (ii) the expression of CH-derived RNA in embryonal and other cells under stress, including cancer cells; (iii) the expression of parts of CH-DNA as long noncoding RNAs; plus (iv) theories that suggest a possible application of the “two-hit model” for euchromatic copy number variants (CNVs). Herein, these points are discussed in detail, which leads to the conclusion that CHs are by far not given sufficient consideration in routine cytogenetic analysis, e.g., leukemias and lymphomas, and need more attention in future research settings including solid tumors. This heightened focus may only be achieved by approaches other than standard sequencing or chromosomal microarrays, as these techniques are at a minimum impaired in their ability to detect, if not blind to, (highly) repetitive DNA sequences.
Collapse
|
4
|
A classical revival: Human satellite DNAs enter the genomics era. Semin Cell Dev Biol 2022; 128:2-14. [PMID: 35487859 DOI: 10.1016/j.semcdb.2022.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/30/2022]
Abstract
The classical human satellite DNAs, also referred to as human satellites 1, 2 and 3 (HSat1, HSat2, HSat3, or collectively HSat1-3), occur on most human chromosomes as large, pericentromeric tandem repeat arrays, which together constitute roughly 3% of the human genome (100 megabases, on average). Even though HSat1-3 were among the first human DNA sequences to be isolated and characterized at the dawn of molecular biology, they have remained almost entirely missing from the human genome reference assembly for 20 years, hindering studies of their sequence, regulation, and potential structural roles in the nucleus. Recently, the Telomere-to-Telomere Consortium produced the first truly complete assembly of a human genome, paving the way for new studies of HSat1-3 with modern genomic tools. This review provides an account of the history and current understanding of HSat1-3, with a view towards future studies of their evolution and roles in health and disease.
Collapse
|
5
|
Gurova K. Can aggressive cancers be identified by the "aggressiveness" of their chromatin? Bioessays 2022; 44:e2100212. [PMID: 35452144 DOI: 10.1002/bies.202100212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022]
Abstract
Phenotypic plasticity is a crucial feature of aggressive cancer, providing the means for cancer progression. Stochastic changes in tumor cell transcriptional programs increase the chances of survival under any condition. I hypothesize that unstable chromatin permits stochastic transitions between transcriptional programs in aggressive cancers and supports non-genetic heterogeneity of tumor cells as a basis for their adaptability. I present a mechanistic model for unstable chromatin which includes destabilized nucleosomes, mobile chromatin fibers and random enhancer-promoter contacts, resulting in stochastic transcription. I suggest potential markers for "unsettled" chromatin in tumors associated with poor prognosis. Although many of the characteristics of unstable chromatin have been described, they were mostly used to explain changes in the transcription of individual genes. I discuss approaches to evaluate the role of unstable chromatin in non-genetic tumor cell heterogeneity and suggest using the degree of chromatin instability and transcriptional noise in tumor cells to predict cancer aggressiveness.
Collapse
Affiliation(s)
- Katerina Gurova
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
6
|
Desaulniers D, Vasseur P, Jacobs A, Aguila MC, Ertych N, Jacobs MN. Integration of Epigenetic Mechanisms into Non-Genotoxic Carcinogenicity Hazard Assessment: Focus on DNA Methylation and Histone Modifications. Int J Mol Sci 2021; 22:10969. [PMID: 34681626 PMCID: PMC8535778 DOI: 10.3390/ijms222010969] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Epigenetics involves a series of mechanisms that entail histone and DNA covalent modifications and non-coding RNAs, and that collectively contribute to programing cell functions and differentiation. Epigenetic anomalies and DNA mutations are co-drivers of cellular dysfunctions, including carcinogenesis. Alterations of the epigenetic system occur in cancers whether the initial carcinogenic events are from genotoxic (GTxC) or non-genotoxic (NGTxC) carcinogens. NGTxC are not inherently DNA reactive, they do not have a unifying mode of action and as yet there are no regulatory test guidelines addressing mechanisms of NGTxC. To fil this gap, the Test Guideline Programme of the Organisation for Economic Cooperation and Development is developing a framework for an integrated approach for the testing and assessment (IATA) of NGTxC and is considering assays that address key events of cancer hallmarks. Here, with the intent of better understanding the applicability of epigenetic assays in chemical carcinogenicity assessment, we focus on DNA methylation and histone modifications and review: (1) epigenetic mechanisms contributing to carcinogenesis, (2) epigenetic mechanisms altered following exposure to arsenic, nickel, or phenobarbital in order to identify common carcinogen-specific mechanisms, (3) characteristics of a series of epigenetic assay types, and (4) epigenetic assay validation needs in the context of chemical hazard assessment. As a key component of numerous NGTxC mechanisms of action, epigenetic assays included in IATA assay combinations can contribute to improved chemical carcinogen identification for the better protection of public health.
Collapse
Affiliation(s)
- Daniel Desaulniers
- Environmental Health Sciences and Research Bureau, Hazard Identification Division, Health Canada, AL:2203B, Ottawa, ON K1A 0K9, Canada
| | - Paule Vasseur
- CNRS, LIEC, Université de Lorraine, 57070 Metz, France;
| | - Abigail Jacobs
- Independent at the Time of Publication, Previously US Food and Drug Administration, Rockville, MD 20852, USA;
| | - M. Cecilia Aguila
- Toxicology Team, Division of Human Food Safety, Center for Veterinary Medicine, US Food and Drug Administration, Department of Health and Human Services, Rockville, MD 20852, USA;
| | - Norman Ertych
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany;
| | - Miriam N. Jacobs
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton OX11 0RQ, UK;
| |
Collapse
|
7
|
Pathak RU, Soujanya M, Mishra RK. Deterioration of nuclear morphology and architecture: A hallmark of senescence and aging. Ageing Res Rev 2021; 67:101264. [PMID: 33540043 DOI: 10.1016/j.arr.2021.101264] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/04/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
The metazoan nucleus is a highly structured organelle containing several well-defined sub-organelles. It is the largest organelle inside a cell taking up from one tenth to half of entire cell volume. This makes it one of the easiest organelles to identify and study under the microscope. Abnormalities in the nuclear morphology and architecture are commonly observed in an aged and senescent cell. For example, the nuclei enlarge, loose their shape, appear lobulated, harbour nuclear membrane invaginations, carry enlarged/fragmented nucleolus, loose heterochromatin, etc. In this review we discuss about the age-related changes in nuclear features and elaborate upon the molecular reasons driving the change. Many of these changes can be easily imaged under a microscope and analysed in silico. Thus, computational image analysis of nuclear features appears to be a promising tool to evaluate physiological age of a cell and offers to be a legitimate biomarker. It can be used to examine progression of age-related diseases and evaluate therapies.
Collapse
Affiliation(s)
| | - Mamilla Soujanya
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India
| | - Rakesh Kumar Mishra
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India.
| |
Collapse
|
8
|
Kundu S, Ray MD, Sharma A. Interplay between genome organization and epigenomic alterations of pericentromeric DNA in cancer. J Genet Genomics 2021; 48:184-197. [PMID: 33840602 DOI: 10.1016/j.jgg.2021.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/07/2021] [Accepted: 02/20/2021] [Indexed: 12/16/2022]
Abstract
In eukaryotic genome biology, the genomic organization inside the three-dimensional (3D) nucleus is highly complex, and whether this organization governs gene expression is poorly understood. Nuclear lamina (NL) is a filamentous meshwork of proteins present at the lining of inner nuclear membrane that serves as an anchoring platform for genome organization. Large chromatin domains termed as lamina-associated domains (LADs), play a major role in silencing genes at the nuclear periphery. The interaction of the NL and genome is dynamic and stochastic. Furthermore, many genes change their positions during developmental processes or under disease conditions such as cancer, to activate certain sorts of genes and/or silence others. Pericentromeric heterochromatin (PCH) is mostly in the silenced region within the genome, which localizes at the nuclear periphery. Studies show that several genes located at the PCH are aberrantly expressed in cancer. The interesting question is that despite being localized in the pericentromeric region, how these genes still manage to overcome pericentromeric repression. Although epigenetic mechanisms control the expression of the pericentromeric region, recent studies about genome organization and genome-nuclear lamina interaction have shed light on a new aspect of pericentromeric gene regulation through a complex and coordinated interplay between epigenomic remodeling and genomic organization in cancer.
Collapse
Affiliation(s)
- Subhadip Kundu
- Laboratory of Chromatin and Cancer Epigenetics, Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - M D Ray
- Department of Surgical Oncology, IRCH, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Ashok Sharma
- Laboratory of Chromatin and Cancer Epigenetics, Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| |
Collapse
|
9
|
Landers CC, Rabeler CA, Ferrari EK, D'Alessandro LR, Kang DD, Malisa J, Bashir SM, Carone DM. Ectopic expression of pericentric HSATII RNA results in nuclear RNA accumulation, MeCP2 recruitment, and cell division defects. Chromosoma 2021; 130:75-90. [PMID: 33585981 PMCID: PMC7889552 DOI: 10.1007/s00412-021-00753-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 12/21/2022]
Abstract
Within the pericentric regions of human chromosomes reside large arrays of tandemly repeated satellite sequences. Expression of the human pericentric satellite HSATII is prevented by extensive heterochromatin silencing in normal cells, yet in many cancer cells, HSATII RNA is aberrantly expressed and accumulates in large nuclear foci in cis. Expression and aggregation of HSATII RNA in cancer cells is concomitant with recruitment of key chromatin regulatory proteins including methyl-CpG binding protein 2 (MeCP2). While HSATII expression has been observed in a wide variety of cancer cell lines and tissues, the effect of its expression is unknown. We tested the effect of stable expression of HSATII RNA within cells that do not normally express HSATII. Ectopic HSATII expression in HeLa and primary fibroblast cells leads to focal accumulation of HSATII RNA in cis and triggers the accumulation of MeCP2 onto nuclear HSATII RNA bodies. Further, long-term expression of HSATII RNA leads to cell division defects including lagging chromosomes, chromatin bridges, and other chromatin defects. Thus, expression of HSATII RNA in normal cells phenocopies its nuclear accumulation in cancer cells and allows for the characterization of the cellular events triggered by aberrant expression of pericentric satellite RNA.
Collapse
Affiliation(s)
- Catherine C Landers
- Department of Nutritional Sciences, University of Connecticut , Storrs, CT, USA
| | | | | | | | - Diana D Kang
- Division of Pharmaceutics and Pharmacology College of Pharmacy, Ohio State University, Columbus, OH, USA
| | - Jessica Malisa
- Stanford University School of Medicine, Stanford, CA, USA
| | - Safia M Bashir
- Department of Biology, Swarthmore College, Swarthmore, PA, USA
| | - Dawn M Carone
- Department of Biology, Swarthmore College, Swarthmore, PA, USA.
| |
Collapse
|
10
|
Enukashvily NI, Dobrynin MA, Chubar AV. RNA-seeded membraneless bodies: Role of tandemly repeated RNA. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 126:151-193. [PMID: 34090614 DOI: 10.1016/bs.apcsb.2020.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
Membraneless organelles (bodies, granules, etc.) are spatially distinct sub-nuclear and cytoplasmic foci involved in all the processes in a living cell, such as development, cell death, carcinogenesis, proliferation, and differentiation. Today the list of the membraneless organelles includes a wide spectrum of intranuclear and cytoplasmic bodies. Proteins with intrinsically disordered regions are the key players in the membraneless body assembly. However, recent data assume an important role of RNA molecules in the process of the liquid-liquid phase separation. High-level expression of RNA above a critical concentration threshold is mandatory to nucleate interactions with specific proteins and for seeding membraneless organelles. RNA components are considered by many authors as the principal determinants of organelle identity. Tandemly repeated (TR) DNA of big satellites (a TR family that includes centromeric and pericentromeric DNA sequences) was believed to be transcriptionally silent for a long period. Now we know about the TR transcription upregulation during gameto- and embryogenesis, carcinogenesis, stress response. In the review, we summarize the recent data about the involvement of TR RNA in the formation of nuclear membraneless granules, bodies, etc., with different functions being in some cases an initiator of the structures assembly. These RNP structures sequestrate and inactivate different proteins and transcripts. The TR induced sequestration is one of the key principles of nuclear architecture and genome functioning. Studying the role of the TR-based membraneless organelles in stress and disease will bring some new ideas for translational medicine.
Collapse
Affiliation(s)
- Natella I Enukashvily
- Institute of Cytology RAS, St. Petersburg, Russia; North-Western Medical State University named after I.I. Mechnikov, St. Petersburg, Russia.
| | | | | |
Collapse
|
11
|
Gjerstorff MF. Novel Insights Into Epigenetic Reprogramming and Destabilization of Pericentromeric Heterochromatin in Cancer. Front Oncol 2020; 10:594163. [PMID: 33251148 PMCID: PMC7674669 DOI: 10.3389/fonc.2020.594163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022] Open
Abstract
Pericentromeric heterochromatin is maintained in a condensed structure by repressive epigenetic control mechanisms and perturbation of these may cause diseases. The chromosome 1q12 region harbors the largest pericentromeric heterochromatin domain in the genome and is among the most common breakpoints in both solid and hematopoietic cancers. Furthermore, the 1q arm is frequently amplified in cancer and this may support tumorigenesis by increasing the dosage of the many oncogenes of this genomic region. Recent studies have provided insight into the mechanisms leading to loss of 1q12 stability and 1q amplification and DNA hypomethylation seems to play a prominent role. This may be the result of decreased activity of DNA methyltransferases and instrumental for 1q12 destabilization or arise secondary to perturbation of other important epigenetic mechanisms that control repression of pericentromeric heterochromatin. Polycomb proteins were recently demonstrated to epigenetically reprogram demethylated 1q12 pericentromeric heterochromatin in premalignant and malignant cells to form large subnuclear structures known as polycomb bodies. This may influence the regulation and stability of 1q12 pericentromeric heterochromatin and/or the distribution of polycomb factors to support tumorigenesis. This review will discuss recent insight into the epigenetic perturbations causing the destabilization of 1q12 pericentromeric heterochromatin and its possible implications for tumor biology.
Collapse
Affiliation(s)
- Morten Frier Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Oncology, Odense University Hospital, Odense, Denmark.,Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark
| |
Collapse
|
12
|
Dobrynin MA, Korchagina NM, Prjibelski AD, Shafranskaya D, Ostromyshenskii DI, Shunkina K, Stepanova I, Kotova AV, Podgornaya OI, Enukashvily NI. Human pericentromeric tandemly repeated DNA is transcribed at the end of oocyte maturation and is associated with membraneless mitochondria-associated structures. Sci Rep 2020; 10:19634. [PMID: 33184340 PMCID: PMC7665179 DOI: 10.1038/s41598-020-76628-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/29/2020] [Indexed: 01/25/2023] Open
Abstract
Most of the human genome is non-coding. However, some of the non-coding part is transcriptionally active. In humans, the tandemly repeated (TR) pericentromeric non-coding DNA-human satellites 2 and 3 (HS2, HS3)-are transcribed in somatic cells. These transcripts are also found in pre- and post-implantation embryos. The aim of this study was to analyze HS2/HS3 transcription and cellular localization of transcripts in human maturating oocytes. The maternal HS2/HS3 TR transcripts transcribed from both strands were accumulated in the ooplasm in GV-MI oocytes as shown by DNA-RNA FISH (fluorescence in-situ hybridization). The transcripts' content was higher in GV oocytes than in somatic cumulus cells according to real-time PCR. Using bioinformatics analysis, we demonstrated the presence of polyadenylated HS2 and HS3 RNAs in datasets of GV and MII oocyte transcriptomes. The transcripts shared a high degree of homology with HS2, HS3 transcripts previously observed in cancer cells. The HS2/HS3 transcripts were revealed by a combination of FISH and immunocytochemical staining within membraneless RNP structures that contained DEAD-box helicases DDX5 and DDX4. The RNP structures were closely associated with mitochondria, and are therefore similar to membraneless bodies described previously only in oogonia. These membraneless structures may be a site for spatial sequestration of RNAs and proteins in both maturating oocytes and cancer cells.
Collapse
Affiliation(s)
- M A Dobrynin
- Institute of Cytology RAS, Saint Petersburg, Russia
| | - N M Korchagina
- Ava-Peter - Scandinavia Assisted Reproductive Technology Clinic, Saint Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, Saint Petersburg, Russia
| | - A D Prjibelski
- Center for Algorithmic Biotechnology, St. Petersburg State University, Saint Petersburg, Russia
| | - D Shafranskaya
- Center for Algorithmic Biotechnology, St. Petersburg State University, Saint Petersburg, Russia
| | | | - K Shunkina
- Ava-Peter - Scandinavia Assisted Reproductive Technology Clinic, Saint Petersburg, Russia
| | - I Stepanova
- Institute of Cytology RAS, Saint Petersburg, Russia
| | - A V Kotova
- Institute of Cytology RAS, Saint Petersburg, Russia
- North-Western State Medical University Named After I.I. Mechnikov, Saint Petersburg, Russia
| | - O I Podgornaya
- Institute of Cytology RAS, Saint Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, Saint Petersburg, Russia
| | - N I Enukashvily
- Institute of Cytology RAS, Saint Petersburg, Russia.
- North-Western State Medical University Named After I.I. Mechnikov, Saint Petersburg, Russia.
| |
Collapse
|
13
|
Shadle SC, Bennett SR, Wong CJ, Karreman NA, Campbell AE, van der Maarel SM, Bass BL, Tapscott SJ. DUX4-induced bidirectional HSATII satellite repeat transcripts form intranuclear double-stranded RNA foci in human cell models of FSHD. Hum Mol Genet 2020; 28:3997-4011. [PMID: 31630170 DOI: 10.1093/hmg/ddz242] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/19/2019] [Accepted: 10/03/2019] [Indexed: 12/29/2022] Open
Abstract
The DUX4 transcription factor is normally expressed in the cleavage-stage embryo and regulates genes involved in embryonic genome activation. Misexpression of DUX4 in skeletal muscle, however, is toxic and causes facioscapulohumeral muscular dystrophy (FSHD). We recently showed DUX4-induced toxicity is due, in part, to the activation of the double-stranded RNA (dsRNA) response pathway and the accumulation of intranuclear dsRNA foci. Here, we determined the composition of DUX4-induced dsRNAs. We found that a subset of DUX4-induced dsRNAs originate from inverted Alu repeats embedded within the introns of DUX4-induced transcripts and from DUX4-induced dsRNA-forming intergenic transcripts enriched for endogenous retroviruses, Alu and LINE-1 elements. However, these repeat classes were also represented in dsRNAs from cells not expressing DUX4. In contrast, pericentric human satellite II (HSATII) repeats formed a class of dsRNA specific to the DUX4 expressing cells. Further investigation revealed that DUX4 can initiate the bidirectional transcription of normally heterochromatin-silenced HSATII repeats. DUX4-induced HSATII RNAs co-localized with DUX4-induced nuclear dsRNA foci and with intranuclear aggregation of EIF4A3 and ADAR1. Finally, gapmer-mediated knockdown of HSATII transcripts depleted DUX4-induced intranuclear ribonucleoprotein aggregates and decreased DUX4-induced cell death, suggesting that HSATII-formed dsRNAs contribute to DUX4 toxicity.
Collapse
Affiliation(s)
- Sean C Shadle
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA 91805, USA
| | - Sean R Bennett
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Chao-Jen Wong
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Nancy A Karreman
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Amy E Campbell
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Stephen J Tapscott
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
14
|
Shatskikh AS, Kotov AA, Adashev VE, Bazylev SS, Olenina LV. Functional Significance of Satellite DNAs: Insights From Drosophila. Front Cell Dev Biol 2020; 8:312. [PMID: 32432114 PMCID: PMC7214746 DOI: 10.3389/fcell.2020.00312] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
Since their discovery more than 60 years ago, satellite repeats are still one of the most enigmatic parts of eukaryotic genomes. Being non-coding DNA, satellites were earlier considered to be non-functional “junk,” but recently this concept has been extensively revised. Satellite DNA contributes to the essential processes of formation of crucial chromosome structures, heterochromatin establishment, dosage compensation, reproductive isolation, genome stability and development. Genomic abundance of satellites is under stabilizing selection owing of their role in the maintenance of vital regions of the genome – centromeres, pericentromeric regions, and telomeres. Many satellites are transcribed with the generation of long or small non-coding RNAs. Misregulation of their expression is found to lead to various defects in the maintenance of genomic architecture, chromosome segregation and gametogenesis. This review summarizes our current knowledge concerning satellite functions, the mechanisms of regulation and evolution of satellites, focusing on recent findings in Drosophila. We discuss here experimental and bioinformatics data obtained in Drosophila in recent years, suggesting relevance of our analysis to a wide range of eukaryotic organisms.
Collapse
Affiliation(s)
- Aleksei S Shatskikh
- Laboratory of Analysis of Clinical and Model Tumor Pathologies on the Organismal Level, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Alexei A Kotov
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir E Adashev
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Sergei S Bazylev
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Ludmila V Olenina
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
15
|
Akkipeddi SMK, Velleca AJ, Carone DM. Probing the function of long noncoding RNAs in the nucleus. Chromosome Res 2020; 28:87-110. [PMID: 32026224 PMCID: PMC7131881 DOI: 10.1007/s10577-019-09625-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/20/2019] [Accepted: 12/29/2019] [Indexed: 12/26/2022]
Abstract
The nucleus is a highly organized and dynamic environment where regulation and coordination of processes such as gene expression and DNA replication are paramount. In recent years, noncoding RNAs have emerged as key participants in the regulation of nuclear processes. There are a multitude of functional roles for long noncoding RNA (lncRNA), mediated through their ability to act as molecular scaffolds bridging interactions with proteins, chromatin, and other RNA molecules within the nuclear environment. In this review, we discuss the diversity of techniques that have been developed to probe the function of nuclear lncRNAs, along with the ways in which those techniques have revealed insights into their mechanisms of action. Foundational observations into lncRNA function have been gleaned from molecular cytology-based, single-cell approaches to illuminate both the localization and abundance of lncRNAs in addition to their potential binding partners. Biochemical, extraction-based approaches have revealed the molecular contacts between lncRNAs and other molecules within the nuclear environment and how those interactions may contribute to nuclear organization and regulation. Using examples of well-studied nuclear lncRNAs, we demonstrate that the emerging functions of individual lncRNAs have been most clearly deduced from combined cytology and biochemical approaches tailored to study specific lncRNAs. As more functional nuclear lncRNAs continue to emerge, the development of additional technologies to study their interactions and mechanisms of action promise to continually expand our understanding of nuclear organization, chromosome architecture, genome regulation, and disease states.
Collapse
Affiliation(s)
| | - Anthony J Velleca
- Department of Molecular Phamacology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dawn M Carone
- Department of Biology, Swarthmore College, Swarthmore, PA, USA.
| |
Collapse
|
16
|
Johansen S, Gjerstorff MF. Interaction between Polycomb and SSX Proteins in Pericentromeric Heterochromatin Function and Its Implication in Cancer. Cells 2020; 9:cells9010226. [PMID: 31963307 PMCID: PMC7016822 DOI: 10.3390/cells9010226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 01/10/2023] Open
Abstract
The stability of pericentromeric heterochromatin is maintained by repressive epigenetic control mechanisms, and failure to maintain this stability may cause severe diseases such as immune deficiency and cancer. Thus, deeper insight into the epigenetic regulation and deregulation of pericentromeric heterochromatin is of high priority. We and others have recently demonstrated that pericentromeric heterochromatin domains are often epigenetically reprogrammed by Polycomb proteins in premalignant and malignant cells to form large subnuclear structures known as Polycomb bodies. This may affect the regulation and stability of pericentromeric heterochromatin domains and/or the distribution of Polycomb factors to support tumorigeneses. Importantly, Polycomb bodies in cancer cells may be targeted by the cancer/testis-related SSX proteins to cause derepression and genomic instability of pericentromeric heterochromatin. This review will discuss the interplay between SSX and Polycomb factors in the repression and stability of pericentromeric heterochromatin and its possible implications for tumor biology.
Collapse
Affiliation(s)
- Simone Johansen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark;
| | - Morten Frier Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark;
- Department of Oncology, Odense University Hospital, 5000 Odense, Denmark
- Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, 5000 Odense, Denmark
- Correspondence: ; Tel.: +45-21261563
| |
Collapse
|
17
|
Traynor S, Møllegaard NE, Jørgensen MG, Brückmann NH, Pedersen CB, Terp MG, Johansen S, Dejardin J, Ditzel HJ, Gjerstorff MF. Remodeling and destabilization of chromosome 1 pericentromeric heterochromatin by SSX proteins. Nucleic Acids Res 2020; 47:6668-6684. [PMID: 31114908 PMCID: PMC6648343 DOI: 10.1093/nar/gkz396] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 12/31/2022] Open
Abstract
Rearrangement of the 1q12 pericentromeric heterochromatin and subsequent amplification of the 1q arm is commonly associated with cancer development and progression and may result from epigenetic deregulation. In many premalignant and malignant cells, loss of 1q12 satellite DNA methylation causes the deposition of polycomb factors and formation of large polycomb aggregates referred to as polycomb bodies. Here, we show that SSX proteins can destabilize 1q12 pericentromeric heterochromatin in melanoma cells when it is present in the context of polycomb bodies. We found that SSX proteins deplete polycomb bodies and promote the unfolding and derepression of 1q12 heterochromatin during replication. This further leads to segregation abnormalities during anaphase and generation of micronuclei. The structural rearrangement of 1q12 pericentromeric heterochromatin triggered by SSX2 is associated with loss of polycomb factors, but is not mediated by diminished polycomb repression. Instead, our studies suggest a direct effect of SSX proteins facilitated though a DNA/chromatin binding, zinc finger-like domain and a KRAB-like domain that may recruit chromatin modifiers or activate satellite transcription. Our results demonstrate a novel mechanism for generation of 1q12-associated genomic instability in cancer cells.
Collapse
Affiliation(s)
- Sofie Traynor
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, DK-5000 Odense, Denmark
| | - Niels Erik Møllegaard
- Department of Cellular and Molecular Medicine, University of Copenhagen DK-2200, Denmark
| | - Mikkel G Jørgensen
- Department of Biochemistry and Molecular Biology, Institute for Natural Sciences, University of Southern Denmark, Campusvej 55, DK-5000 Odense, Denmark
| | - Nadine H Brückmann
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, DK-5000 Odense, Denmark
| | - Christina B Pedersen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, DK-5000 Odense, Denmark
| | - Mikkel G Terp
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, DK-5000 Odense, Denmark
| | - Simone Johansen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, DK-5000 Odense, Denmark
| | - Jerome Dejardin
- Institute of Human Genetics CNRS-Université de Montpellier UMR 9002.141 rue de la Cardonille, 34000 Montpellier, France
| | - Henrik J Ditzel
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, DK-5000 Odense, Denmark.,Department of Oncology, Odense University Hospital, Sdr. Boulevard 29, DK-5000 Odense, Denmark.,Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Sdr. Boulevard 29, DK-5000, Denmark
| | - Morten F Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, DK-5000 Odense, Denmark.,Department of Oncology, Odense University Hospital, Sdr. Boulevard 29, DK-5000 Odense, Denmark.,Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Sdr. Boulevard 29, DK-5000, Denmark
| |
Collapse
|
18
|
Brückmann NH, Bennedsen SN, Duijf PHG, Terp MG, Thomassen M, Larsen M, Pedersen CB, Kruse T, Alcaraz N, Ditzel HJ, Gjerstorff MF. A functional genetic screen identifies the Mediator complex as essential for SSX2-induced senescence. Cell Death Dis 2019; 10:841. [PMID: 31695025 PMCID: PMC6834653 DOI: 10.1038/s41419-019-2068-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 01/03/2023]
Abstract
The senescence response to oncogenes is believed to be a barrier to oncogenic transformation in premalignant lesions, and describing the mechanisms by which tumor cells evade this response is important for early diagnosis and treatment. The male germ cell-associated protein SSX2 is ectopically expressed in many types of cancer and is functionally involved in regulating chromatin structure and supporting cell proliferation. Similar to many well-characterized oncogenes, SSX2 has the ability to induce senescence in cells. In this study, we performed a functional genetic screen to identify proteins implicated in SSX2-induced senescence and identified several subunits of the Mediator complex, which is central in regulating RNA polymerase-mediated transcription. Further experiments showed that reduced levels of MED1, MED4, and MED14 perturbed the development of senescence in SSX2-expressing cells. In contrast, knockdown of MED1 did not prevent development of B-Raf- and Epirubicin-induced senescence, suggesting that Mediator may be specifically linked to the cellular functions of SSX2 that may lead to development of senescence or be central in a SSX2-specific senescence response. Indeed, immunostaining of melanoma tumors, which often express SSX proteins, exhibited altered levels of MED1 compared to benign nevi. Similarly, RNA-seq analysis suggested that MED1, MED4, and MED14 were downregulated in some tumors, while upregulated in others. In conclusion, our study reveals the Mediator complex as essential for SSX2-induced senescence and suggests that changes in Mediator activity could be instrumental for tumorigenesis.
Collapse
Affiliation(s)
- Nadine H Brückmann
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Sofie N Bennedsen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Pascal H G Duijf
- Institute of Health and Biomedical Innovation, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Brisbane, QLD, 4102, Australia
| | - Mikkel G Terp
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Martin Larsen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Christina B Pedersen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Torben Kruse
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Nicolas Alcaraz
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Henrik J Ditzel
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Oncology, Odense University Hospital, Odense, Denmark.,Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark
| | - Morten F Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark. .,Department of Oncology, Odense University Hospital, Odense, Denmark. .,Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark.
| |
Collapse
|
19
|
Sawyer JR, Tian E, Walker BA, Wardell C, Lukacs JL, Sammartino G, Bailey C, Schinke CD, Thanendrarajan S, Davies FE, Morgan GJ, Barlogie B, Zangari M, van Rhee F. An acquired high-risk chromosome instability phenotype in multiple myeloma: Jumping 1q Syndrome. Blood Cancer J 2019; 9:62. [PMID: 31399558 PMCID: PMC6689064 DOI: 10.1038/s41408-019-0226-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/05/2019] [Accepted: 07/11/2019] [Indexed: 02/06/2023] Open
Abstract
Patients with multiple myeloma (MM) accumulate adverse copy number aberrations (CNAs), gains of 1q21, and 17p deletions during disease progression. A subset of these patients develops heightened 1q12 pericentromeric instability and jumping translocations of 1q12 (JT1q12), evidenced by increased copy CNAs of 1q21 and losses in receptor chromosomes (RC). To understand the progression of these aberrations we analyzed metaphase cells of 50 patients with ≥4 CNAs of 1q21 by G-banding, locus specific FISH, and spectral karyotyping. In eight patients with ≥5 CNAs of 1q21 we identified a chromosome instability phenotype similar to that found in ICF syndrome (immunodeficiency, centromeric instability, and facial anomalies). Strikingly, the acquired instability phenotype identified in these patients demonstrates the same transient structural aberrations of 1q12 as those found in ICF syndrome, suggesting similar underlying pathological mechanisms. Four types of clonal aberrations characterize this phenotype including JT1q12s, RC deletions, 1q12-21 breakage-fusion-bridge cycle amplifications, and RC insertions. In addition, recurring transient aberrations include 1q12 decondensation and breakage, triradials, and 1q micronuclei. The acquired self-propagating mobile property of 1q12 satellite DNA drives the continuous regeneration of 1q12 duplication/deletion events. For patients demonstrating this instability phenotype, we propose the term "Jumping 1q Syndrome."
Collapse
Affiliation(s)
- Jeffrey R Sawyer
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA. .,Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Erming Tian
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Brian A Walker
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Christopher Wardell
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Janet L Lukacs
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Gael Sammartino
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Clyde Bailey
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Carolina D Schinke
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Faith E Davies
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Gareth J Morgan
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Bart Barlogie
- Department of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maurizio Zangari
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Frits van Rhee
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
20
|
Hansen SV, Traynor S, Ditzel HJ, Gjerstorff MF. Human DREF/ZBED1 is a nuclear protein widely expressed in multiple cell types derived from all three primary germ layers. PLoS One 2018; 13:e0205461. [PMID: 30304065 PMCID: PMC6179265 DOI: 10.1371/journal.pone.0205461] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 09/25/2018] [Indexed: 01/07/2023] Open
Abstract
Drosophila DNA replication-related element binding factor (DREF) is a transcription regulatory factor that binds the promoters of many genes involved in replication and cell proliferation and is required for normal cell cycle progression. Human DREF/zinc finger BED domain-containing protein 1 (ZBED1), an orthologue of Drosophila DREF, also has DNA binding activity, but its cellular functions remain largely uncharacterized. Herein, we show that ZBED1 is a chromatin-associated nuclear protein with a wide expression profile in human tissues from all three primary germ layers. For instance, ZBED1 was expressed in mesodermal-derived epithelial cells of the reproductive system and urinary tract, in endodermal-derived epithelial cells throughout the gastrointestinal tract, and in epidermal epithelium from the ectoderm. ZBED1 was also expressed in connective tissue and smooth muscle cells of multiple organs. To investigate whether ZBED1 is implicated in cell proliferation, similar to Drosophila DREF, we compared the tissue distribution of ZBED1 to that of the proliferation marker Ki-67. ZBED1 and Ki-67 were co-expressed in many epithelial tissues, but ZBED1 expression extended widely beyond that of Ki-67-positive cells. In other tissues, ZBED1 expression was more restricted than Ki-67 expression. These results suggest that ZBED1 is not a cell proliferation-associated factor such as Drosophila DREF, and our study adds to the cumulative understanding of the functions of ZBED1 in human cells and tissues.
Collapse
Affiliation(s)
- Simone Valentin Hansen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Sofie Traynor
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Henrik Jørn Ditzel
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Odense University Hospital, Odense, Denmark
- Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark
| | - Morten Frier Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark
- * E-mail:
| |
Collapse
|
21
|
Ishak CA, Classon M, De Carvalho DD. Deregulation of Retroelements as an Emerging Therapeutic Opportunity in Cancer. Trends Cancer 2018; 4:583-597. [DOI: 10.1016/j.trecan.2018.05.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 12/26/2022]
|