1
|
Rahmawati M, Stadler KM, Lopez-Biladeau B, Hoisington TM, Law NC. Core binding factor subunit β plays diverse and essential roles in the male germline. Front Cell Dev Biol 2023; 11:1284184. [PMID: 38020932 PMCID: PMC10653448 DOI: 10.3389/fcell.2023.1284184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Much of the foundation for lifelong spermatogenesis is established prior to puberty, and disruptions during this developmental window negatively impact fertility long into adulthood. However, the factors that coordinate prepubertal germline development are incompletely understood. Here, we report that core-binding factor subunit-β (CBFβ) plays critical roles in prepubertal development and the onset of spermatogenesis. Using a mouse conditional knockout (cKO) approach, inactivation of Cbfb in the male germline resulted in rapid degeneration of the germline during the onset of spermatogenesis, impaired overall sperm production, and adult infertility. Utilizing a different Cre driver to generate another Cbfb cKO model, we determined that the function of CBFβ in the male germline is likely limited to undifferentiated spermatogonia despite expression in other germ cell types. Within undifferentiated spermatogonia, CBFβ regulates proliferation, survival, and overall maintenance of the undifferentiated spermatogonia population. Paradoxically, we discovered that CBFβ also distally regulates meiotic progression and spermatid formation but only with Cbfb cKO within undifferentiated spermatogonia. Spatial transcriptomics revealed that CBFβ modulates cell cycle checkpoint control genes associated with both proliferation and meiosis. Taken together, our findings demonstrate that core programs established within the prepubertal undifferentiated spermatogonia population are necessary for both germline maintenance and sperm production.
Collapse
Affiliation(s)
- Mustika Rahmawati
- Department of Animal Sciences, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, WA, United States
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Kassie M. Stadler
- Department of Animal Sciences, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, WA, United States
| | - Blanca Lopez-Biladeau
- Department of Animal Sciences, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, WA, United States
| | - Tia M. Hoisington
- Department of Animal Sciences, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, WA, United States
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Nathan C. Law
- Department of Animal Sciences, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, WA, United States
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| |
Collapse
|
2
|
Vellichirammal NN, Tan YD, Xiao P, Eudy J, Shats O, Kelly D, Desler M, Cowan K, Guda C. The mutational landscape of a US Midwestern breast cancer cohort reveals subtype-specific cancer drivers and prognostic markers. Hum Genomics 2023; 17:64. [PMID: 37454130 PMCID: PMC10349437 DOI: 10.1186/s40246-023-00511-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Female breast cancer remains the second leading cause of cancer-related death in the USA. The heterogeneity in the tumor morphology across the cohort and within patients can lead to unpredictable therapy resistance, metastasis, and clinical outcome. Hence, supplementing classic pathological markers with intrinsic tumor molecular markers can help identify novel molecular subtypes and the discovery of actionable biomarkers. METHODS We conducted a large multi-institutional genomic analysis of paired normal and tumor samples from breast cancer patients to profile the complex genomic architecture of breast tumors. Long-term patient follow-up, therapeutic regimens, and treatment response for this cohort are documented using the Breast Cancer Collaborative Registry. The majority of the patients in this study were at tumor stage 1 (51.4%) and stage 2 (36.3%) at the time of diagnosis. Whole-exome sequencing data from 554 patients were used for mutational profiling and identifying cancer drivers. RESULTS We identified 54 tumors having at least 1000 mutations and 185 tumors with less than 100 mutations. Tumor mutational burden varied across the classified subtypes, and the top ten mutated genes include MUC4, MUC16, PIK3CA, TTN, TP53, NBPF10, NBPF1, CDC27, AHNAK2, and MUC2. Patients were classified based on seven biological and tumor-specific parameters, including grade, stage, hormone receptor status, histological subtype, Ki67 expression, lymph node status, race, and mutational profiles compared across different subtypes. Mutual exclusion of mutations in PIK3CA and TP53 was pronounced across different tumor grades. Cancer drivers specific to each subtype include TP53, PIK3CA, CDC27, CDH1, STK39, CBFB, MAP3K1, and GATA3, and mutations associated with patient survival were identified in our cohort. CONCLUSIONS This extensive study has revealed tumor burden, driver genes, co-occurrence, mutual exclusivity, and survival effects of mutations on a US Midwestern breast cancer cohort, paving the way for developing personalized therapeutic strategies.
Collapse
Affiliation(s)
| | - Yuan-De Tan
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Peng Xiao
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - James Eudy
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Oleg Shats
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, USA
| | - David Kelly
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, USA
| | - Michelle Desler
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, USA
| | - Kenneth Cowan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Center for Biomedical Informatics Research and Innovation, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, USA.
| |
Collapse
|
3
|
Khan AS, Campbell KJ, Cameron ER, Blyth K. The RUNX/CBFβ Complex in Breast Cancer: A Conundrum of Context. Cells 2023; 12:641. [PMID: 36831308 PMCID: PMC9953914 DOI: 10.3390/cells12040641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Dissecting and identifying the major actors and pathways in the genesis, progression and aggressive advancement of breast cancer is challenging, in part because neoplasms arising in this tissue represent distinct diseases and in part because the tumors themselves evolve. This review attempts to illustrate the complexity of this mutational landscape as it pertains to the RUNX genes and their transcription co-factor CBFβ. Large-scale genomic studies that characterize genetic alterations across a disease subtype are a useful starting point and as such have identified recurring alterations in CBFB and in the RUNX genes (particularly RUNX1). Intriguingly, the functional output of these mutations is often context dependent with regards to the estrogen receptor (ER) status of the breast cancer. Therefore, such studies need to be integrated with an in-depth understanding of both the normal and corrupted function in mammary cells to begin to tease out how loss or gain of function can alter the cell phenotype and contribute to disease progression. We review how alterations to RUNX/CBFβ function contextually ascribe to breast cancer subtypes and discuss how the in vitro analyses and mouse model systems have contributed to our current understanding of these proteins in the pathogenesis of this complex set of diseases.
Collapse
Affiliation(s)
- Adiba S. Khan
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Rd, Glasgow G61 1BD, UK; (A.S.K.); (K.J.C.)
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Kirsteen J. Campbell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Rd, Glasgow G61 1BD, UK; (A.S.K.); (K.J.C.)
| | - Ewan R. Cameron
- School of Biodiversity One Health & Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK;
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Rd, Glasgow G61 1BD, UK; (A.S.K.); (K.J.C.)
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
4
|
Cancer-Associated Exosomal CBFB Facilitates the Aggressive Phenotype, Evasion of Oxidative Stress, and Preferential Predisposition to Bone Prometastatic Factor of Breast Cancer Progression. DISEASE MARKERS 2022; 2022:8446629. [PMID: 35903297 PMCID: PMC9325341 DOI: 10.1155/2022/8446629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/13/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022]
Abstract
Background. Despite therapeutic advancements, metastasis remains a major cause in breast cancer-specific mortality. Breast cancer cells are susceptible to oxidative damage and exhibit high levels of oxidative stress, including protein damage, DNA damage, and lipid peroxidation. Some breast cancer risk factors may change the level of endogenous oxidative stress. Circulating exosomes play critical roles in tumorigenesis, distant metastasis, and poor prognosis in patients with breast cancer. Methods. We used an online database to analyze the expression and prognostic value of core binding factor subunit β (CBFB) and oxidative stress–related targets in patients with breast cancer. Serum from healthy controls and patients with primary breast cancer or bone metastatic breast cancer in the bone was collected. Exosomes were isolated from the sera or cell culture media. We used an MDA-MB-436-innoculated tumor xenograft mouse model for silencing CBFB. Results. Circulating exosomes from patients with breast cancer metastasis to the bone were rich in CBFB. The human mammary fibroblast cells HMF3A and fibroblasts derived from patient samples cocultured with exosomes had increased α-SMA and vimentin expression and IL-6 and OPN secretion. Similarly, nonmetastatic breast cancer cells cocultured with exosomes exhibited increased levels of certain markers, including vimentin, snail1, CXCR4, and Runx2, and the exosomes had high CBFB expression. Silencing CBFB in metastatic MDA-MB-436 and MDA-MB-157 cells resulted in suppressed migration and invasion and downregulation of vimentin, CXCR4, snail1, Runx2, CD44, and OPN. Conversely, CBFB overexpression resulted in upregulation of Runx2, vimentin, snail1, CD44, and OPN in nonmetastatic T47D and MCF12A cells. The CBFB-rich exosomes derived from MDA-MB-436 cells induced enhanced metastatic phenotypes in the low-metastatic T47D and MCF12A cell lines. Conclusion. Our results revealed that CBFB may promote bone metastasis in patients with breast cancer. Of therapeutic relevance, targeting CBFB resulted in decreased tumor burden and bone metastasis, downregulation of bone metastasis markers, and impaired regulation of oxidative stress–related proteins NAE1 and NOS1.
Collapse
|
5
|
Zhang W, Zhang D, Cheng Y, Liang X, Wang J. Runx1 regulates Tff1 expression to expedite viability of retinal microvascular endothelial cells in mice with diabetic retinopathy. Exp Eye Res 2022; 217:108969. [PMID: 35114215 DOI: 10.1016/j.exer.2022.108969] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/04/2022]
Abstract
Diabetic retinopathy (DR) represents a major complication of diabetes, and molecular mechanisms related to vascular dysfunction, particularly endothelial dysfunction, in DR remains unclear. In the present work, we generated a DR animal model using mice and a cell model in mouse retinal microvascular endothelial cells (mRMECs) to examine the role of Trefoil factor family 1 (Tff1) in DR. Tff1 was poorly expressed in DR mice and high glucose (HG)-treated mRMECs. Overexpression of Tff1 significantly attenuated streptozotocin-induced retinal proliferation and angiogenesis in DR mice and reduced the secretion of inflammatory factors. In HG-treated mRMECs, overexpression of Tff1 remarkably reduced the proliferation and angiogenesis of mRMECs. In further experiments, we found that Tff1 was transcriptionally repressed by Runt-related transcription factor 1 (Runx1) directly, and Tff1 expression was indirectly modulated by Runx1 via the core-binding factor subunit beta (CBF-β)/nuclear factor, erythroid 2/microRNA-423-5p axis and the CBF-β/estrogen receptor 1 (ESR1) axis. Moreover, Tff1 could inhibit the activation of NF-κB signaling pathway, which in turn attenuated retinal endothelial cell proliferation and angiogenesis. It was thus proposed that Runx1/Tff1/NF-κB axis may be a potential target for the treatment strategy of DR, and further studies are needed.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Ophthalmology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030012, Shanxi, PR China; Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China.
| | - Dingguo Zhang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, PR China
| | - Yan Cheng
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China
| | - Xing Liang
- Department of Ophthalmology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030012, Shanxi, PR China
| | - Jingjing Wang
- Department of Ophthalmology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030012, Shanxi, PR China
| |
Collapse
|
6
|
Malik N, Yan H, Yang HH, Ayaz G, DuBois W, Tseng YC, Kim YI, Jiang S, Liu C, Lee M, Huang J. CBFB cooperates with p53 to maintain TAp73 expression and suppress breast cancer. PLoS Genet 2021; 17:e1009553. [PMID: 33945523 PMCID: PMC8121313 DOI: 10.1371/journal.pgen.1009553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/14/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
The CBFB gene is frequently mutated in several types of solid tumors. Emerging evidence suggests that CBFB is a tumor suppressor in breast cancer. However, our understanding of the tumor suppressive function of CBFB remains incomplete. Here, we analyze genetic interactions between mutations of CBFB and other highly mutated genes in human breast cancer datasets and find that CBFB and TP53 mutations are mutually exclusive, suggesting a functional association between CBFB and p53. Integrated genomic studies reveal that TAp73 is a common transcriptional target of CBFB and p53. CBFB cooperates with p53 to maintain TAp73 expression, as either CBFB or p53 loss leads to TAp73 depletion. TAp73 re-expression abrogates the tumorigenic effect of CBFB deletion. Although TAp73 loss alone is insufficient for tumorigenesis, it enhances the tumorigenic effect of NOTCH3 overexpression, a downstream event of CBFB loss. Immunohistochemistry shows that p73 loss is coupled with higher proliferation in xenografts. Moreover, TAp73 loss-of-expression is a frequent event in human breast cancer tumors and cell lines. Together, our results significantly advance our understanding of the tumor suppressive functions of CBFB and reveal a mechanism underlying the communication between the two tumor suppressors CBFB and p53.
Collapse
Affiliation(s)
- Navdeep Malik
- Cancer and Stem Cell Epigenetics Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Hualong Yan
- Cancer and Stem Cell Epigenetics Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Howard H Yang
- High-Dimension Data Analysis Group, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Gamze Ayaz
- Cancer and Stem Cell Epigenetics Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Wendy DuBois
- Cancer and Stem Cell Epigenetics Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Yu-Chou Tseng
- Cancer and Stem Cell Epigenetics Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Young-Im Kim
- Cancer and Stem Cell Epigenetics Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Shunlin Jiang
- Cancer and Stem Cell Epigenetics Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung, and Blood Institute, Bethesda, Maryland, United States of America
| | - Maxwell Lee
- High-Dimension Data Analysis Group, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jing Huang
- Cancer and Stem Cell Epigenetics Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
7
|
Spadazzi C, Mercatali L, Esposito M, Wei Y, Liverani C, De Vita A, Miserocchi G, Carretta E, Zanoni M, Cocchi C, Bongiovanni A, Recine F, Kang Y, Ibrahim T. Trefoil factor-1 upregulation in estrogen-receptor positive breast cancer correlates with an increased risk of bone metastasis. Bone 2021; 144:115775. [PMID: 33249323 DOI: 10.1016/j.bone.2020.115775] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
Bone is one of the most preferred sites of metastatic spread from different cancer types, including breast cancer. However, different breast cancer subtypes exhibit distinct metastatic behavior in terms of kinetics and anatomic sites of relapse. Despite advances in the diagnosis, the identification of patients at high-risk of bone recurrence is still an unmet clinical need. We conducted a retrospective analysis, by gene expression and immunohistochemical assays, on 90 surgically resected breast cancer samples collected from patients who experienced no evidence of distant metastasis, bone or visceral metastasis in order to identify a primary tumor-derived marker of bone recurrence. We identified trefoil factor-1 (pS2 or TFF1) as strictly correlated to bone metastasis from ER+ breast cancer. In silico analysis was carried out to confirm this observation, linking gene expression data with clinical characteristics available from public clinical datasets. Then, we investigated TFF1 function in ER+ breast cancer tumorigenesis and bone metastasis through xenograft in vivo models of MCF 7 breast cancer with gain and loss of function of TFF1. As a response to microenvironmental features in primary tumors, TFF1 expression could modulate ER+ breast cancer growth, leading to a less proliferative phenotype. Our results showed it may not play a role in late stages of bone metastasis, however further studies are warranted to understand whether it could contribute in the early-stages of the metastatic cascade. In conclusion, TFF1 upregulation in primary ER+ breast cancer could be useful to identify patients at high-risk of bone metastasis. This could help clinicians in the identification of patients who likely can develop bone metastasis and who could benefit from personalized treatments and follow-up strategies to prevent metastatic disease.
Collapse
Affiliation(s)
- Chiara Spadazzi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Laura Mercatali
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Mark Esposito
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Yong Wei
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Chiara Liverani
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Alessandro De Vita
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Giacomo Miserocchi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | | | - Michele Zanoni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Claudia Cocchi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Alberto Bongiovanni
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Federica Recine
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| |
Collapse
|
8
|
Funakoshi-Tago M, Tago K, Li C, Hokimoto S, Tamura H. Coffee decoction enhances tamoxifen proapoptotic activity on MCF-7 cells. Sci Rep 2020; 10:19588. [PMID: 33177647 PMCID: PMC7659352 DOI: 10.1038/s41598-020-76445-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
The consumption of coffee has been suggested to effectively enhance the therapeutic effects of tamoxifen against breast cancer; however, the underlying molecular mechanisms remain unclear. We herein attempted to clarify how coffee decoction exerts anti-cancer effects in cooperation with tamoxifen using the estrogen receptor α (ERα)-positive breast cancer cell line, MCF-7. The results obtained showed that coffee decoction down-regulated the expression of ERα, which was attributed to caffeine inhibiting its transcription. Coffee decoction cooperated with tamoxifen to induce cell-cycle arrest and apoptotic cell death, which may have been mediated by decreases in cyclin D1 expression and the activation of p53 tumor suppressor. The inclusion of caffeine in coffee decoction was essential, but not sufficient, to induce cell-cycle arrest and apoptotic cell death, suggesting the requirement of unknown compound(s) in coffee decoction to decrease cyclin D1 expression and activate apoptotic signaling cascades including p53. The activation of p53 through the cooperative effects of these unidentified component(s), caffeine, and tamoxifen appeared to be due to the suppression of the ERK and Akt pathways. Although the mechanisms by which the suppression of these pathways induces p53-mediated apoptotic cell death remain unclear, the combination of decaffeinated coffee, caffeine, and tamoxifen also caused cell-cycle arrest and apoptotic cell death, suggesting that unknown compound(s) present in decaffeinated coffee cooperate with caffeine and tamoxifen.
Collapse
Affiliation(s)
- Megumi Funakoshi-Tago
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| | - Kenji Tago
- Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| | - Chin Li
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Shingo Hokimoto
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Hiroomi Tamura
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| |
Collapse
|
9
|
Lie-a-ling M, Mevel R, Patel R, Blyth K, Baena E, Kouskoff V, Lacaud G. RUNX1 Dosage in Development and Cancer. Mol Cells 2020; 43:126-138. [PMID: 31991535 PMCID: PMC7057845 DOI: 10.14348/molcells.2019.0301] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/30/2022] Open
Abstract
The transcription factor RUNX1 first came to prominence due to its involvement in the t(8;21) translocation in acute myeloid leukemia (AML). Since this discovery, RUNX1 has been shown to play important roles not only in leukemia but also in the ontogeny of the normal hematopoietic system. Although it is currently still challenging to fully assess the different parameters regulating RUNX1 dosage, it has become clear that the dose of RUNX1 can greatly affect both leukemia and normal hematopoietic development. It is also becoming evident that varying levels of RUNX1 expression can be used as markers of tumor progression not only in the hematopoietic system, but also in non-hematopoietic cancers. Here, we provide an overview of the current knowledge of the effects of RUNX1 dosage in normal development of both hematopoietic and epithelial tissues and their associated cancers.
Collapse
Affiliation(s)
- Michael Lie-a-ling
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK0 4TG, UK
| | - Renaud Mevel
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK0 4TG, UK
| | - Rahima Patel
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK0 4TG, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Esther Baena
- Cancer Research UK Prostate Oncobiology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK10 TG, UK
| | - Valerie Kouskoff
- Division of Developmental Biology & Medicine, The University of Manchester, Manchester, M13 9PT, UK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK0 4TG, UK
| |
Collapse
|