1
|
Tzaban S, Stern O, Zisman E, Eisenberg G, Klein S, Frankenburg S, Lotem M. Alternative splicing of modulatory immune receptors in T lymphocytes: a newly identified and targetable mechanism for anticancer immunotherapy. Front Immunol 2025; 15:1490035. [PMID: 39845971 PMCID: PMC11752881 DOI: 10.3389/fimmu.2024.1490035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/25/2024] [Indexed: 01/24/2025] Open
Abstract
Alternative splicing (AS) is a mechanism that generates translational diversity within a genome. Equally important is the dynamic adaptability of the splicing machinery, which can give preference to one isoform over others encoded by a single gene. These isoform preferences change in response to the cell's state and function. Particularly significant is the impact of physiological alternative splicing in T lymphocytes, where specific isoforms can enhance or reduce the cells' reactivity to stimuli. This process makes splicing isoforms defining features of cell states, exemplified by CD45 splice isoforms, which characterize the transition from naïve to memory states. Two developments have accelerated the use of AS dynamics for therapeutic interventions: advancements in long-read RNA sequencing and progress in nucleic acid chemical modifications. Improved oligonucleotide stability has enabled their use in directing splicing to specific sites or modifying sequences to enhance or silence particular splicing events. This review highlights immune regulatory splicing patterns with potential significance for enhancing anticancer immunotherapy.
Collapse
Affiliation(s)
- Shay Tzaban
- The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ori Stern
- The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Elad Zisman
- The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Galit Eisenberg
- The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Center for Melanoma and Cancer Immunotherapy, Sharett Institute of Oncology, Jerusalem, Israel
| | - Shiri Klein
- The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Center for Melanoma and Cancer Immunotherapy, Sharett Institute of Oncology, Jerusalem, Israel
| | - Shoshana Frankenburg
- The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Lotem
- The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Center for Melanoma and Cancer Immunotherapy, Sharett Institute of Oncology, Jerusalem, Israel
- Hadassah Cancer Research Institute, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
2
|
Du Y, Cao L, Wang S, Guo L, Tan L, Liu H, Feng Y, Wu W. Differences in alternative splicing and their potential underlying factors between animals and plants. J Adv Res 2024; 64:83-98. [PMID: 37981087 PMCID: PMC11464654 DOI: 10.1016/j.jare.2023.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/16/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Alternative splicing (AS), a posttranscriptional process, contributes to the complexity of transcripts from a limited number of genes in a genome, and AS is considered a great source of genetic and phenotypic diversity in eukaryotes. In animals, AS is tightly regulated during the processes of cell growth and differentiation, and its dysregulation is involved in many diseases, including cancers. Likewise, in plants, AS occurs in all stages of plant growth and development, and it seems to play important roles in the rapid reprogramming of genes in response to environmental stressors. To date, the prevalence and functional roles of AS have been extensively reviewed in animals and plants. However, AS differences between animals and plants, especially their underlying molecular mechanisms and impact factors, are anecdotal and rarely reviewed. AIM OF REVIEW This review aims to broaden our understanding of AS roles in a variety of biological processes and provide insights into the underlying mechanisms and impact factors likely leading to AS differences between animals and plants. KEY SCIENTIFIC CONCEPTS OF REVIEW We briefly summarize the roles of AS regulation in physiological and biochemical activities in animals and plants. Then, we underline the differences in the process of AS between plants and animals and especially analyze the potential impact factors, such as gene exon/intron architecture, 5'/3' untranslated regions (UTRs), spliceosome components, chromatin dynamics and transcription speeds, splicing factors [serine/arginine-rich (SR) proteins and heterogeneous nuclear ribonucleoproteins (hnRNPs)], noncoding RNAs, and environmental stimuli, which might lead to the differences. Moreover, we compare the nonsense-mediated mRNA decay (NMD)-mediated turnover of the transcripts with a premature termination codon (PTC) in animals and plants. Finally, we summarize the current AS knowledge published in animals versus plants and discuss the potential development of disease therapies and superior crops in the future.
Collapse
Affiliation(s)
- Yunfei Du
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
| | - Lu Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
| | - Shuo Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
| | - Liangyu Guo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
| | - Lingling Tan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
| | - Hua Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
| | - Ying Feng
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai 200032, China.
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China.
| |
Collapse
|
3
|
Kim SY, Na MJ, Yoon S, Shin E, Ha JW, Jeon S, Nam SW. The roles and mechanisms of coding and noncoding RNA variations in cancer. Exp Mol Med 2024; 56:1909-1920. [PMID: 39218979 PMCID: PMC11447202 DOI: 10.1038/s12276-024-01307-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/03/2024] [Accepted: 06/20/2024] [Indexed: 09/04/2024] Open
Abstract
Functional variations in coding and noncoding RNAs are crucial in tumorigenesis, with cancer-specific alterations often resulting from chemical modifications and posttranscriptional processes mediated by enzymes. These RNA variations have been linked to tumor cell proliferation, growth, metastasis, and drug resistance and are valuable for identifying diagnostic or prognostic cancer biomarkers. The diversity of posttranscriptional RNA modifications, such as splicing, polyadenylation, methylation, and editing, is particularly significant due to their prevalence and impact on cancer progression. Additionally, other modifications, including RNA acetylation, circularization, miRNA isomerization, and pseudouridination, are recognized as key contributors to cancer development. Understanding the mechanisms underlying these RNA modifications in cancer can enhance our knowledge of cancer biology and facilitate the development of innovative therapeutic strategies. Targeting these RNA modifications and their regulatory enzymes may pave the way for novel RNA-based therapies, enabling tailored interventions for specific cancer subtypes. This review provides a comprehensive overview of the roles and mechanisms of various coding and noncoding RNA modifications in cancer progression and highlights recent advancements in RNA-based therapeutic applications.
Collapse
Affiliation(s)
- Sang Yean Kim
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
- NEORNAT Inc., Seoul, Republic of Korea
| | - Min Jeong Na
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
- NEORNAT Inc., Seoul, Republic of Korea
| | - Sungpil Yoon
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
- NEORNAT Inc., Seoul, Republic of Korea
| | - Eunbi Shin
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea
| | - Jin Woong Ha
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea
| | - Soyoung Jeon
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea
| | - Suk Woo Nam
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea.
- NEORNAT Inc., Seoul, Republic of Korea.
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
4
|
Gimeno-Valiente F, López-Rodas G, Castillo J, Franco L. The Many Roads from Alternative Splicing to Cancer: Molecular Mechanisms Involving Driver Genes. Cancers (Basel) 2024; 16:2123. [PMID: 38893242 PMCID: PMC11171328 DOI: 10.3390/cancers16112123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer driver genes are either oncogenes or tumour suppressor genes that are classically activated or inactivated, respectively, by driver mutations. Alternative splicing-which produces various mature mRNAs and, eventually, protein variants from a single gene-may also result in driving neoplastic transformation because of the different and often opposed functions of the variants of driver genes. The present review analyses the different alternative splicing events that result in driving neoplastic transformation, with an emphasis on their molecular mechanisms. To do this, we collected a list of 568 gene drivers of cancer and revised the literature to select those involved in the alternative splicing of other genes as well as those in which its pre-mRNA is subject to alternative splicing, with the result, in both cases, of producing an oncogenic isoform. Thirty-one genes fall into the first category, which includes splicing factors and components of the spliceosome and splicing regulators. In the second category, namely that comprising driver genes in which alternative splicing produces the oncogenic isoform, 168 genes were found. Then, we grouped them according to the molecular mechanisms responsible for alternative splicing yielding oncogenic isoforms, namely, mutations in cis splicing-determining elements, other causes involving non-mutated cis elements, changes in splicing factors, and epigenetic and chromatin-related changes. The data given in the present review substantiate the idea that aberrant splicing may regulate the activation of proto-oncogenes or inactivation of tumour suppressor genes and details on the mechanisms involved are given for more than 40 driver genes.
Collapse
Affiliation(s)
- Francisco Gimeno-Valiente
- Cancer Evolution and Genome Instability Laboratory, University College London Cancer Institute, London WC1E 6DD, UK;
| | - Gerardo López-Rodas
- Department of Oncology, Institute of Health Research INCLIVA, 46010 Valencia, Spain; (G.L.-R.); (J.C.)
- Department of Biochemistry and Molecular Biology, Universitat de València, 46010 Valencia, Spain
| | - Josefa Castillo
- Department of Oncology, Institute of Health Research INCLIVA, 46010 Valencia, Spain; (G.L.-R.); (J.C.)
- Department of Biochemistry and Molecular Biology, Universitat de València, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Luis Franco
- Department of Oncology, Institute of Health Research INCLIVA, 46010 Valencia, Spain; (G.L.-R.); (J.C.)
- Department of Biochemistry and Molecular Biology, Universitat de València, 46010 Valencia, Spain
| |
Collapse
|
5
|
Peuget S, Zhou X, Selivanova G. Translating p53-based therapies for cancer into the clinic. Nat Rev Cancer 2024; 24:192-215. [PMID: 38287107 DOI: 10.1038/s41568-023-00658-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/31/2024]
Abstract
Inactivation of the most important tumour suppressor gene TP53 occurs in most, if not all, human cancers. Loss of functional wild-type p53 is achieved via two main mechanisms: mutation of the gene leading to an absence of tumour suppressor activity and, in some cases, gain-of-oncogenic function; or inhibition of the wild-type p53 protein mediated by overexpression of its negative regulators MDM2 and MDMX. Because of its high potency as a tumour suppressor and the dependence of at least some established tumours on its inactivation, p53 appears to be a highly attractive target for the development of new anticancer drugs. However, p53 is a transcription factor and therefore has long been considered undruggable. Nevertheless, several innovative strategies have been pursued for targeting dysfunctional p53 for cancer treatment. In mutant p53-expressing tumours, the predominant strategy is to restore tumour suppressor function with compounds acting either in a generic manner or otherwise selective for one or a few specific p53 mutations. In addition, approaches to deplete mutant p53 or to target vulnerabilities created by mutant p53 expression are currently under development. In wild-type p53 tumours, the major approach is to protect p53 from the actions of MDM2 and MDMX by targeting these negative regulators with inhibitors. Although the results of at least some clinical trials of MDM2 inhibitors and mutant p53-restoring compounds are promising, none of the agents has yet been approved by the FDA. Alternative strategies, based on a better understanding of p53 biology, the mechanisms of action of compounds and treatment regimens as well as the development of new technologies are gaining interest, such as proteolysis-targeting chimeras for MDM2 degradation. Other approaches are taking advantage of the progress made in immune-based therapies for cancer. In this Review, we present these ongoing clinical trials and emerging approaches to re-evaluate the current state of knowledge of p53-based therapies for cancer.
Collapse
Affiliation(s)
- Sylvain Peuget
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Xiaolei Zhou
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Galina Selivanova
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
6
|
Li D, Yu W, Lai M. Towards understandings of serine/arginine-rich splicing factors. Acta Pharm Sin B 2023; 13:3181-3207. [PMID: 37655328 PMCID: PMC10465970 DOI: 10.1016/j.apsb.2023.05.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/13/2023] [Accepted: 05/06/2023] [Indexed: 09/02/2023] Open
Abstract
Serine/arginine-rich splicing factors (SRSFs) refer to twelve RNA-binding proteins which regulate splice site recognition and spliceosome assembly during precursor messenger RNA splicing. SRSFs also participate in other RNA metabolic events, such as transcription, translation and nonsense-mediated decay, during their shuttling between nucleus and cytoplasm, making them indispensable for genome diversity and cellular activity. Of note, aberrant SRSF expression and/or mutations elicit fallacies in gene splicing, leading to the generation of pathogenic gene and protein isoforms, which highlights the therapeutic potential of targeting SRSF to treat diseases. In this review, we updated current understanding of SRSF structures and functions in RNA metabolism. Next, we analyzed SRSF-induced aberrant gene expression and their pathogenic outcomes in cancers and non-tumor diseases. The development of some well-characterized SRSF inhibitors was discussed in detail. We hope this review will contribute to future studies of SRSF functions and drug development targeting SRSFs.
Collapse
Affiliation(s)
- Dianyang Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wenying Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Maode Lai
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Science (2019RU042), Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
7
|
Wojtyś W, Oroń M. How Driver Oncogenes Shape and Are Shaped by Alternative Splicing Mechanisms in Tumors. Cancers (Basel) 2023; 15:cancers15112918. [PMID: 37296881 DOI: 10.3390/cancers15112918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The development of RNA sequencing methods has allowed us to study and better understand the landscape of aberrant pre-mRNA splicing in tumors. Altered splicing patterns are observed in many different tumors and affect all hallmarks of cancer: growth signal independence, avoidance of apoptosis, unlimited proliferation, invasiveness, angiogenesis, and metabolism. In this review, we focus on the interplay between driver oncogenes and alternative splicing in cancer. On one hand, oncogenic proteins-mutant p53, CMYC, KRAS, or PI3K-modify the alternative splicing landscape by regulating expression, phosphorylation, and interaction of splicing factors with spliceosome components. Some splicing factors-SRSF1 and hnRNPA1-are also driver oncogenes. At the same time, aberrant splicing activates key oncogenes and oncogenic pathways: p53 oncogenic isoforms, the RAS-RAF-MAPK pathway, the PI3K-mTOR pathway, the EGF and FGF receptor families, and SRSF1 splicing factor. The ultimate goal of cancer research is a better diagnosis and treatment of cancer patients. In the final part of this review, we discuss present therapeutic opportunities and possible directions of further studies aiming to design therapies targeting alternative splicing mechanisms in the context of driver oncogenes.
Collapse
Affiliation(s)
- Weronika Wojtyś
- Laboratory of Human Disease Multiomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Magdalena Oroń
- Laboratory of Human Disease Multiomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| |
Collapse
|
8
|
Zhu H, Gao H, Ji Y, Zhou Q, Du Z, Tian L, Jiang Y, Yao K, Zhou Z. Targeting p53-MDM2 interaction by small-molecule inhibitors: learning from MDM2 inhibitors in clinical trials. J Hematol Oncol 2022; 15:91. [PMID: 35831864 PMCID: PMC9277894 DOI: 10.1186/s13045-022-01314-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/07/2022] [Indexed: 12/17/2022] Open
Abstract
p53, encoded by the tumor suppressor gene TP53, is one of the most important tumor suppressor factors in vivo and can be negatively regulated by MDM2 through p53–MDM2 negative feedback loop. Abnormal p53 can be observed in almost all tumors, mainly including p53 mutation and functional inactivation. Blocking MDM2 to restore p53 function is a hotspot in the development of anticancer candidates. Till now, nine MDM2 inhibitors with different structural types have entered clinical trials. However, no MDM2 inhibitor has been approved for clinical application. This review focused on the discovery, structural modification, preclinical and clinical research of the above compounds from the perspective of medicinal chemistry. Based on this, the possible defects in MDM2 inhibitors in clinical development were analyzed to suggest that the multitarget strategy or targeted degradation strategy based on MDM2 has the potential to reduce the dose-dependent hematological toxicity of MDM2 inhibitors and improve their anti-tumor activity, providing certain guidance for the development of agents targeting the p53–MDM2 interaction.
Collapse
Affiliation(s)
- Haohao Zhu
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, 214151, Jiangsu, China
| | - Hui Gao
- Jiangyin People's Hospital, Wuxi, 214400, Jiangsu, China
| | - Yingying Ji
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, 214151, Jiangsu, China
| | - Qin Zhou
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, 214151, Jiangsu, China
| | - Zhiqiang Du
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, 214151, Jiangsu, China
| | - Lin Tian
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, 214151, Jiangsu, China
| | - Ying Jiang
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, 214151, Jiangsu, China.
| | - Kun Yao
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, 214151, Jiangsu, China.
| | - Zhenhe Zhou
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, 214151, Jiangsu, China.
| |
Collapse
|
9
|
Sahin I, George A, Seyhan AA. Therapeutic Targeting of Alternative RNA Splicing in Gastrointestinal Malignancies and Other Cancers. Int J Mol Sci 2021; 22:11790. [PMID: 34769221 PMCID: PMC8583749 DOI: 10.3390/ijms222111790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/22/2022] Open
Abstract
Recent comprehensive genomic studies including single-cell RNA sequencing and characterization have revealed multiple processes by which protein-coding and noncoding RNA processing are dysregulated in many cancers. More specifically, the abnormal regulation of mRNA and precursor mRNA (pre-mRNA) processing, which includes the removal of introns by splicing, is frequently altered in tumors, producing multiple different isoforms and diversifying protein expression. These alterations in RNA processing result in numerous cancer-specific mRNAs and pathogenically spliced events that generate altered levels of normal proteins or proteins with new functions, leading to the activation of oncogenes or the inactivation of tumor suppressor genes. Abnormally spliced pre-mRNAs are also associated with resistance to cancer treatment, and certain cancers are highly sensitive to the pharmacological inhibition of splicing. The discovery of these alterations in RNA processing has not only provided new insights into cancer pathogenesis but identified novel therapeutic vulnerabilities and therapeutic opportunities in targeting these aberrations in various ways (e.g., small molecules, splice-switching oligonucleotides (SSOs), and protein therapies) to modulate alternative RNA splicing or other RNA processing and modification mechanisms. Some of these strategies are currently progressing toward clinical development or are already in clinical trials. Additionally, tumor-specific neoantigens produced from these pathogenically spliced events and other abnormal RNA processes provide a potentially extensive source of tumor-specific therapeutic antigens (TAs) for targeted cancer immunotherapy. Moreover, a better understanding of the molecular mechanisms associated with aberrant RNA processes and the biological impact they play might provide insights into cancer initiation, progression, and metastasis. Our goal is to highlight key alternative RNA splicing and processing mechanisms and their roles in cancer pathophysiology as well as emerging therapeutic alternative splicing targets in cancer, particularly in gastrointestinal (GI) malignancies.
Collapse
Affiliation(s)
- Ilyas Sahin
- Division of Hematology Oncology, Department of Medicine, University of Florida Health Cancer Center, Gainesville, FL 32610, USA;
| | - Andrew George
- Department of Chemistry, Brown University, Providence, RI 02912, USA;
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI 02912, USA
- Cancer Center at Brown University, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| |
Collapse
|
10
|
Jbara A, Siegfried Z, Karni R. Splice-switching as cancer therapy. Curr Opin Pharmacol 2021; 59:140-148. [PMID: 34217945 DOI: 10.1016/j.coph.2021.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/26/2022]
Abstract
In light of recent advances in RNA splicing modulation as therapy for specific genetic diseases, there is great optimism that this approach can be applied to treatment of cancer as well. Dysregulation of alternative RNA splicing is a common aberration detected in many cancers and thus, provides an attractive target for therapeutics. Here, we present and compare two promising approaches that are currently being investigated to manipulate alternative splicing and their potential use in therapy. The first strategy makes use of splice-switching oligonucleotides, whereas the second strategy uses CRISPR (clustered regularly interspaced short palindromic repeat Cas (CRISPR-associated) technology. We will discuss both the challenges and limitations of these technologies and progress being made to implement splice-switching as a potential cancer therapy.
Collapse
Affiliation(s)
- Amina Jbara
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | - Zahava Siegfried
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | - Rotem Karni
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel.
| |
Collapse
|
11
|
Boschen KE, Ptacek TS, Berginski ME, Simon JM, Parnell SE. Transcriptomic analyses of gastrulation-stage mouse embryos with differential susceptibility to alcohol. Dis Model Mech 2021; 14:dmm049012. [PMID: 34137816 PMCID: PMC8246266 DOI: 10.1242/dmm.049012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/12/2021] [Indexed: 12/28/2022] Open
Abstract
Genetics are a known contributor to differences in alcohol sensitivity in humans with fetal alcohol spectrum disorders (FASDs) and in animal models. Our study profiled gene expression in gastrulation-stage embryos from two commonly used, genetically similar mouse substrains, C57BL/6J (6J) and C57BL/6NHsd (6N), that differ in alcohol sensitivity. First, we established normal gene expression patterns at three finely resolved time points during gastrulation and developed a web-based interactive tool. Baseline transcriptional differences across strains were associated with immune signaling. Second, we examined the gene networks impacted by alcohol in each strain. Alcohol caused a more pronounced transcriptional effect in the 6J versus 6N mice, matching the increased susceptibility of the 6J mice. The 6J strain exhibited dysregulation of pathways related to cell death, proliferation, morphogenic signaling and craniofacial defects, while the 6N strain showed enrichment of hypoxia and cellular metabolism pathways. These datasets provide insight into the changing transcriptional landscape across mouse gastrulation, establish a valuable resource that enables the discovery of candidate genes that may modify alcohol susceptibility that can be validated in humans, and identify novel pathogenic mechanisms of alcohol. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Karen E. Boschen
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Travis S. Ptacek
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew E. Berginski
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeremy M. Simon
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Scott E. Parnell
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
12
|
Zhou D, Zhu X, Wu X, Zheng J, Tou L, Zhou Y. The effect of splicing MST1R in gastric cancer was enhanced by lncRNA FENDRR. Exp Ther Med 2021; 22:798. [PMID: 34093754 PMCID: PMC8170639 DOI: 10.3892/etm.2021.10230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
Gastric cancer (GC) poses a serious threat to human health worldwide. Serine/arginine rich splicing factor 1 (SRSF1) has been reported to serve regulatory roles during the tumorigenesis of GC. In addition, the macrophage stimulating 1 receptor (MST1R) signaling pathway was found to participate in the progression of GC. However, the association between MST1R and SRSF1 in the tumorigenesis of GC remains unclear. The expression levels of MST1R and the recepteur d'origine nantais (RON) Δ160 splicing variant were analyzed in cells using western blotting and immunofluorescence staining. Co-immunoprecipitation assays were used to investigate the interaction between SRSF1 and MST1R. A Cell Counting Kit-8 assay was performed to analyze cell viability. Flow cytometry and Transwell assays were used to determine cell apoptosis and invasiveness levels. The potential interaction between SFSR1 and long non-coding RNAs (lncRNAs) was investigated with an online bioinformatics tool. The findings of the present study revealed that the expression levels of MST1R and RON Δ160 were significantly upregulated in GC Kato III cells. SRSF1 was found to be regulated by the lncRNA FOXF1 adjacent non-coding developmental regulatory RNA (FENDRR). The knockdown of SRSF1 or FENDRR downregulated the expression levels of MST1R in Kato III cells. In addition, the expression levels of RON Δ160 were markedly downregulated in Kato III cells following the knockdown of FENDRR. Meanwhile, SRSF1 directly bound to MST1R, while this phenomenon was partially reversed by FENDRR short interfering RNA. FENDRR could interact with SRSF1 in Kato III cells and the knockdown of FENDRR also induced the apoptosis of GC cells. In conclusion, the findings of the present study suggested that the lncRNA FENDRR may function as an oncogene during the progression of GC by regulating alternative splicing of MST1R and SRSF1 expression levels. lncRNA FENDRR may serve as a potential marker for the diagnosis or target for the treatment of GC.
Collapse
Affiliation(s)
- Donghui Zhou
- Department of Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiaohua Zhu
- Department of Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Xuan Wu
- Department of Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Jingjing Zheng
- Department of General Surgery, Lishui Municipal Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Laizhen Tou
- Department of Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Yong Zhou
- Department of Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
13
|
Klein AM, de Queiroz RM, Venkatesh D, Prives C. The roles and regulation of MDM2 and MDMX: it is not just about p53. Genes Dev 2021; 35:575-601. [PMID: 33888565 PMCID: PMC8091979 DOI: 10.1101/gad.347872.120] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this review, Klein et al. discuss the p53-independent roles of MDM2 and MDMX. First, they review the structural and functional features of MDM2 and MDMX proteins separately and together that could be relevant to their p53-independent activities. Following this, they summarize how these two proteins are regulated and how they can function in cells that lack p53. Most well studied as proteins that restrain the p53 tumor suppressor protein, MDM2 and MDMX have rich lives outside of their relationship to p53. There is much to learn about how these two proteins are regulated and how they can function in cells that lack p53. Regulation of MDM2 and MDMX, which takes place at the level of transcription, post-transcription, and protein modification, can be very intricate and is context-dependent. Equally complex are the myriad roles that these two proteins play in cells that lack wild-type p53; while many of these independent outcomes are consistent with oncogenic transformation, in some settings their functions could also be tumor suppressive. Since numerous small molecules that affect MDM2 and MDMX have been developed for therapeutic outcomes, most if not all designed to prevent their restraint of p53, it will be essential to understand how these diverse molecules might affect the p53-independent activities of MDM2 and MDMX.
Collapse
Affiliation(s)
- Alyssa M Klein
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, New York 10032, USA
| | | | - Divya Venkatesh
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
14
|
Li K, Wang Z. Splicing factor SRSF2-centric gene regulation. Int J Biol Sci 2021; 17:1708-1715. [PMID: 33994855 PMCID: PMC8120470 DOI: 10.7150/ijbs.58888] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/04/2021] [Indexed: 01/14/2023] Open
Abstract
Serine/arginine-rich splicing factor 2 (SRSF2) is a splicing factor that is widely expressed in a variety of mammalian cell types. Increasing evidence has confirmed that SRSF2 plays vital roles in a number of biological and pathological processes. Therefore, it is important to understand how its expression is regulated, and how it regulates the expression of its target genes. Recently, we found that SRSF2 expression could be upregulated by herpes simplex virus-1 (HSV-1) infection, and that altered SRSF2 expression, in turn, epigenetically regulates the transcription of HSV-1 genes. Further studies on T cell exhaustion demonstrated that upregulated SRSF2 in exhausted T cells elevated the levels of multiple immune checkpoint molecules by associating with the acyl-transferases, P300 and CBP, and by altering histone modification near the transcription start sites of these genes, thereby influencing signal transducer and activator of transcription 3 binding to these gene promoters. These findings suggest that SRSF2 acts as an important sensor and effector during disease progression. Here, we discuss the molecules that regulate SRSF2 gene expression and their associated mechanisms, and the mechanisms via which SRSF2 regulates the expression of target genes, thus providing novel insights into the central role of SRSF2 in gene regulation.
Collapse
Affiliation(s)
- Kun Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Ziqiang Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China.,Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| |
Collapse
|
15
|
Discovery and Validation of Serum Autoantibodies Against Tumor-Associated Antigens as Biomarkers in Gastric Adenocarcinoma Based on the Focused Protein Arrays. Clin Transl Gastroenterol 2020; 12:e00284. [PMID: 33346593 PMCID: PMC7752677 DOI: 10.14309/ctg.0000000000000284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 11/03/2020] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION: Previous studies have demonstrated that autoantibodies against tumor-associated antigens (TAAs) in patients with cancer can be used as sensitive immunodiagnostic biomarkers for the detection of cancer. Most of these TAAs are involved in the tumorigenesis pathway. Cancer driver genes with intragenic mutations can promote tumorigenesis. This study aims to identify autoantibodies against TAAs encoded by cancer driver genes in sera as potential immunodiagnostic biomarkers for gastric adenocarcinoma (GAC). METHODS: Protein arrays based on cancer driver genes were customized for screening candidate TAAs in 100 GAC sera and 50 normal control (NC) sera. Autoantibodies against candidate TAAs were assessed by enzyme-linked immunosorbent assay in both training group (205 GAC sera and 205 NC sera) and independent validation group (126 GAC sera and 126 NC sera). Moreover, the immunodiagnostic models were respectively established and validated in the training group and validation group. RESULTS: A panel with 5 autoantibodies including anti-TP53, anti-COPB1, anti-GNAS, anti–serine/arginine-rich splicing factor 2, and anti-SMARCB1 was selected by the Fisher linear discriminant analysis model with an areas under receiver operating characteristic curve (AUC) of 0.928 (95% confidence interval [CI]: 0.888–0.967) in the training cohort and an AUC of 0.885 (95% CI: 0.852–0.918) in the validation cohort. Besides, the panel with 5 autoantibodies including anti-TP53, anti-COPB1, anti-GNAS, anti-PBRM1, and anti-ACVR1B which were selected by the binary logistic regression model showed an AUC of 0.885 (95% CI: 0.852–0.919) in the training cohort and 0.884 (95% CI: 0.842–0.925) in the validation cohort. DISCUSSION: Two panels which were selected in this study could boost the detection of anti-TAA autoantibodies in sera as biomarkers for the detection of GAC.
Collapse
|