1
|
Liu X, Wang J, Li F, Timchenko N, Tsai RYL. Transcriptional control of a stem cell factor nucleostemin in liver regeneration and aging. PLoS One 2024; 19:e0310219. [PMID: 39259742 PMCID: PMC11389944 DOI: 10.1371/journal.pone.0310219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024] Open
Abstract
Nucleostemin (NS) plays a role in liver regeneration, and aging reduces its expression in the baseline and regenerating livers following 70% partial hepatectomy (PHx). Here we interrogate the mechanism controlling NS expression during liver regeneration and aging. The NS promoter was analyzed by TRANSFAC. Functional studies were performed using cell-based luciferase assay, endogenous NS expression in Hep3B cells, mouse livers with a gain-of-function mutation of C/EBPα (S193D), and mouse livers with C/EBPα knockdown. We found a CAAT box with four C/EBPα binding sites (-1216 to -735) and a GC box with consensus binding sites for c-Myc, E2F1, and p300-associated protein complex (-633 to -1). Age-related changes in NS expression correlated positively with the expression of c-Myc, E2F1, and p300, and negatively with that of C/EBPα and C/EBPβ. PHx upregulated NS expression at 1d, coinciding with an increase in E2F1 and a decrease in C/EBPα. C/EBPα bound to the consensus sequences found in the NS promoter in vitro and in vivo, inhibited its transactivational activity in a binding site-dependent manner, and decreased the expression of endogenous NS in Hep3B cells. In vivo activation of C/EBPα by the S193D mutation resulted in a 4th-day post-PHx reduction of NS, a feature shared by 16-m/o livers. Finally, C/EBPα knockdown increased its expression in aged (24-m/o) livers under both baseline and regeneration conditions. This study reports the C/EBPα suppression of NS expression in aged livers, providing a new perspective on the mechanistic orchestration of tissue homeostasis in aging.
Collapse
Affiliation(s)
- Xiaoqin Liu
- Institute of Biosciences and Technology, Texas A&M Health, Houston, TX, United States of America
- Department of Translational Medical Sciences, Texas A&M University School of Medicine, Bryan, TX, United States of America
| | - Junying Wang
- Institute of Biosciences and Technology, Texas A&M Health, Houston, TX, United States of America
| | - Fang Li
- Institute of Biosciences and Technology, Texas A&M Health, Houston, TX, United States of America
| | - Nikolai Timchenko
- Department of Surgery, Cincinnati Children Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States of America
| | - Robert Y L Tsai
- Institute of Biosciences and Technology, Texas A&M Health, Houston, TX, United States of America
- Department of Translational Medical Sciences, Texas A&M University School of Medicine, Bryan, TX, United States of America
| |
Collapse
|
2
|
Moutafi MK, Bates KM, Aung TN, Milian RG, Xirou V, Vathiotis IA, Gavrielatou N, Angelakis A, Schalper KA, Salichos L, Rimm DL. High-throughput transcriptome profiling indicates ribosomal RNAs to be associated with resistance to immunotherapy in non-small cell lung cancer (NSCLC). J Immunother Cancer 2024; 12:e009039. [PMID: 38857914 PMCID: PMC11168162 DOI: 10.1136/jitc-2024-009039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Despite the impressive outcomes with immune checkpoint inhibitor (ICI) in non-small cell lung cancer (NSCLC), only a minority of the patients show long-term benefits from ICI. In this study, we used retrospective cohorts of ICI treated patients with NSCLC to discover and validate spatially resolved protein markers associated with resistance to programmed cell death protein-1 (PD-1) axis inhibition. METHODS Pretreatment samples from 56 patients with NSCLC treated with ICI were collected and analyzed in a tissue microarray (TMA) format in including four different tumor regions per patient using the GeoMx platform for spatially informed transcriptomics. 34 patients had assessable tissue with tumor compartment in all 4 TMA spots, 22 with leukocyte compartment and 12 with CD68 compartment. The patients' tissue that was not assessable in fourfold redundancy in each compartment was designated as the validation cohort; cytokeratin (CK) (N=22), leukocytes CD45 (N=31), macrophages, CD68 (N=43). The human whole transcriptome, represented by~18,000 individual genes assessed by oligonucleotide-tagged in situ hybridization, was sequenced on the NovaSeq platform to quantify the RNAs present in each region of interest. RESULTS 54,000 gene variables were generated per case, from them 25,740 were analyzed after removing targets with expression lower than a prespecified frequency. Cox proportional-hazards model analysis was performed for overall and progression-free survival (OS, PFS, respectively). After identifying genes significantly associated with limited survival benefit (HR>1)/progression per spot per patient, we used the intersection of them across the four TMA spots per patient. This resulted in a list of 12 genes in the tumor-cell compartment (RPL13A, GNL3, FAM83A, CYBA, ACSL4, SLC25A6, EPAS1, RPL5, APOL1, HSPD1, RPS4Y1, ADI1). RPL13A, GNL3 in tumor-cell compartment were also significantly associated with OS and PFS, respectively, in the validation cohort (CK: HR, 2.48; p=0.02 and HR, 5.33; p=0.04). In CD45 compartment, secreted frizzled-related protein 2, was associated with OS in the discovery cohort but not in the validation cohort. Similarly, in the CD68 compartment ARHGAP and PNN interacting serine and arginine rich protein were significantly associated with PFS and OS, respectively, in the majority but not all four spots per patient. CONCLUSION This work highlights RPL13A and GNL3 as potential indicative biomarkers of resistance to PD-1 axis blockade that might help to improve precision immunotherapy strategies for lung cancer.
Collapse
Affiliation(s)
- Myrto K Moutafi
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Katherine M Bates
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Thazin Nwe Aung
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
- Yale School of Medicine, New Haven, Connecticut, USA
| | - Rolando Garcia Milian
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale School of Medicine, New Haven, Connecticut, USA
| | - Vasiliki Xirou
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
- Yale School of Medicine, New Haven, Connecticut, USA
| | - Ioannis A Vathiotis
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Niki Gavrielatou
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
- Yale School of Medicine, New Haven, Connecticut, USA
| | - Athanasios Angelakis
- Epidemiology and Data Science, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
- Department of Methodology, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Kurt A Schalper
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Leonidas Salichos
- Biomedical Data Science Center Director, Center for Cancer Research, Department of Computational Biology at New York Institute of Technology, New York Institute of Technology, Old Westbury, New York, USA
| | - David L Rimm
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
3
|
Liu X, Wang J, Wu LJ, Trinh B, Tsai RYL. IMPDH Inhibition Decreases TERT Expression and Synergizes the Cytotoxic Effect of Chemotherapeutic Agents in Glioblastoma Cells. Int J Mol Sci 2024; 25:5992. [PMID: 38892179 PMCID: PMC11172490 DOI: 10.3390/ijms25115992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
IMP dehydrogenase (IMPDH) inhibition has emerged as a new target therapy for glioblastoma multiforme (GBM), which remains one of the most refractory tumors to date. TCGA analyses revealed distinct expression profiles of IMPDH isoenzymes in various subtypes of GBM and low-grade glioma (LGG). To dissect the mechanism(s) underlying the anti-tumor effect of IMPDH inhibition in adult GBM, we investigated how mycophenolic acid (MPA, an IMPDH inhibitor) treatment affected key oncogenic drivers in glioblastoma cells. Our results showed that MPA decreased the expression of telomerase reverse transcriptase (TERT) in both U87 and U251 cells, and the expression of O6-methylguanine-DNA methyltransferase (MGMT) in U251 cells. In support, MPA treatment reduced the amount of telomere repeats in U87 and U251 cells. TERT downregulation by MPA was associated with a significant decrease in c-Myc (a TERT transcription activator) in U87 but not U251 cells, and a dose-dependent increase in p53 and CCCTC-binding factor (CTCF) (TERT repressors) in both U87 and U251 cells. In U251 cells, MPA displayed strong cytotoxic synergy with BCNU and moderate synergy with irinotecan, oxaliplatin, paclitaxel, or temozolomide (TMZ). In U87 cells, MPA displayed strong cytotoxic synergy with all except TMZ, acting primarily through the apoptotic pathway. Our work expands the mechanistic potential of IMPDH inhibition to TERT/telomere regulation and reveals a synthetic lethality between MPA and anti-GBM drugs.
Collapse
Affiliation(s)
- Xiaoqin Liu
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA; (X.L.); (J.W.); (L.J.W.); (B.T.)
| | - Junying Wang
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA; (X.L.); (J.W.); (L.J.W.); (B.T.)
| | - Laura J. Wu
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA; (X.L.); (J.W.); (L.J.W.); (B.T.)
| | - Britni Trinh
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA; (X.L.); (J.W.); (L.J.W.); (B.T.)
| | - Robert Y. L. Tsai
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA; (X.L.); (J.W.); (L.J.W.); (B.T.)
- Department of Translational Medical Sciences, College of Medicine, Texas A&M University Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
4
|
Hao L, Li S, Deng J, Li N, Yu F, Jiang Z, Zhang J, Shi X, Hu X. The current status and future of PD-L1 in liver cancer. Front Immunol 2023; 14:1323581. [PMID: 38155974 PMCID: PMC10754529 DOI: 10.3389/fimmu.2023.1323581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
The application of immunotherapy in tumor, especially immune checkpoint inhibitors (ICIs), has played an important role in the treatment of advanced unresectable liver cancer. However, the efficacy of ICIs varies greatly among different patients, which has aroused people's attention to the regulatory mechanism of programmed death ligand-1 (PD-L1) in the immune escape of liver cancer. PD-L1 is regulated by multiple levels and signaling pathways in hepatocellular carcinoma (HCC), including gene variation, epigenetic inheritance, transcriptional regulation, post-transcriptional regulation, and post-translational modification. More studies have also found that the high expression of PD-L1 may be the main factor affecting the immunotherapy of liver cancer. However, what is the difference of PD-L1 expressed by different types of cells in the microenvironment of HCC, and which type of cells expressed PD-L1 determines the effect of tumor immunotherapy remains unclear. Therefore, clarifying the regulatory mechanism of PD-L1 in liver cancer can provide more basis for liver cancer immunotherapy and combined immune treatment strategy. In addition to its well-known role in immune regulation, PD-L1 also plays a role in regulating cancer cell proliferation and promoting drug resistance of tumor cells, which will be reviewed in this paper. In addition, we also summarized the natural products and drugs that regulated the expression of PD-L1 in HCC.
Collapse
Affiliation(s)
- Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Research Center, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei, China
| | - Jiali Deng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Na Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fei Yu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhi Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Junli Zhang
- Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xinli Shi
- Center of Experimental Management, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
5
|
REZAPOUR N, KAMALABADI-FARAHANI M, ATASHI A, ZARRINPOUR V. Paclitaxel resistance and nucleostemin upregulation in metastatic mouse breast cancer cells. MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH 2023. [DOI: 10.23736/s2724-542x.23.02945-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
6
|
Cela I, Cufaro MC, Fucito M, Pieragostino D, Lanuti P, Sallese M, Del Boccio P, Di Matteo A, Allocati N, De Laurenzi V, Federici L. Proteomic Investigation of the Role of Nucleostemin in Nucleophosmin-Mutated OCI-AML 3 Cell Line. Int J Mol Sci 2022; 23:ijms23147655. [PMID: 35886999 PMCID: PMC9317519 DOI: 10.3390/ijms23147655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 02/06/2023] Open
Abstract
Nucleostemin (NS; a product of the GNL3 gene) is a nucleolar–nucleoplasm shuttling GTPase whose levels are high in stem cells and rapidly decrease upon differentiation. NS levels are also high in several solid and hematological neoplasms, including acute myeloid leukaemia (AML). While a role in telomere maintenance, response to stress stimuli and favoring DNA repair has been proposed in solid cancers, little or no information is available as to the role of nucleostemin in AML. Here, we investigate this issue via a proteomics approach. We use as a model system the OCI-AML 3 cell line harboring a heterozygous mutation at the NPM1 gene, which is the most frequent driver mutation in AML (approximately 30% of total AML cases). We show that NS is highly expressed in this cell line, and, contrary to what has previously been shown in other cancers, that its presence is dispensable for cell growth and viability. However, proteomics analysis of the OCI-AML 3 cell line before and after nucleostemin (NS) silencing showed several effects on different biological functions, as highlighted by ingenuity pathway analysis (IPA). In particular, we report an effect of down-regulating DNA repair through homologous recombination, and we confirmed a higher DNA damage rate in OCI-AML 3 cells when NS is depleted, which considerably increases upon stress induced by the topoisomerase II inhibitor etoposide. The data used are available via ProteomeXchange with the identifier PXD034012.
Collapse
Affiliation(s)
- Ilaria Cela
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (I.C.); (M.F.); (D.P.); (M.S.); (N.A.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.L.); (P.D.B.)
| | - Maria Concetta Cufaro
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.L.); (P.D.B.)
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Maurine Fucito
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (I.C.); (M.F.); (D.P.); (M.S.); (N.A.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.L.); (P.D.B.)
| | - Damiana Pieragostino
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (I.C.); (M.F.); (D.P.); (M.S.); (N.A.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.L.); (P.D.B.)
| | - Paola Lanuti
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.L.); (P.D.B.)
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Michele Sallese
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (I.C.); (M.F.); (D.P.); (M.S.); (N.A.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.L.); (P.D.B.)
| | - Piero Del Boccio
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.L.); (P.D.B.)
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Adele Di Matteo
- Institute of Molecular Biology and Pathology, National Research Council of Italy, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Nerino Allocati
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (I.C.); (M.F.); (D.P.); (M.S.); (N.A.); (V.D.L.)
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (I.C.); (M.F.); (D.P.); (M.S.); (N.A.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.L.); (P.D.B.)
| | - Luca Federici
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (I.C.); (M.F.); (D.P.); (M.S.); (N.A.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.L.); (P.D.B.)
- Correspondence:
| |
Collapse
|
7
|
On the Cutting Edge of Oral Cancer Prevention: Finding Risk-Predictive Markers in Precancerous Lesions by Longitudinal Studies. Cells 2022; 11:cells11061033. [PMID: 35326482 PMCID: PMC8947091 DOI: 10.3390/cells11061033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 02/06/2023] Open
Abstract
Early identification and management of precancerous lesions at high risk of developing cancers is the most effective and economical way to reduce the incidence, mortality, and morbidity of cancers as well as minimizing treatment-related complications, including pain, impaired functions, and disfiguration. Reliable cancer-risk-predictive markers play an important role in enabling evidence-based decision making as well as providing mechanistic insight into the malignant conversion of precancerous lesions. The focus of this article is to review updates on markers that may predict the risk of oral premalignant lesions (OPLs) in developing into oral squamous cell carcinomas (OSCCs), which can logically be discovered only by prospective or retrospective longitudinal studies that analyze pre-progression OPL samples with long-term follow-up outcomes. These risk-predictive markers are different from those that prognosticate the survival outcome of cancers after they have been diagnosed and treated, or those that differentiate between different lesion types and stages. Up-to-date knowledge on cancer-risk-predictive markers discovered by longitudinally followed studies will be reviewed. The goal of this endeavor is to use this information as a starting point to address some key challenges limiting our progress in this area in the hope of achieving effective translation of research discoveries into new clinical interventions.
Collapse
|
8
|
Lin H, Xie Y, Kong Y, Yang L, Li M. Identification of molecular subtypes and prognostic signature for hepatocellular carcinoma based on genes associated with homologous recombination deficiency. Sci Rep 2021; 11:24022. [PMID: 34912005 PMCID: PMC8674316 DOI: 10.1038/s41598-021-03432-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/03/2021] [Indexed: 01/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a rapidly developing digestive tract carcinoma. The prognosis of patients and side effects caused by clinical treatment should be better improved. Nonnegative matrix factorization (NMF) clustering was performed using 109 homologous recombination deficiency (HRD)-related of HCC genes from The Cancer Genome Atlas (TCGA) database. Limma was applied to analyze subtype differences. Immune scores and clinical characteristics of different subtypes were compared. An HRD signature were built with least absolute shrinkage operator (LASSO) and multivariate Cox analysis. Performance of the signature system was then assessed by Kaplan–Meier curves and receiver operating characteristic (ROC) curves. We identified two molecular subtypes (C1 and C2), with C2 showing a significantly better prognosis than C1. C1 contained 3623 differentially expressed genes. A 4-gene prognostic signature for HCC was established, and showed a high predicting accuracy in validation sets, entire TCGA data set, HCCDB18 and GSE14520 queues. Moreover, the risk score was validated as an independent prognostic marker for HCC. Our research identified two molecular subtypes of HCC, and proposed a novel scoring system for evaluating the prognosis of HCC in clinical practice.
Collapse
Affiliation(s)
- Hongsheng Lin
- Guangxi University of Chinese Medicine, Nanning, 530200, China.,Department of Laboratory, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, China.,Guangxi Medical University, Nanning, 530021, China.,Department of Microbiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China
| | - Yangyi Xie
- Guangxi University of Chinese Medicine, Nanning, 530200, China.,The First Clinical Faculty of Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Yinzhi Kong
- Guangxi University of Chinese Medicine, Nanning, 530200, China.,The First Clinical Faculty of Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Li Yang
- Guangxi University of Chinese Medicine, Nanning, 530200, China.,Department of Laboratory, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, China
| | - Mingfen Li
- Guangxi University of Chinese Medicine, Nanning, 530200, China. .,Department of Laboratory, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, China.
| |
Collapse
|