1
|
Ming L, Tang J, Qin F, Qin Y, Wang D, Huang L, Cao Y, Huang Z, Yin Y. Exosome secretion related gene signature predicts chemoresistance in patients with colorectal cancer. Pathol Res Pract 2024; 257:155313. [PMID: 38642509 DOI: 10.1016/j.prp.2024.155313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/14/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is a highly heterogeneous malignancy, and patients often have different responses to treatment. In this study, the genetic characteristics related to exosome formation and secretion procedure were used to predict chemoresistance and guide the individualized treatment of patients. METHODS Firstly, seven microarray datasets in Gene Expression Omnibus (GEO) and RNA-Seq dataset from the Cancer Genome Atlas (TCGA) were used to analysis the transcriptome profiles and associated characteristics of CRC patients. Then, a predictive model based on gene features linked to exosome formation and secretion was created and validated using Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) machine learning. Finally, we evaluated the model using chemoresistant/chemosensitive cells and tissues by immunofluorescence (IF), western blot (WB), quantitative real-time PCR (qRT-PCR) and immunocytochemistry (IHC) experiments, and the predictive value of integrated model in the clinical validation cohort were performed by Receiver Operating Characteristic (ROC) and Kaplan-Meier (K-M) curves analyses. RESULTS We established a risk score signature based on three genes related to exosome secretion in CRC. Better Overall Survival (OS) and greater chemosensitivity were seen in the low-risk group, whereas the high-risk group exhibited chemoresistance and a subpar response to immune checkpoint blockade (ICB) therapy. Higher expression of the model genes EXOC2, EXOC3 and STX4 were observed in chemoresistant cells and specimens. The AUC of 5-year disease-free survival (DFS) was 0.804. Compared with that in the low-risk group, patients' DFS was found to be significantly worse in the high-risk group. CONCLUSIONS In summary, the gene signature related to exosome formation and secretion could reliably predict patients' chemosensitivity and ICB treatment response, which providing new independent biomarkers for the treatment of CRC.
Collapse
Affiliation(s)
- Liang Ming
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Junhui Tang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Feiyu Qin
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yan Qin
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China
| | - Duo Wang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liuying Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yulin Cao
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuan Yin
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Zeng K, Li Q, Wang X, Liu C, Chen B, Song G, Li B, Liu B, Gao X, Zhang L, Miao J. STX4 as a potential biomarker for predicting prognosis and guiding clinical treatment decisions in clear cell renal cell carcinoma. Heliyon 2024; 10:e23918. [PMID: 38226288 PMCID: PMC10788513 DOI: 10.1016/j.heliyon.2023.e23918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) represents a frequent subtype of kidney cancer, with the prognosis remaining poor for individuals with metastatic disease. Given its resistance to both radiation and chemotherapy, targeted therapies and immunotherapies have emerged as critical for effective ccRCC treatment. Within this context, the SNARE protein STX4, which is associated with malignant cancer cell migration, provides a promising focus. The underlying mechanism, however, requires further illumination. Furthermore, the influence of STX4 on the ccRCC tumor microenvironment remains to be determined. In our research, we utilized multiple databases and immunohistochemical staining to confirm differential STX4 expression and its prognostic implications. We evaluated the potential tumor-promoting function of STX4 in ccRCC cell lines through molecular studies. Additionally, we conducted functional enrichment analysis to delve deeper into the underlying mechanisms and performed immune infiltration and drug sensitivity analyses to assess the potential of STX4 as a prognostic biomarker and therapeutic target. Our study reveals that STX4 contributes to cancer progression by enhancing AKT expression and stimulating the activation of VEGF signaling pathways. Additionally, STX4 further fosters CD8+ T-cell infiltration and diminishes the percentage of CAFs and M2-TAMs. Our findings suggest that patients presenting higher STX4 levels may exhibit enhanced responsiveness to immunotherapy and higher sensitivity to the medications axitinib and everolimus. Finally, we propose STX4 expression assessment as a novel approach to predict patient response to respective immunotherapies and targeted treatments, hence potentially improving patient outcomes.
Collapse
Affiliation(s)
- Kai Zeng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Department of Urology, the First Affiliated Hospital of Shihezi University, Shihezi 832008, Xinjiang, China
| | - Qinyu Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xi Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Chaofan Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Bingliang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Guoda Song
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Beining Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xintao Gao
- Department of Urology, Sir RunRun Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Linli Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jianping Miao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|
3
|
Xie LY, Huang HY, Hao YL, Yu M, Zhang W, Wei E, Gao C, Wang C, Zeng L. Development and validation of a tumor immune cell infiltration-related gene signature for recurrence prediction by weighted gene co-expression network analysis in prostate cancer. Front Genet 2023; 14:1067172. [PMID: 37007952 PMCID: PMC10061146 DOI: 10.3389/fgene.2023.1067172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
Introduction: Prostate cancer (PCa) is the second most common malignancy in men. Despite multidisciplinary treatments, patients with PCa continue to experience poor prognoses and high rates of tumor recurrence. Recent studies have shown that tumor-infiltrating immune cells (TIICs) are associated with PCa tumorigenesis.Methods: The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets were used to derive multi-omics data for prostate adenocarcinoma (PRAD) samples. The CIBERSORT algorithm was used to calculate the landscape of TIICs. Weighted gene co-expression network analysis (WGCNA) was performed to determine the candidate module most significantly associated with TIICs. LASSO Cox regression was applied to screen a minimal set of genes and construct a TIIC-related prognostic gene signature for PCa. Then, 78 PCa samples with CIBERSORT output p-values of less than 0.05 were selected for analysis. WGCNA identified 13 modules, and the MEblue module with the most significant enrichment result was selected. A total of 1143 candidate genes were cross-examined between the MEblue module and active dendritic cell-related genes.Results: According to LASSO Cox regression analysis, a risk model was constructed with six genes (STX4, UBE2S, EMC6, EMD, NUCB1 and GCAT), which exhibited strong correlations with clinicopathological variables, tumor microenvironment context, antitumor therapies, and tumor mutation burden (TMB) in TCGA-PRAD. Further validation showed that the UBE2S had the highest expression level among the six genes in five different PCa cell lines.Discussion: In conclusion, our risk-score model contributes to better predicting PCa patient prognosis and understanding the underlying mechanisms of immune responses and antitumor therapies in PCa.
Collapse
Affiliation(s)
- Lin-Ying Xie
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
- International Center of Future Science, Jillin University, Changchun, Jilin, China
| | - Han-Ying Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yu-Lei Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Miaomiao Yu
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
- International Center of Future Science, Jillin University, Changchun, Jilin, China
| | - Wenju Zhang
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
- International Center of Future Science, Jillin University, Changchun, Jilin, China
| | - Enwei Wei
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
- International Center of Future Science, Jillin University, Changchun, Jilin, China
| | - Chunfeng Gao
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
- International Center of Future Science, Jillin University, Changchun, Jilin, China
| | - Chang Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Chang Wang, ; Lei Zeng,
| | - Lei Zeng
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
- International Center of Future Science, Jillin University, Changchun, Jilin, China
- *Correspondence: Chang Wang, ; Lei Zeng,
| |
Collapse
|