1
|
Khiabani NA, Doustvandi MA, Story D, Nobari SA, Hajizadeh M, Petersen R, Dunbar G, Rossignol J. Glioblastoma therapy: State of the field and future prospects. Life Sci 2024; 359:123227. [PMID: 39537100 DOI: 10.1016/j.lfs.2024.123227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/03/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Glioblastoma (GB) is a cancerous brain tumor that originates from glial cells and leads to thousands of deaths each year and a five-year survival of only 6.8 %. Treatments for GB include surgery, chemotherapy, radiation, and immunotherapy. GB is an incurable fatal disease, necessitating the development of innovative strategies to find a developing effective therapy. Genetic therapies may be crucial in treating GB by identifying the mutations and amplifications of multiple genes, which drive its proliferation and spread. Use of small interfering RNAs (siRNAs) provides a novel technology used to suppress the genes associated with disease, which forms a basis for targeted therapy in GB and its stem cell population, which are recognized for their ability to develop resistance to chemotherapy and tumorigenic capabilities. This review examines the use of siRNAs in GB, emphasizing their effectiveness in suppressing key oncogenes and signaling pathways associated with tumor development, invasion, stemness, and resistance to standard treatments. siRNA-based gene silencing is a promising approach for developing targeted therapeutics against GB and associated stem cell populations, potentially enhancing patient outcomes and survival rates in this devastating disease.
Collapse
Affiliation(s)
- Nadia Allahyarzadeh Khiabani
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA; Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA; College of Medicine, Central Michigan University, Mount Pleasant, MI, USA
| | | | - Darren Story
- Department of Psychology, Saginaw Valley State University, University Center, MI 48710, USA
| | | | | | - Robert Petersen
- College of Medicine, Central Michigan University, Mount Pleasant, MI, USA
| | - Gary Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA; Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA; Department of Psychology, Central Michigan University, Mount Pleasant, MI, USA
| | - Julien Rossignol
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA; Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA; College of Medicine, Central Michigan University, Mount Pleasant, MI, USA.
| |
Collapse
|
2
|
Luo D, Luo A, Ye G, Li D, Hu S, Zhao H, Peng B. Regulation of a novel circATP8B4/miR-31-5p/nestin ceRNA crosstalk in proliferation, motility, invasion and radiosensitivity of human glioma cells. JOURNAL OF RADIATION RESEARCH 2024; 65:752-764. [PMID: 39287101 PMCID: PMC11630049 DOI: 10.1093/jrr/rrae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/04/2024] [Indexed: 09/19/2024]
Abstract
Deregulation of circular RNAs (circRNAs) is frequent in human glioma. Although circRNA ATPase phospholipid transporting 8B4 (circATP8B4) is highly expressed in glioma, its precise action in glioma development is still not fully understood. The relationship of microRNA (miR)-31-5p and circATP8B4 or nestin (NES) was predicted by bioinformatic analysis and confirmed by RNA pull-down and Dual-luciferase reporter assays. CircATP8B4, miR-31-5p and NES were quantified by qRT-PCR or western blot. Cell functional behaviors were assessed by EdU, wound-healing and transwell invasion assays. Xenograft model experiments were performed to define circATP8B4's activity in vivo. CircATP8B4, a true circular transcript, was upregulated in human glioma. CircATP8B4 downregulation weakened glioma cell growth, motility, and invasion and facilitated radiosensitivity. Mechanistically, circATP8B4 and NES 3'UTR harbored a shared miR-31-5p pairing site, and circATP8B4 involved the post-transcriptional NES regulation by functioning as a competing endogenous RNA (ceRNA). Furthermore, the miR-31-5p/NES axis participated in circATP8B4's activity in glioma cell proliferation, motility, invasion and radiosensitivity. Additionally, circATP8B4 loss diminished tumor growth and enhanced the anticancer effect of radiotherapy in vivo. We have uncovered an uncharacterized ceRNA cascade, circATP8B4/miR-31-5p/NES axis, underlying glioma development and radiosensitivity. Targeting the ceRNA crosstalk may have potential to improve the outcome of glioma patients.
Collapse
Affiliation(s)
- Dongdong Luo
- Department of Neurosurgery, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, No. 78 Hengzhigang Road, Yuexiu District, Guangzhou, 510095, Guangdong, China
| | - Aiping Luo
- Department of Radiology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, No. 78 Hengzhigang Road, Yuexiu District, Guangzhou, 510095, Guangdong, China
| | - Ganwei Ye
- Department of Neurosurgery, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, No. 78 Hengzhigang Road, Yuexiu District, Guangzhou, 510095, Guangdong, China
| | - Dan Li
- Department of Neurosurgery, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, No. 78 Hengzhigang Road, Yuexiu District, Guangzhou, 510095, Guangdong, China
| | - Su Hu
- Department of Neurosurgery, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, No. 78 Hengzhigang Road, Yuexiu District, Guangzhou, 510095, Guangdong, China
| | - Hailin Zhao
- Department of Neurosurgery, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, No. 78 Hengzhigang Road, Yuexiu District, Guangzhou, 510095, Guangdong, China
| | - Biao Peng
- Department of Neurosurgery, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, No. 78 Hengzhigang Road, Yuexiu District, Guangzhou, 510095, Guangdong, China
| |
Collapse
|
3
|
Huang CD, Shi Y, Wang F, Wu PF, Chen JG. Methionine oxidation of actin cytoskeleton attenuates traumatic memory retention via reactivating dendritic spine morphogenesis. Redox Biol 2024; 77:103391. [PMID: 39405981 PMCID: PMC11525628 DOI: 10.1016/j.redox.2024.103391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 11/03/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is characterized by hypermnesia of the trauma and a persistent fear response. The molecular mechanisms underlying the retention of traumatic memories remain largely unknown, which hinders the development of more effective treatments. Utilizing auditory fear conditioning, we demonstrate that a redox-dependent dynamic pathway for dendritic spine morphogenesis in the basolateral amygdala (BLA) is crucial for traumatic memory retention. Exposure to a fear-induced event markedly increased the reduction of oxidized filamentous actin (F-actin) and decreased the expression of the molecule interacting with CasL 1 (MICAL1), a methionine-oxidizing enzyme that directly oxidizes and depolymerizes F-actin, leading to cytoskeletal dynamic abnormalities in the BLA, which impairs dendritic spine morphogenesis and contributes to the persistence of fearful memories. Following fear conditioning, overexpression of MICAL1 in the BLA inhibited freezing behavior during fear memory retrieval via reactivating cytokinesis, whereas overexpression of methionine sulfoxide reductase B 1, a key enzyme that reduces oxidized F-actin monomer, increased freezing behavior during retrieval. Notably, intra-BLA injection of semaphorin 3A, an endogenous activator of MICAL1, rapidly disrupted fear memory within a short time window after conditioning. Collectively, our results indicate that redox modulation of actin cytoskeleton in the BLA is functionally linked to fear memory retention and PTSD-like memory.
Collapse
Affiliation(s)
- Cun-Dong Huang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yu Shi
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, 430030, China; The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Hubei Shizhen Laboratory, Wuhan, Hubei, 430030, China.
| | - Peng-Fei Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, 430030, China; The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Hubei Shizhen Laboratory, Wuhan, Hubei, 430030, China.
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, 430030, China; The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Hubei Shizhen Laboratory, Wuhan, Hubei, 430030, China.
| |
Collapse
|
4
|
Pavlova S, Fab L, Dzarieva F, Ryabova A, Revishchin A, Panteleev D, Antipova O, Usachev D, Kopylov A, Pavlova G. Unite and Conquer: Association of Two G-Quadruplex Aptamers Provides Antiproliferative and Antimigration Activity for Cells from High-Grade Glioma Patients. Pharmaceuticals (Basel) 2024; 17:1435. [PMID: 39598347 PMCID: PMC11597096 DOI: 10.3390/ph17111435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Background: High-grade gliomas remain a virtually incurable form of brain cancer. Current therapies are unable to completely eradicate the tumor, and the tumor cells that survive chemotherapy or radiation therapy often become more aggressive and resistant to further treatment, leading to inevitable relapses. While the antiproliferative effects of new therapeutic molecules are typically the primary focus of research, less attention is given to their influence on tumor cell migratory activity, which can play a significant role in recurrence. A potential solution may lie in the synergistic effects of multiple drugs on the tumor. Objectives: In this study, we investigated the effect of combined exposure to bi-(AID-1-T), an anti-proliferative aptamer, and its analog bi-(AID-1-C), on the migratory activity of human GBM cells. Results: We examined the effects of various sequences of adding bi-(AID-1-T) and bi-(AID-1-C) on five human GBM cell cultures. Our findings indicate that certain sequences significantly reduced the ability of tumor cells to migrate and proliferate. Additionally, the expression of Nestin, PARP1, L1CAM, Caveolin-1, and c-Myc was downregulated in human GBM cells that survived exposure, suggesting that the treatment had a persistent antitumor effect on these cells.
Collapse
Affiliation(s)
- Svetlana Pavlova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
- Institution N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 125047 Moscow, Russia
| | - Lika Fab
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Fatima Dzarieva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
- Institution N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 125047 Moscow, Russia
| | - Anastasia Ryabova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander Revishchin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Dmitriy Panteleev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Olga Antipova
- Institution N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 125047 Moscow, Russia
- Belozersky Research Institute of Physical Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Dmitry Usachev
- Institution N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 125047 Moscow, Russia
| | - Alexey Kopylov
- Institution N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 125047 Moscow, Russia
- Belozersky Research Institute of Physical Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Galina Pavlova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
- Institution N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 125047 Moscow, Russia
| |
Collapse
|
5
|
Kubelt C, Gilles L, Hellmold D, Blumenbecker T, Peschke E, Will O, Ahmeti H, Hövener JB, Jansen O, Lucius R, Synowitz M, Held-Feindt J. Temporal and regional expression changes and co-staining patterns of metabolic and stemness-related markers during glioblastoma progression. Eur J Neurosci 2024; 60:3572-3596. [PMID: 38708527 DOI: 10.1111/ejn.16357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 05/07/2024]
Abstract
Glioblastomas (GBMs) are characterized by high heterogeneity, involving diverse cell types, including those with stem-like features contributing to GBM's malignancy. Moreover, metabolic alterations promote growth and therapeutic resistance of GBM. Depending on the metabolic state, antimetabolic treatments could be an effective strategy. Against this background, we investigated temporal and regional expression changes and co-staining patterns of selected metabolic markers [pyruvate kinase muscle isozyme 1/2 (PKM1/2), glucose transporter 1 (GLUT1), monocarboxylate transporter 1/4 (MCT1/4)] in a rodent model and patient-derived samples of GBM. To understand the cellular sources of marker expression, we also examined the connection of metabolic markers to markers related to stemness [Nestin, Krüppel-like factor 4 (KLF4)] in a regional and temporal context. Rat tumour biopsies revealed a temporally increasing expression of GLUT1, higher expression of MCT1/4, Nestin and KLF4, and lower expression of PKM1 compared to the contralateral hemisphere. Patient-derived tumours showed a higher expression of PKM2 and Nestin in the tumour centre vs. edge. Whereas rare co-staining of GLUT1/Nestin was found in tumour biopsies, PKM1/2 and MCT1/4 showed a more distinct co-staining with Nestin in rats and humans. KLF4 was mainly co-stained with GLUT1, MCT1 and PKM1/2 in rat and human tumours. All metabolic markers yielded individual co-staining patterns among themselves. Co-staining mainly occurred later in tumour progression and was more pronounced in tumour centres. Also, positive correlations were found amongst markers that showed co-staining. Our results highlight a link between metabolic alterations and stemness in GBM progression, with complex distinctions depending on studied markers, time points and regions.
Collapse
Affiliation(s)
- Carolin Kubelt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Lea Gilles
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Dana Hellmold
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Tjorven Blumenbecker
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Eva Peschke
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Olga Will
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Hajrullah Ahmeti
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Olav Jansen
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Ralph Lucius
- Institute of Anatomy, Kiel University, Kiel, Germany
| | - Michael Synowitz
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Janka Held-Feindt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
6
|
Kucinska M, Pospieszna J, Tang J, Lisiak N, Toton E, Rubis B, Murias M. The combination therapy using tyrosine kinase receptors inhibitors and repurposed drugs to target patient-derived glioblastoma stem cells. Biomed Pharmacother 2024; 176:116892. [PMID: 38876048 DOI: 10.1016/j.biopha.2024.116892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
The lesson from many studies investigating the efficacy of targeted therapy in glioblastoma (GBM) showed that a future perspective should be focused on combining multiple target treatments. Our research aimed to assess the efficacy of drug combinations against glioblastoma stem cells (GSCs). Patient-derived cells U3042, U3009, and U3039 were obtained from the Human Glioblastoma Cell Culture resource. Additionally, the study was conducted on a GBM commercial U251 cell line. Gene expression analysis related to receptor tyrosine kinases (RTKs), stem cell markers and genes associated with significant molecular targets was performed, and selected proteins encoded by these genes were assessed using the immunofluorescence and flow cytometry methods. The cytotoxicity studies were preceded by analyzing the expression of specific proteins that serve as targets for selected drugs. The cytotoxicity study using the MTS assay was conducted to evaluate the effects of selected drugs/candidates in monotherapy and combinations. The most cytotoxic compounds for U3042 cells were Disulfiram combined with Copper gluconate (DSF/Cu), Dacomitinib, and Foretinib with IC50 values of 52.37 nM, 4.38 µM, and 4.54 µM after 24 h incubation, respectively. Interactions were assessed using SynergyFinder Plus software. The analysis enabled the identification of the most effective drug combinations against patient-derived GSCs. Our findings indicate that the most promising drug combinations are Dacomitinib and Foretinib, Dacomitinib and DSF/Cu, and Foretinib and AZD3759. Since most tested combinations have not been previously examined against glioblastoma stem-like cells, these results can shed new light on designing the therapeutic approach to target the GSC population.
Collapse
Affiliation(s)
- Malgorzata Kucinska
- Department of Toxicology, Poznan University of Medical Sciences 3 Rokietnicka Street, Poznan 60-806, Poland.
| | - Julia Pospieszna
- Department of Toxicology, Poznan University of Medical Sciences 3 Rokietnicka Street, Poznan 60-806, Poland.
| | - Jing Tang
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland.
| | - Natalia Lisiak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 3 Rokietnicka Street, Poznan 60-806, Poland.
| | - Ewa Toton
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 3 Rokietnicka Street, Poznan 60-806, Poland.
| | - Blazej Rubis
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 3 Rokietnicka Street, Poznan 60-806, Poland.
| | - Marek Murias
- Department of Toxicology, Poznan University of Medical Sciences 3 Rokietnicka Street, Poznan 60-806, Poland.
| |
Collapse
|
7
|
Tong Z, Yin Z. Distribution, contribution and regulation of nestin + cells. J Adv Res 2024; 61:47-63. [PMID: 37648021 PMCID: PMC11258671 DOI: 10.1016/j.jare.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Nestin is an intermediate filament first reported in neuroepithelial stem cells. Nestin expression could be found in a variety of tissues throughout all systems of the body, especially during tissue development and tissue regeneration processes. AIM OF REVIEW This review aimed to summarize and discuss current studies on the distribution, contribution and regulation of nestin+ cells in different systems of the body, to discuss the feasibility ofusing nestin as a marker of multilineage stem/progenitor cells, and better understand the potential roles of nestin+ cells in tissue development, regeneration and pathological processes. KEY SCIENTIFIC CONCEPTS OF REVIEW This review highlights the potential of nestin as a marker of multilineage stem/progenitor cells, and as a key factor in tissue development and tissue regeneration. The article discussed the current findings, limitations, and potential clinical implications or applications of nestin+ cells. Additionally, it included the relationship of nestin+ cells to other cell populations. We propose potential future research directions to encourage further investigation in the field.
Collapse
Affiliation(s)
- Ziyang Tong
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zi Yin
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
8
|
Li K, Li H, He A, Zhang G, Jin Y, Cai J, Ye C, Qi L, Liu Y. Deciphering the role of transcription factors in glioblastoma cancer stem cells. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1245-1255. [PMID: 38716541 PMCID: PMC11543521 DOI: 10.3724/abbs.2024061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/07/2024] [Indexed: 10/17/2024] Open
Abstract
Glioblastoma (GBM), the most aggressive and fatal brain malignancy, is largely driven by a subset of tumor cells known as cancer stem cells (CSCs). CSCs possess stem cell-like properties, including self-renewal, proliferation, and differentiation, making them pivotal for tumor initiation, invasion, metastasis, and overall tumor progression. The regulation of CSCs is primarily controlled by transcription factors (TFs) which regulate the expressions of genes involved in maintaining stemness and directing differentiation. This review aims to provide a comprehensive overview of the role of TFs in regulating CSCs in GBM. The discussion encompasses the definitions of CSCs and TFs, the significance of glioma stem cells (GSCs) in GBM, and how TFs regulate GSC self-renewal, proliferation, differentiation, and transformation. The potential for developing TF-targeted GSC therapies is also explored, along with future research directions. By understanding the regulation of GSCs by TFs, we may uncover novel diagnostic and therapeutic strategies against this devastating disease of GBM.
Collapse
Affiliation(s)
- Kaishu Li
- Department of Neurosurgery & Medical Research
CenterShunde HospitalSouthern Medical University (The First People’s
Hospital of Shunde Foshan)Foshan528300China
- Department of NeurosurgeryNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Haichao Li
- Institute of Digestive DiseaseAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Aonan He
- Department of NeurosurgeryAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Gengqiang Zhang
- Department of NeurosurgeryAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Yuyao Jin
- Department of NeurosurgeryAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Junbin Cai
- Department of NeurosurgeryAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Chenle Ye
- Department of NeurosurgeryAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Ling Qi
- Institute of Digestive DiseaseAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Yawei Liu
- Department of Neurosurgery & Medical Research
CenterShunde HospitalSouthern Medical University (The First People’s
Hospital of Shunde Foshan)Foshan528300China
| |
Collapse
|
9
|
Shi S, Guo D, Ye L, Li T, Fei Q, Lin M, Yu X, Jin K, Wu W. Knockdown of TACC3 inhibits tumor cell proliferation and increases chemosensitivity in pancreatic cancer. Cell Death Dis 2023; 14:778. [PMID: 38012214 PMCID: PMC10682013 DOI: 10.1038/s41419-023-06313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant digestive tract tumor with limited clinical treatments. Transforming acidic coiled-coil-containing protein 3 (TACC3) is a component of the centrosome axis and a member of the TACC family, which affect mitosis and regulate chromosome stability and are involved in tumor development and progression. However, the role of TACC3 in PDAC remains elusive. In this study, by exploiting the TCGA database, we found that high TACC3 expression in PDAC is associated with poor prognosis. shRNA-mediated TACC3 knockdown caused S phase arrest of the cell cycle and inhibited proliferation in PDAC cell lines. Through RNA sequencing and protein co-immunoprecipitation combined with mass spectrometry, KIF11 was identified as a protein that interacts with TACC3. TACC3 stabilizes and regulates KIF11 protein expression levels in PDAC cells through physical interaction. Knockdown of TACC3 or KIF11 resulted in abnormal spindle formation during cell division both in vitro and in vivo. Pharmacological inhibition of TACC3 or KIF11 can suppress tumor cell proliferation and promote apoptosis. Our studies further demonstrated that high expression of TACC3 and KIF11 mediated the resistance of PDAC to gemcitabine, and deficiency of TACC3 or KIF11 increased the sensitivity of PDAC cells to chemotherapy. In conclusion, our study reveals the fundamental role of TACC3 expression in PDAC cell proliferation and chemoresistance, suggesting that TACC3 can be used as a molecular marker to evaluate the prognosis of PDAC.
Collapse
Affiliation(s)
- Saimeng Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Duancheng Guo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Longyun Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Tianjiao Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qinglin Fei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Mengxiong Lin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Kaizhou Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Weiding Wu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
10
|
Xie W, Delebinski C, Gürgen D, Schröder M, Seifert G, Melzig MF. Inhibition of osteosarcoma by European Mistletoe derived val-miR218. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:306-322. [PMID: 39698025 PMCID: PMC11651123 DOI: 10.20517/evcna.2023.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 12/20/2024]
Abstract
Aim In recent years, there has been a growing interest in the therapeutic potential of plant-derived miRNAs, which have been considered new bioactive ingredients in medicinal plants. Viscum album L., commonly used as an adjuvant cancer therapy in central Europe, contains a large number of miRNAs associated with human diseases such as cancer, cardiovascular diseases, and neurological disorders. This study aimed to investigate whether mistletoe miRNAs, specifically val-miR218, exert anti-cancer activity against osteosarcoma. Methods The anti-cancer effects of miRNAs from V. album L. were evaluated. The targets of val-miR218 were identified by RNA-seq. The mRNA and protein expression of the targets was confirmed by RT-qPCR and western blot analyses. The interaction between the val-miR218 and miRNA recognition elements (MREs) was validated by the dual-luciferase assay. The inhibitory effect of val-miR218 against osteosarcoma was investigated in vivo. Results Among these abundant miRNAs in V. album L., val-miR218 showed high potential anti-cancer effects against osteosarcoma. To clarify its molecular mechanism of action, we sequenced val-miR218 associated RNAs and their down-regulated RNAs. As a result, 61 genes were considered the direct targets of val-miR218. Interestingly, these targets were related to essential cellular functions such as cell cycle, DNA replication, and cell morphology, suggesting that val-miR218 significantly inhibited cell growth and arrested osteosarcoma cells in G0/G1 phase by influencing basic cell activities. Mistletoe extracellular vesicles offered val-miR218 adequate protection and facilitated the uptake of val-miR281 by human cells. Moreover, val-miR218 showed significant anti-tumor effects in vivo. Conclusion This study demonstrated the significant potential of val-miR218 regarding proliferation inhibition in various tumor cell lines in vitro and for osteosarcoma in vivo. Due to the increasing problems during chemotherapy, new therapeutic approaches are becoming more critical. The significant anti-cancer effects of medicinal plants derived miRNAs indicate a promising therapeutic strategy for treating cancer.
Collapse
Affiliation(s)
- Wenyan Xie
- Institute of Pharmacy, Freie Universität Berlin, Berlin 14195, Germany
| | - Catharina Delebinski
- Department of Pediatric Oncology/Hematology, Otto-Heubner-Centre for Pediatric and Adolescent Medicine (OHC), Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin 13353, Germany
| | | | - Maik Schröder
- Department of Pediatric Oncology/Hematology, Otto-Heubner-Centre for Pediatric and Adolescent Medicine (OHC), Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin 13353, Germany
| | - Georg Seifert
- Department of Pediatric Oncology/Hematology, Otto-Heubner-Centre for Pediatric and Adolescent Medicine (OHC), Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin 13353, Germany
- Authors contributed equally
| | - Matthias F. Melzig
- Institute of Pharmacy, Freie Universität Berlin, Berlin 14195, Germany
- Authors contributed equally
| |
Collapse
|
11
|
Grespi F, Vianello C, Cagnin S, Giacomello M, De Mario A. The Interplay of Microtubules with Mitochondria–ER Contact Sites (MERCs) in Glioblastoma. Biomolecules 2022; 12:biom12040567. [PMID: 35454156 PMCID: PMC9030160 DOI: 10.3390/biom12040567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Gliomas are heterogeneous neoplasms, classified into grade I to IV according to their malignancy and the presence of specific histological/molecular hallmarks. The higher grade of glioma is known as glioblastoma (GB). Although progress has been made in surgical and radiation treatments, its clinical outcome is still unfavorable. The invasive properties of GB cells and glioma aggressiveness are linked to the reshaping of the cytoskeleton. Recent works suggest that the different susceptibility of GB cells to antitumor immune response is also associated with the extent and function of mitochondria–ER contact sites (MERCs). The presence of MERCs alterations could also explain the mitochondrial defects observed in GB models, including abnormalities of energy metabolism and disruption of apoptotic and calcium signaling. Based on this evidence, the question arises as to whether a MERCs–cytoskeleton crosstalk exists, and whether GB progression is linked to an altered cytoskeleton–MERCs interaction. To address this possibility, in this review we performed a meta-analysis to compare grade I and grade IV GB patients. From this preliminary analysis, we found that GB samples (grade IV) are characterized by altered expression of cytoskeletal and MERCs related genes. Among them, the cytoskeleton-associated protein 4 (CKAP4 or CLIMP-63) appears particularly interesting as it encodes a MERCs protein controlling the ER anchoring to microtubules (MTs). Although further in-depth analyses remain necessary, this perspective review may provide new hints to better understand GB molecular etiopathogenesis, by suggesting that cytoskeletal and MERCs alterations cooperate to exacerbate the cellular phenotype of high-grade GB and that MERCs players can be exploited as novel biomarkers/targets to enhance the current therapy for GB.
Collapse
Affiliation(s)
- Francesca Grespi
- Department of Biology, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy; (F.G.); (C.V.); (S.C.)
| | - Caterina Vianello
- Department of Biology, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy; (F.G.); (C.V.); (S.C.)
| | - Stefano Cagnin
- Department of Biology, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy; (F.G.); (C.V.); (S.C.)
- CRIBI Biotechnology Center, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy
- CIR-Myo Myology Center, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy
| | - Marta Giacomello
- Department of Biology, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy; (F.G.); (C.V.); (S.C.)
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy
- Correspondence: (M.G.); (A.D.M.)
| | - Agnese De Mario
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy
- Correspondence: (M.G.); (A.D.M.)
| |
Collapse
|
12
|
Wu Q, Berglund AE, MacAulay RJ, Etame AB. A Novel Role of BIRC3 in Stemness Reprogramming of Glioblastoma. Int J Mol Sci 2021; 23:297. [PMID: 35008722 PMCID: PMC8745052 DOI: 10.3390/ijms23010297] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/30/2022] Open
Abstract
Stemness reprogramming remains a largely unaddressed principal cause of lethality in glioblastoma (GBM). It is therefore of utmost importance to identify and target mechanisms that are essential for GBM stemness and self-renewal. Previously, we implicated BIRC3 as an essential mediator of therapeutic resistance and survival adaptation in GBM. In this study, we present novel evidence that BIRC3 has an essential noncanonical role in GBM self-renewal and stemness reprogramming. We demonstrate that BIRC3 drives stemness reprogramming of human GBM cell lines, mouse GBM cell lines and patient-derived GBM stem cells (GSCs) through regulation of BMP4 signaling axis. Specifically, BIRC3 induces stemness reprogramming in GBM through downstream inactivation of BMP4 signaling. RNA-Seq interrogation of the stemness reprogramming hypoxic (pseudopalisading necrosis and perinecrosis) niche in GBM patient tissues further validated the high BIRC3/low BMP4 expression correlation. BIRC3 knockout upregulated BMP4 expression and prevented stemness reprogramming of GBM models. Furthermore, siRNA silencing of BMP4 restored stemness reprogramming of BIRC3 knockout in GBM models. In vivo silencing of BIRC3 suppressed tumor initiation and progression in GBM orthotopic intracranial xenografts. The stemness reprograming of both GSCs and non-GSCs populations highlights the impact of BIRC3 on intra-tumoral cellular heterogeneity GBM. Our study has identified a novel function of BIRC3 that can be targeted to reverse stemness programming of GBM.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA;
| | - Anders E. Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA;
| | - Robert J. MacAulay
- Departments of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA;
| | - Arnold B. Etame
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA;
| |
Collapse
|