1
|
Yang M, Cao J, Liu T, Li B, Wang J, Pan S, Guo D, Tao Z, Hu X. Chaperonin-containing TCP1 subunit 6A inhibition via TRIM21-mediated K48-linked ubiquitination suppresses triple-negative breast cancer progression through the AKT signalling pathway. Clin Transl Med 2024; 14:e70097. [PMID: 39556022 PMCID: PMC11571564 DOI: 10.1002/ctm2.70097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/26/2024] [Accepted: 11/03/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is distinguished by a significant likelihood of distant recurrence and an unfavourable prognosis. However, the underlying molecules and mechanisms have not been fully elucidated. METHODS We investigated the expression profile and clinical relevance of chaperonin-containing TCP1 subunit 6A (CCT6A) in TNBC. We performed cell function assays on TNBC cells with CCT6A knockdown or overexpression. To further explore the mechanism of action of CCT6A, RNA sequencing and co-immunoprecipitation-mass spectrometry analyses were utilized. Rescue and ubiquitination assays evaluated the impact of TRIM21-mediated CCT6A ubiquitination and degradation on TNBC progression in vitro and in vivo. Finally, we studied the potential of Ipatasertib, a pharmacological AKT inhibitor, and/or anti-PD1 therapy in inhibiting TNBC progression. RESULTS Elevated CCT6A expression in TNBC patients was associated with an adverse prognosis and lymph node metastasis. Mechanistically, CCT6A facilitated cell migration, invasion, epithelial-mesenchymal transition and proliferation by activating the phosphatidylinositol 3-kinase (PI3K)/AKT pathway. The TRIM21 RING domain is an E3 ligase, facilitating the K48-linked ubiquitination-mediated degradation of CCT6A, thereby impeding TNBC progression. Moreover, in the tumour tissues of the CCT6A-overexpressing mice, the quantity of CD8+ T cells and the concentration of secreted interferon-gamma were decreased, whereas in the group double-overexpression of CCT6A and TRIM21, they were elevated; the opposite was observed in the knockdown and double-knockdown groups. Ipatasertib demonstrated enhanced efficacy in inhibiting cell proliferation, invasion and migration in TNBC cells ectopically expressing CCT6A. When Ipatasertib and anti-PD1 therapies were combined, both the tumour volume and mass exhibited a notable reduction, while the expression of CD45+CD8+ T cells increased, and that of CD45+CD4+CTLA4+ and CD45+CD4+PD1+ T cells decreased. CONCLUSIONS Our findings indicate that TRIM21 inhibits TNBC progression by facilitating the K48-linked ubiquitination-mediated degradation of CCT6A via the PI3K/AKT signalling pathway. This highlights the potential of Ipatasertib and/or anti-PD1 as therapeutic strategies, particularly for TNBC patients overexpressing CCT6A. KEY POINTS Chaperonin TCP1 subunit 6A (CCT6A) plays an oncogenic role in triple-negative breast cancer (TNBC) through the AKT signaling pathway. TRIM21 facilitated K48-linked ubiquitination-mediated degradation of CCT6A, thereby impeding TNBC progression. Our study collectively underscores the potential of Ipatasertib in conjunction with anti-PD1 therapy as a promising strategy to counteract CCT6A/AKT hyperactivity-driven TNBC progression.
Collapse
Affiliation(s)
- Mengdi Yang
- Department of Breast and Urologic Medical OncologyFudan University Shanghai Cancer CenterShanghaiP. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiP. R. China
| | - Jianing Cao
- Department of Breast and Urologic Medical OncologyFudan University Shanghai Cancer CenterShanghaiP. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiP. R. China
| | - Tiantian Liu
- Department of Breast and Urologic Medical OncologyFudan University Shanghai Cancer CenterShanghaiP. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiP. R. China
| | - Bin Li
- Department of Breast and Urologic Medical OncologyFudan University Shanghai Cancer CenterShanghaiP. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiP. R. China
| | - Jinyan Wang
- Department of Breast and Urologic Medical OncologyFudan University Shanghai Cancer CenterShanghaiP. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiP. R. China
| | - Shuangyue Pan
- Department of Breast and Urologic Medical OncologyFudan University Shanghai Cancer CenterShanghaiP. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiP. R. China
| | - Duancheng Guo
- Department of Breast and Urologic Medical OncologyFudan University Shanghai Cancer CenterShanghaiP. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiP. R. China
| | - Zhonghua Tao
- Department of Breast and Urologic Medical OncologyFudan University Shanghai Cancer CenterShanghaiP. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiP. R. China
| | - Xichun Hu
- Department of Breast and Urologic Medical OncologyFudan University Shanghai Cancer CenterShanghaiP. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiP. R. China
| |
Collapse
|
2
|
Liu Q, Yao F, Wu L, Xu T, Na J, Shen Z, Liu X, Shi W, Zhao Y, Liao Y. Heterogeneity and interplay: the multifaceted role of cancer-associated fibroblasts in the tumor and therapeutic strategies. Clin Transl Oncol 2024; 26:2395-2417. [PMID: 38602644 DOI: 10.1007/s12094-024-03492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/31/2024] [Indexed: 04/12/2024]
Abstract
The journey of cancer development is a multifaceted and staged process. The array of treatments available for cancer varies significantly, dictated by the disease's type and stage. Cancer-associated fibroblasts (CAFs), prevalent across various cancer types and stages, play a pivotal role in tumor genesis, progression, metastasis, and drug resistance. The strategy of concurrently targeting cancer cells and CAFs holds great promise in cancer therapy. In this review, we focus intently on CAFs, delving into their critical role in cancer's progression. We begin by exploring the origins, classification, and surface markers of CAFs. Following this, we emphasize the key cytokines and signaling pathways involved in the interplay between cancer cells and CAFs and their influence on the tumor immune microenvironment. Additionally, we examine current therapeutic approaches targeting CAFs. This article underscores the multifarious roles of CAFs within the tumor microenvironment and their potential applications in cancer treatment, highlighting their importance as key targets in overcoming drug resistance and enhancing the efficacy of tumor therapies.
Collapse
Affiliation(s)
- Qiaoqiao Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Fei Yao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Liangliang Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Tianyuan Xu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Zhen Shen
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Wei Shi
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China.
- Department of Oncology, The First Affiliated Tumor Hospital, Guangxi University of Chinese Medicine, Nanning, 530021, Guangxi, China.
| | - Yongxiang Zhao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China.
| | - Yuan Liao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
3
|
Xiao X, Qing L, Li Z, Ye F, Dong Y, Mi J, Tian J. Identification and validation of diagnostic and prognostic biomarkers in prostate cancer based on WGCNA. Discov Oncol 2024; 15:131. [PMID: 39304557 DOI: 10.1007/s12672-024-00983-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 04/15/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) represents a significant health challenge for men, and the advancement of the disease often results in a grave prognosis for patients. Therefore, the identification of biomarkers associated with the diagnosis and prognosis of PCa holds paramount importance in patient health management. METHODS The datasets pertaining to PCa were retrieved from the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) was conducted to investigate the modules specifically associated with the diagnosis of PCa. The hub genes were identified using the LASSO regression analysis. The expression levels of these hub genes were further validated by qRT-PCR experiments. Receiver operating characteristic (ROC) curves and nomograms were employed as evaluative measures for assessing the diagnostic value. RESULTS The blue module identified by WGCNA exhibited a strong association with PCa. Six hub genes (SLC14A1, COL4A6, MYOF, FLRT3, KRT15, and LAMB3) were identified by LASSO regression analysis. Further verification confirmed that these six genes were significantly downregulated in tumor tissues and cells. The six hub genes and the nomogram demonstrated substantial diagnostic value, with area under the curve (AUC) values ranging from 0.754 to 0.961. Moreover, patients with low expression levels of these six genes exhibited elevated T/N pathological stage and Gleason score, implying a more advanced disease state. Meanwhile, their progression-free survival (PFS) was observed to be potentially poorer. Finally, a significant association could be observed between the expression of these genes and the dysregulation of immune cells, along with drug sensitivity. CONCLUSIONS In summary, our study identified six hub genes, namely SLC14A1, COL4A6, MYOF, FLRT3, KRT15, and LAMB3, which can be utilized to establish a diagnostic model for PCa. The discovery may offer potential molecular targets for clinical diagnosis and treatment of PCa.
Collapse
Affiliation(s)
- Xi Xiao
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Liangliang Qing
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Zonglin Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Fuxiang Ye
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Yajia Dong
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Jun Mi
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730030, China.
| | - Junqiang Tian
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730030, China.
| |
Collapse
|
4
|
Zhang F, Ma Y, Li D, Wei J, Chen K, Zhang E, Liu G, Chu X, Liu X, Liu W, Tian X, Yang Y. Cancer associated fibroblasts and metabolic reprogramming: unraveling the intricate crosstalk in tumor evolution. J Hematol Oncol 2024; 17:80. [PMID: 39223656 PMCID: PMC11367794 DOI: 10.1186/s13045-024-01600-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Metabolic reprogramming provides tumors with an energy source and biofuel to support their survival in the malignant microenvironment. Extensive research into the intrinsic oncogenic mechanisms of the tumor microenvironment (TME) has established that cancer-associated fibroblast (CAFs) and metabolic reprogramming regulates tumor progression through numerous biological activities, including tumor immunosuppression, chronic inflammation, and ecological niche remodeling. Specifically, immunosuppressive TME formation is promoted and mediators released via CAFs and multiple immune cells that collectively support chronic inflammation, thereby inducing pre-metastatic ecological niche formation, and ultimately driving a vicious cycle of tumor proliferation and metastasis. This review comprehensively explores the process of CAFs and metabolic regulation of the dynamic evolution of tumor-adapted TME, with particular focus on the mechanisms by which CAFs promote the formation of an immunosuppressive microenvironment and support metastasis. Existing findings confirm that multiple components of the TME act cooperatively to accelerate the progression of tumor events. The potential applications and challenges of targeted therapies based on CAFs in the clinical setting are further discussed in the context of advancing research related to CAFs.
Collapse
Affiliation(s)
- Fusheng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Yongsu Ma
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Dongqi Li
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Jianlei Wei
- Key laboratory of Microecology-immune Regulatory Network and Related Diseases School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province, 154007, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research, Peking University Health Science Center, Beijing, 100191, China
| | - Kai Chen
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Enkui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Guangnian Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xiangyu Chu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xinxin Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Weikang Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xiaodong Tian
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China.
| | - Yinmo Yang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
5
|
Chen Y, Liang Z, Lai M. Targeting the devil: Strategies against cancer-associated fibroblasts in colorectal cancer. Transl Res 2024; 270:81-93. [PMID: 38614213 DOI: 10.1016/j.trsl.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Cancer-associated fibroblasts (CAFs), as significant constituents of the tumor microenvironment (TME), play a pivotal role in the progression of cancers, including colorectal cancer (CRC). In this comprehensive review, we presented the origins and activation mechanisms of CAFs in CRC, elaborating on how CAFs drive tumor progression through their interactions with CRC cells, immune cells, vascular endothelial cells, and the extracellular matrix within the TME. We systematically outline the intricate web of interactions among CAFs, tumor cells, and other TME components, and based on this complex interplay, we summarize various therapeutic strategies designed to target CAFs in CRC. It is also essential to recognize that CAFs represent a highly heterogeneous group, encompassing various subtypes such as myofibroblastic CAF (myCAF), inflammatory CAF (iCAF), antigen-presenting CAF (apCAF), vessel-associated CAF (vCAF). Herein, we provide a summary of studies investigating the heterogeneity of CAFs in CRC and the characteristic expression patterns of each subtype. While the majority of CAFs contribute to the exacerbation of CRC malignancy, recent findings have revealed specific subtypes that exert inhibitory effects on CRC progression. Nevertheless, the comprehensive landscape of CAF heterogeneity still awaits exploration. We also highlight pivotal unanswered questions that need to be addressed before CAFs can be recognized as feasible targets for cancer treatment. In conclusion, the aim of our review is to elucidate the significance and challenges of advancing in-depth research on CAFs, while outlining the pathway to uncover the complex roles of CAFs in CRC and underscore their significant potential as therapeutic targets.
Collapse
Affiliation(s)
- Yuting Chen
- Department of Pathology, and Department of Pathology of Sir Run Run Shaw Hospital, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Hangzhou, 310058, China; Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Key Laboratory of Disease Proteomics of Zhejiang Province, Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zhiyong Liang
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Maode Lai
- Department of Pathology, and Department of Pathology of Sir Run Run Shaw Hospital, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Hangzhou, 310058, China; Key Laboratory of Disease Proteomics of Zhejiang Province, Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
6
|
Song J, Liao H, Li H, Chen H, Si H, Wang J, Bai X. Identification of a novel cancer-associated fibroblasts gene signature based on bioinformatics analysis to predict prognosis and therapeutic responses in breast cancer. Heliyon 2024; 10:e29216. [PMID: 38601538 PMCID: PMC11004657 DOI: 10.1016/j.heliyon.2024.e29216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) provide suitable conditions for growth of tumor cell and facilitate tumor progression. Hence, we aimed to identify a CAFs-related gene signature associated with the prognosis of patients with breast cancer (BRCA). We downloaded datasets from Gene Expression Omnibus (GEO) and confirmed the correlation between CAFs infiltration scores and prognosis. By performing weighted gene co-expression network analysis (WGCNA) and Lasso Cox regression analysis, we constructed a four-gene (COL5A3, FN1, POSTN, and RARRES2) prognostic CAFs signature model. Based on the median risk score of CAFs, patients with BRCA were divided into high- and low-risk groups. Compared with low-risk group, patients in high-risk group exhibited a poor prognosis and limited response to immunotherapy. Furthermore, patients with high CAFs risk scores were found to have a detrimental prognosis due to the induction of immunosuppressive cell infiltration, resulting in an immunosuppressive tumor microenvironment. Importantly, we found that CAFs overexpressing FN1 and POSTN significantly promoted the wound healing and invasion ability of tumor cells in vitro validation. Taking together, we identified a four-gene prognostic CAFs signature, which was proven to be a reliable indicator for prognosis and therapeutic efficacy in patients with BRCA. This study provided evidence for novel CAFs-based stromal therapy.
Collapse
Affiliation(s)
- Jin Song
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Huifeng Liao
- Department of General Surgery, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Huayan Li
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Hongye Chen
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Huiyan Si
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Jiandong Wang
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xue Bai
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| |
Collapse
|
7
|
Pang Y, Xu Y, Chen Q, Cheng K, Ling Y, Jang J, Ge J, Zhu W. FLRT3 and TGF-β/SMAD4 signalling: Impacts on apoptosis, autophagy and ion channels in supraventricular tachycardia. J Cell Mol Med 2024; 28:e18237. [PMID: 38509727 PMCID: PMC10955158 DOI: 10.1111/jcmm.18237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/14/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
To explore the underlying molecular mechanisms of supraventricular tachycardia (SVT), this study aimed to analyse the complex relationship between FLRT3 and TGF-β/SMAD4 signalling pathway, which affects Na+ and K+ channels in cardiomyocytes. Bioinformatics analysis was performed on 85 SVT samples and 15 healthy controls to screen overlapping genes from the key module and differentially expressed genes (DEGs). Expression profiling of overlapping genes, coupled with Receiver Operating Characteristic (ROC) curve analyses, identified FLRT3 as a hub gene. In vitro studies utilizing Ang II-stimulated H9C2 cardiomyocytes were undertaken to elucidate the consequences of FLRT3 silencing on cardiomyocyte apoptosis and autophagic processes. Utilizing a combination of techniques such as quantitative reverse-transcription polymerase chain reaction (qRT-PCR), western blotting (WB), flow cytometry, dual-luciferase reporter assays and chromatin immunoprecipitation polymerase chain reaction (ChIP-PCR) assays were conducted to decipher the intricate interactions between FLRT3, the TGF-β/SMAD4 signalling cascade and ion channel gene expression. Six genes (AADAC, DSC3, FLRT3, SYT4, PRR9 and SERTM1) demonstrated reduced expression in SVT samples, each possessing significant clinical diagnostic potential. In H9C2 cardiomyocytes, FLRT3 silencing mitigated Ang II-induced apoptosis and modulated autophagy. With increasing TGF-β concentration, there was a dose-responsive decline in FLRT3 and SCN5A expression, while both KCNIP2 and KCND2 expressions were augmented. Moreover, a direct interaction between FLRT3 and SMAD4 was observed, and inhibition of SMAD4 expression resulted in increased FLRT3 expression. Our results demonstrated that the TGF-β/SMAD4 signalling pathway plays a critical role by regulating FLRT3 expression, with potential implications for ion channel function in SVT.
Collapse
Affiliation(s)
- Yang Pang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Ye Xu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Qingxing Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Kuan Cheng
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Yunlong Ling
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Jun Jang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life ScienceFudan UniversityShanghaiChina
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Wenqing Zhu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
8
|
Yi B, Wei X, Liu D, Jing L, Xu S, Zhang M, Liang Z, Liu R, Zhang Z. Comprehensive analysis of disulfidptosis-related genes: a prognosis model construction and tumor microenvironment characterization in clear cell renal cell carcinoma. Aging (Albany NY) 2024; 16:3647-3673. [PMID: 38358909 PMCID: PMC10929811 DOI: 10.18632/aging.205550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/01/2023] [Indexed: 02/17/2024]
Abstract
BACKGROUND Disulfidptosis, a form of cell death induced by abnormal intracellular accumulation of disulfides, is a newly recognized variety of cell death. Clear cell renal cell carcinoma (ccRCC) is a usual urological tumor that poses serious health risks. There are few studies of disulfidptosis-related genes (DRGs) in ccRCC so far. METHODS The expression, transcriptional variants, and prognostic role of DRGs were assessed. Based on DRGs, consensus unsupervised clustering analysis was performed to stratify ccRCC patients into various subtypes and constructed a DRG risk scoring model. Patients were stratified into high or low-risk groups by this model. We focused on assessing the discrepancy in prognosis, TME, chemotherapeutic susceptibility, and landscape of immune between the two risk groups. Finally, we validated the expression and explored the biological function of the risk scoring gene FLRT3 through in vitro experiments. RESULTS The different subtypes had significantly different gene expression, immune, and prognostic landscapes. In the two risk groups, the high-risk group had higher TME scores, more significant immune cell infiltration, and a higher probability of benefiting from immunotherapy, but had a worse prognosis. There were also remarkable differences in chemotherapeutic susceptibility between the two risk groups. In ccRCC cells, the expression of FLRT3 was shown to be lower and its overexpression caused a decrease in cell proliferation and metastatic capacity. CONCLUSIONS Starting from disulfidptosis, we established a new risk scoring model which can provide new ideas for doctors to forecast patient survival and determine clinical treatment plans.
Collapse
Affiliation(s)
- Bocun Yi
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xifeng Wei
- Department of Urology, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Dongze Liu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Liwei Jing
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shengxian Xu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Man Zhang
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Institute of Endocrinology, Chu Hsien-I Memorial Hospital of Tianjin Medical University, Tianjin, China
| | - Zhengxin Liang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Ranlu Liu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhihong Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
9
|
Liu J, Miao X, Yao J, Wan Z, Yang X, Tian W. Investigating the clinical role and prognostic value of genes related to insulin-like growth factor signaling pathway in thyroid cancer. Aging (Albany NY) 2024; 16:2934-2952. [PMID: 38329437 PMCID: PMC10911384 DOI: 10.18632/aging.205524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/27/2023] [Indexed: 02/09/2024]
Abstract
BACKGROUND Thyroid cancer (THCA) is the most common endocrine malignancy having a female predominance. The insulin-like growth factor (IGF) pathway contributed to the unregulated cell proliferation in multiple malignancies. We aimed to explore the IGF-related signature for THCA prognosis. METHOD The TCGA-THCA dataset was collected from the Cancer Genome Atlas (TCGA) for screening of key prognostic genes. The limma R package was applied for differentially expressed genes (DEGs) and the clusterProfiler R package was used for the Gene Ontology (GO) and KEGG analysis of DEGs. Then, the un/multivariate and least absolute shrinkage and selection operator (Lasso) Cox regression analysis was used for the establishment of RiskScore model. Receiver Operating Characteristic (ROC) analysis was used to verify the model's predictive performance. CIBERSORT and MCP-counter algorithms were applied for immune infiltration analysis. Finally, we analyzed the mutation features and the correlation between the RiskScore and cancer hallmark pathway by using the GSEA. RESULT We obtained 5 key RiskScore model genes for patient's risk stratification from the 721 DEGs. ROC analysis indicated that our model is an ideal classifier, the high-risk patients are associated with the poor prognosis, immune infiltration, high tumor mutation burden (TMB), stronger cancer stemness and stronger correlation with the typical cancer-activation pathways. A nomogram combined with multiple clinical features was developed and exhibited excellent performance upon long-term survival quantitative prediction. CONCLUSIONS We constructed an excellent prognostic model RiskScore based on IGF-related signature and concluded that the IGF signal pathway may become a reliable prognostic phenotype in THCA intervention.
Collapse
Affiliation(s)
- Junyan Liu
- Department of General Surgery, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing 100853, China
| | - Xin Miao
- Department of General Surgery, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing 100853, China
| | - Jing Yao
- Department of General Surgery, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing 100853, China
| | - Zheng Wan
- Department of General Surgery, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing 100853, China
| | - Xiaodong Yang
- Department of General Surgery, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing 100853, China
| | - Wen Tian
- Department of General Surgery, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing 100853, China
| |
Collapse
|
10
|
Xu C, Song C, Wang W, Liu B, Li G, Fu T, Hao B, Li N, Geng Q. Comprehensive analysis of m6A modification in lipopolysaccharide-induced acute lung injury in mice. Mol Med 2024; 30:14. [PMID: 38254010 PMCID: PMC10804706 DOI: 10.1186/s10020-024-00782-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND N6-Methyladenosine (m6A) methylation is the most prevalent post-transcriptional modification in mRNA, and plays significant roles in various diseases. Nevertheless, the precise functions of m6A modification in the formation of ALI remain unclear. In this study we explore the transcriptome distribution of m6A methylation and its probable roles of in ALI. METHODS Lipopolysaccharide (LPS) was utilized to establish an ALI mouse model. Real-time qPCR, Western blotting and m6A dot blot were utilized to assess m6A methylation level and the expression of m6A methylation enzymes. MeRIP-Seq and RNA-seq were utilized to explore differential m6A modifications and differentially expressed genes in ALI mice. The hub genes and enriched pathways were assessed by Real-time qPCR and Western blotting. RESULTS Our findings showed that overall m6A methylation level was increased in ALI mice lung tissues, accompanied by lower levels of METTL3 and FTO. Notably, the protein expression of these methylases were different in various cells. There were 772 differently expressed m6A peaks in ALI as compared to the control group, with 316 being hypermethylated and 456 being hypomethylated. GO and KEGG analyses demonstrated these differentially methylated genes were associated with the calcium signaling pathway and cAMP signaling pathway. Furthermore, we identified 50 genes with distinct m6A peaks and mRNA expressions by combined analysis of MeRIP-Seq and RNA-Seq. KEGG analysis also demonstrated that these overlapped genes were closely associated with the calcium signaling pathway, cGMP-PKG signaling pathway, etc. Besides, Western blotting results demonstrated that the protein expression of Fibronectin leucine-rich transmembrane protein 3 (Flrt3) as well as the calcium signaling pathway and cGMP-PKG signaling pathway, increased significantly after ALI. CONCLUSIONS m6A modification was paramount in the pathogenesis of ALI, and provided a foundation for the further investigation in the prevention and treatment of ALI.
Collapse
Affiliation(s)
- Chenzhen Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Congkuan Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wenjie Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bohao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Guorui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tinglv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bo Hao
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
11
|
Budinská E, Hrivňáková M, Ivkovic TC, Madrzyk M, Nenutil R, Bencsiková B, Al Tukmachi D, Ručková M, Zdražilová Dubská L, Slabý O, Feit J, Dragomir MP, Borilova Linhartova P, Tejpar S, Popovici V. Molecular portraits of colorectal cancer morphological regions. eLife 2023; 12:RP86655. [PMID: 37956043 PMCID: PMC10642970 DOI: 10.7554/elife.86655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023] Open
Abstract
Heterogeneity of colorectal carcinoma (CRC) represents a major hurdle towards personalized medicine. Efforts based on whole tumor profiling demonstrated that the CRC molecular subtypes were associated with specific tumor morphological patterns representing tumor subregions. We hypothesize that whole-tumor molecular descriptors depend on the morphological heterogeneity with significant impact on current molecular predictors. We investigated intra-tumor heterogeneity by morphology-guided transcriptomics to better understand the links between gene expression and tumor morphology represented by six morphological patterns (morphotypes): complex tubular, desmoplastic, mucinous, papillary, serrated, and solid/trabecular. Whole-transcriptome profiling by microarrays of 202 tumor regions (morphotypes, tumor-adjacent normal tissue, supportive stroma, and matched whole tumors) from 111 stage II-IV CRCs identified morphotype-specific gene expression profiles and molecular programs and differences in their cellular buildup. The proportion of cell types (fibroblasts, epithelial and immune cells) and differentiation of epithelial cells were the main drivers of the observed disparities with activation of EMT and TNF-α signaling in contrast to MYC and E2F targets signaling, defining major gradients of changes at molecular level. Several gene expression-based (including single-cell) classifiers, prognostic and predictive signatures were examined to study their behavior across morphotypes. Most exhibited important morphotype-dependent variability within same tumor sections, with regional predictions often contradicting the whole-tumor classification. The results show that morphotype-based tumor sampling allows the detection of molecular features that would otherwise be distilled in whole tumor profile, while maintaining histopathology context for their interpretation. This represents a practical approach at improving the reproducibility of expression profiling and, by consequence, of gene-based classifiers.
Collapse
Affiliation(s)
- Eva Budinská
- RECETOX, Faculty of Science, Masarykova UniverzitaBrnoCzech Republic
| | | | - Tina Catela Ivkovic
- Central European Institute of Technology, Masarykova UniverzitaBrnoCzech Republic
| | - Marie Madrzyk
- Central European Institute of Technology, Masarykova UniverzitaBrnoCzech Republic
| | | | | | - Dagmar Al Tukmachi
- Central European Institute of Technology, Masarykova UniverzitaBrnoCzech Republic
| | - Michaela Ručková
- Central European Institute of Technology, Masarykova UniverzitaBrnoCzech Republic
| | | | - Ondřej Slabý
- Central European Institute of Technology, Department of Biology, Faculty of Medicine, Masarykova UniverzitaBrnoCzech Republic
| | - Josef Feit
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masarykova UniverzitaBrnoCzech Republic
| | - Mihnea-Paul Dragomir
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of HealthBerlinGermany
- Berlin Institute of HealthBerlinGermany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK)HeidelbergGermany
| | | | - Sabine Tejpar
- Faculty of Medicine, Digestive Oncology Unit, Katholieke Universiteit LeuvenLeuvenBelgium
| | - Vlad Popovici
- RECETOX, Faculty of Science, Masarykova UniverzitaBrnoCzech Republic
| |
Collapse
|
12
|
Zhang H, Yue X, Chen Z, Liu C, Wu W, Zhang N, Liu Z, Yang L, Jiang Q, Cheng Q, Luo P, Liu G. Define cancer-associated fibroblasts (CAFs) in the tumor microenvironment: new opportunities in cancer immunotherapy and advances in clinical trials. Mol Cancer 2023; 22:159. [PMID: 37784082 PMCID: PMC10544417 DOI: 10.1186/s12943-023-01860-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023] Open
Abstract
Despite centuries since the discovery and study of cancer, cancer is still a lethal and intractable health issue worldwide. Cancer-associated fibroblasts (CAFs) have gained much attention as a pivotal component of the tumor microenvironment. The versatility and sophisticated mechanisms of CAFs in facilitating cancer progression have been elucidated extensively, including promoting cancer angiogenesis and metastasis, inducing drug resistance, reshaping the extracellular matrix, and developing an immunosuppressive microenvironment. Owing to their robust tumor-promoting function, CAFs are considered a promising target for oncotherapy. However, CAFs are a highly heterogeneous group of cells. Some subpopulations exert an inhibitory role in tumor growth, which implies that CAF-targeting approaches must be more precise and individualized. This review comprehensively summarize the origin, phenotypical, and functional heterogeneity of CAFs. More importantly, we underscore advances in strategies and clinical trials to target CAF in various cancers, and we also summarize progressions of CAF in cancer immunotherapy.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xinghai Yue
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhe Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chao Liu
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liping Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qing Jiang
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Peng Luo
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Guodong Liu
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
13
|
Raudenska M, Balvan J, Hanelova K, Bugajova M, Masarik M. Cancer-associated fibroblasts: Mediators of head and neck tumor microenvironment remodeling. Biochim Biophys Acta Rev Cancer 2023; 1878:188940. [PMID: 37331641 DOI: 10.1016/j.bbcan.2023.188940] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are involved in critical aspects of head and neck squamous cell carcinoma (HNSCC) pathogenesis, such as the formation of a tumor-permissive extracellular matrix structure, angiogenesis, or immune and metabolic reprogramming of the tumor microenvironment (TME), with implications for metastasis and resistance to radiotherapy and chemotherapy. The pleiotropic effect of CAFs in TME is likely to reflect the heterogeneity and plasticity of their population, with context-dependent effects on carcinogenesis. The specific properties of CAFs provide many targetable molecules that could play an important role in the future therapy of HNSCC. In this review article, we will focus on the role of CAFs in the TME of HNSCC tumors. We will also discuss clinically relevant agents targeting CAFs, their signals, and signaling pathways, which are activated by CAFs in cancer cells, with the potential for repurposing for HNSCC therapy.
Collapse
Affiliation(s)
- Martina Raudenska
- Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Klara Hanelova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Maria Bugajova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic; Institute of Pathophysiology, First Faculty of Medicine, Charles University, / U Nemocnice 5, CZ-128 53 Prague, Czech Republic.
| |
Collapse
|
14
|
Ping Q, Wang C, Cheng X, Zhong Y, Yan R, Yang M, Shi Y, Li X, Li X, Huang W, Wang L, Bi X, Hu L, Yang Y, Wang Y, Gong R, Tan J, Li R, Li H, Li J, Wang W, Li R. TGF-β1 dominates stromal fibroblast-mediated EMT via the FAP/VCAN axis in bladder cancer cells. J Transl Med 2023; 21:475. [PMID: 37461061 PMCID: PMC10351189 DOI: 10.1186/s12967-023-04303-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/24/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Bladder cancer is one of the most common malignant tumors of the urinary system and is associated with a poor prognosis once invasion and distant metastases occur. Epithelial-mesenchymal transition (EMT) drives metastasis and invasion in bladder cancer. Transforming growth factor β1 (TGF-β1) and stromal fibroblasts, especially cancer-associated fibroblasts (CAFs), are positive regulators of EMT in bladder cancer. However, it remains unclear how TGF-β1 mediates crosstalk between bladder cancer cells and CAFs and how it induces stromal fibroblast-mediated EMT in bladder cancer. We aimed to investigate the mechanism of TGF-β1 regulation of stromal fibroblast-mediated EMT in bladder cancer cells. METHODS Primary CAFs with high expression of fibroblast activation protein (FAP) were isolated from bladder cancer tissue samples. Subsequently, different conditioned media were used to stimulate the bladder cancer cell line T24 in a co-culture system. Gene set enrichment analysis, a human cytokine antibody array, and cytological assays were performed to investigate the mechanism of TGF-β1 regulation of stromal fibroblast-mediated EMT in bladder cancer cells. RESULTS Among the TGF-β family, TGF-β1 was the most highly expressed factor in bladder cancer tissue and primary stromal fibroblast supernatant. In the tumor microenvironment, TGF-β1 was mainly derived from stromal fibroblasts, especially CAFs. In stimulated bladder cells, stromal fibroblast-derived TGF-β1 promoted bladder cancer cell migration, invasion, and EMT. Furthermore, TGF-β1 promoted the activation of stromal fibroblasts, inducing CAF-like features, by upregulating FAP in primary normal fibroblasts and a normal fibroblast cell line. Stromal fibroblast-mediated EMT was induced in bladder cancer cells by TGF-β1/FAP. Versican (VCAN), a downstream molecule of FAP, plays an essential role in TGF-β1/FAP axis-induced EMT in bladder cancer cells. VCAN may also function through the PI3K/AKT1 signaling pathway. CONCLUSIONS TGF-β1 is a critical mediator of crosstalk between stromal fibroblasts and bladder cancer cells. We revealed a new mechanism whereby TGF-β1 dominated stromal fibroblast-mediated EMT of bladder cancer cells via the FAP/VCAN axis and identified potential biomarkers (FAP, VCAN, N-cadherin, and Vimentin) of bladder cancer. These results enhance our understanding of bladder cancer invasion and metastasis and provide potential strategies for diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Qinrong Ping
- Department of Urology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Provincial, Kunming, 650051, China
| | - Chunhui Wang
- Department of Urology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Provincial, Kunming, 650051, China
| | - Xin Cheng
- Kunming Medical University, Kunming, 650051, China
| | - Yiming Zhong
- Department of Urology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, China
| | - Ruping Yan
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Meng Yang
- Department of Urology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, China
| | - Yunqiang Shi
- Department of Urology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, China
| | - Xiangmeng Li
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Xiao Li
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Provincial, Kunming, 650051, China
| | - Wenwen Huang
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Provincial, Kunming, 650051, China
- Department of Pathology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, China
| | - Liqiong Wang
- Department of Pathology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, China
| | - Xiaofang Bi
- Department of Urology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, China
| | - Libing Hu
- Department of Urology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, China
| | - Yang Yang
- Department of Urology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, China
| | - Yingbao Wang
- Department of Urology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, China
| | - Rui Gong
- Department of Urology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, China
| | - Jun Tan
- Department of Urology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, China
| | - Rui Li
- Department of Urology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, China
| | - Hui Li
- Department of Urology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, China
| | - Jian Li
- Department of Urology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, China
| | - Wenju Wang
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Provincial, Kunming, 650051, China.
| | - Ruhong Li
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Provincial, Kunming, 650051, China.
- Department of General Surgery, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, China.
| |
Collapse
|
15
|
Wang D, Luo J, Tao Y. Tumor-stroma ratio predicts prognosis and PD-L1 expression in hepatocellular carcinoma. BMC Cancer 2023; 23:434. [PMID: 37173640 PMCID: PMC10182686 DOI: 10.1186/s12885-023-10859-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND With the in-depth research on the tumor microenvironment, the tumor stroma is considered to play a leading role in malignant tumor behavior, and PD-L1 is also related to the tumor stroma. The tumor-stroma ratio (TSR) has been regarded as a novel prognostic factor in many cancers. Our study aims to assess the TSR and PD-L1 clinical value in hepatocellular carcinoma (HCC) patients. METHODS Ninety-five patients who were diagnosed with HCC were included in our study. TSR was estimated on HCC specimen hematoxylin-eosin staining (HE) sections, and the optimal TSR cut-off value was determined by receiver operating characteristic (ROC) curves. The correlation between the TSR and clinicopathologic features was also calculated. Immunohistochemistry (IHC) staining was also carried out to analyze the PD-L1 expression level in HCCs. RESULTS The optimal TSR cut-off value was 0.525. The median OS of the stroma-high and stroma-low groups was 27 and 36 months, respectively. The median RFS of the stroma-high and stroma-low groups was 14.5 and 27 months, respectively. In the Cox multivariate analysis, the TSR was an independent prognostic factor for HCC overall survival (OS) and recurrence-free survival (RFS) in patients who underwent liver resection. IHC staining revealed TSR-high HCC samples with high PD-L1-positive cell expression. CONCLUSIONS Our results suggest that the TSR can predict the prognosis of HCC patients who underwent liver resection. The TSR is related to PD-L1 expression and may be a therapeutic target that can dramatically improve HCC patients' clinical outcomes.
Collapse
Affiliation(s)
- Dong Wang
- Department of Liver Disease Center, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, Shandong, 260000, China
- Department of General Surgery, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha, Hunan, 410008, China
| | - Jia Luo
- Department of Hepatobiliary Surgery, Hunan Cancer Hospital, Changsha, Hunan, China
| | - YiMing Tao
- Department of General Surgery, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha, Hunan, 410008, China.
| |
Collapse
|
16
|
Zhu H, Lin Q, Gao X, Huang X. Identification of the hub genes associated with prostate cancer tumorigenesis. Front Oncol 2023; 13:1168772. [PMID: 37251946 PMCID: PMC10213256 DOI: 10.3389/fonc.2023.1168772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Prostate cancer (PCa) is one of the most common malignant tumors of the male urogenital system; however, the underlying mechanisms remain largely unclear. This study integrated two cohort profile datasets to elucidate the potential hub genes and mechanisms in PCa. Methods and Results Gene expression profiles GSE55945 and GSE6919 were filtered from the Gene Expression Omnibus (GEO) database to obtain 134 differentially expressed genes (DEGs) (14 upregulated and 120 downregulated) in PCa. Gene Ontology and pathway enrichment were performed using the Database for Annotation, Visualization, and Integrated Discovery, showing that these DEGs were mainly involved in biological functions such as cell adhesion, extracellular matrix, migration, focal adhesion, and vascular smooth muscle contraction. The STRING database and Cytoscape tools were used to analyze protein-protein interactions and identify 15 hub candidate genes. Violin plot, boxplot, and prognostic curve analyses were performed using Gene Expression Profiling Interactive Analysis, which identified seven hub genes, including upregulated expressed SPP1 and downregulated expressed MYLK, MYL9, MYH11, CALD1, ACTA2, and CNN1 in PCa compared with normal tissue. Correlation analysis was performed using the OmicStudio tools, which showed that these hub genes were moderately to strongly correlated with each other. Finally, quantitative reverse transcription PCR and western blotting were performed to validate the hub genes, showing that the abnormal expression of the seven hub genes in PCa was consistent with the analysis results of the GEO database. Discussion Taken together, MYLK, MYL9, MYH11, CALD1, ACTA2, SPP1, and CNN1 are hub genes significantly associated with PCa occurrence. These genes are abnormally expressed, leading to the formation, proliferation, invasion, and migration of PCa cells and promoting tumor neovascularization. These genes may serve as potential biomarkers and therapeutic targets in patients with PCa.
Collapse
|
17
|
Wieder R. Fibroblasts as Turned Agents in Cancer Progression. Cancers (Basel) 2023; 15:2014. [PMID: 37046676 PMCID: PMC10093070 DOI: 10.3390/cancers15072014] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Differentiated epithelial cells reside in the homeostatic microenvironment of the native organ stroma. The stroma supports their normal function, their G0 differentiated state, and their expansion/contraction through the various stages of the life cycle and physiologic functions of the host. When malignant transformation begins, the microenvironment tries to suppress and eliminate the transformed cells, while cancer cells, in turn, try to resist these suppressive efforts. The tumor microenvironment encompasses a large variety of cell types recruited by the tumor to perform different functions, among which fibroblasts are the most abundant. The dynamics of the mutual relationship change as the sides undertake an epic battle for control of the other. In the process, the cancer "wounds" the microenvironment through a variety of mechanisms and attracts distant mesenchymal stem cells to change their function from one attempting to suppress the cancer, to one that supports its growth, survival, and metastasis. Analogous reciprocal interactions occur as well between disseminated cancer cells and the metastatic microenvironment, where the microenvironment attempts to eliminate cancer cells or suppress their proliferation. However, the altered microenvironmental cells acquire novel characteristics that support malignant progression. Investigations have attempted to use these traits as targets of novel therapeutic approaches.
Collapse
Affiliation(s)
- Robert Wieder
- Rutgers New Jersey Medical School and the Cancer Institute of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
18
|
Targeting Tumor Microenvironment Akt Signaling Represents a Potential Therapeutic Strategy for Aggressive Thyroid Cancer. Int J Mol Sci 2023; 24:ijms24065471. [PMID: 36982542 PMCID: PMC10049397 DOI: 10.3390/ijms24065471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Effects of the tumor microenvironment (TME) stromal cells on progression in thyroid cancer are largely unexplored. Elucidating the effects and underlying mechanisms may facilitate the development of targeting therapy for aggressive cases of this disease. In this study, we investigated the impact of TME stromal cells on cancer stem-like cells (CSCs) in patient-relevant contexts where applying in vitro assays and xenograft models uncovered contributions of TME stromal cells to thyroid cancer progression. We found that TME stromal cells can enhance CSC self-renewal and invasiveness mainly via the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway. The disruption of Akt signaling could diminish the impact of TME stromal cells on CSC aggressiveness in vitro and reduce CSC tumorigenesis and metastasis in xenografts. Notably, disrupting Akt signaling did not cause detectable alterations in tumor histology and gene expression of major stromal components while it produced therapeutic benefits. In addition, using a clinical cohort, we discovered that papillary thyroid carcinomas with lymph node metastasis are more likely to have elevated Akt signaling compared with the ones without metastasis, suggesting the relevance of Akt-targeting. Overall, our results identify PI3K/Akt pathway-engaged contributions of TME stromal cells to thyroid tumor disease progression, illuminating TME Akt signaling as a therapeutic target in aggressive thyroid cancer.
Collapse
|
19
|
Ferrari L, Monti P, Favero C, Carugno M, Tarantini L, Maggioni C, Bonzini M, Pesatori AC, Bollati V. Association between night shift work and methylation of a subset of immune-related genes. Front Public Health 2023; 10:1083826. [PMID: 36711387 PMCID: PMC9877629 DOI: 10.3389/fpubh.2022.1083826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Night shift (NS) work has been associated with an increased risk of different conditions characterized by altered inflammatory and immune responses, such as cardio-metabolic and infectious diseases, cancer, and obesity. Epigenetic modifications, such as DNA methylation, might mirror alterations in biological processes that are influenced by NS work. Methods The present study was conducted on 94 healthy female workers with different working schedules and aimed at identifying whether NS was associated with plasmatic concentrations of the inflammatory proteins NLRP3 and TNF-alpha, as well as with DNA methylation levels of ten human endogenous retroviral (HERV) sequences, and nine genes selected for their role in immune and inflammatory processes. We also explored the possible role of the body mass index (BMI) as an additional susceptibility factor that might influence the effects of NS work on the tested epigenetic modifications. Results and discussion We observed a positive association between NS and NLRP3 levels (p-value 0.0379). Moreover, NS workers retained different methylation levels for ERVFRD-1 (p-value = 0.0274), HERV-L (p-value = 0.0377), and HERV-P (p-value = 0.0140) elements, and for BIRC2 (p-value = 0.0460), FLRT3 (p-value = 0.0422), MIG6 (p-value = 0.0085), and SIRT1 (p-value = 0.0497) genes. We also observed that the BMI modified the relationship between NS and the methylation of ERVE, HERV-L, and ERVW-1 elements. Overall, our results suggest that HERV methylation could pose as a promising biomolecular sensor to monitor not only the effect of NS work but also the cumulative effect of multiple stressors.
Collapse
Affiliation(s)
- Luca Ferrari
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy,Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy,*Correspondence: Luca Ferrari ✉
| | - Paola Monti
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
| | - Chiara Favero
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
| | - Michele Carugno
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy,Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Letizia Tarantini
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
| | - Cristina Maggioni
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
| | - Matteo Bonzini
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy,Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Angela Cecilia Pesatori
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy,Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy,Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|