1
|
Jiang H, Ye J. The Warburg effect: The hacked mitochondrial-nuclear communication in cancer. Semin Cancer Biol 2025; 112:93-111. [PMID: 40147702 DOI: 10.1016/j.semcancer.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 02/23/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Mitochondrial-nuclear communication is vital for maintaining cellular homeostasis. This communication begins with mitochondria sensing environmental cues and transmitting signals to the nucleus through the retrograde cascade, involving metabolic signals such as substrates for epigenetic modifications, ATP and AMP levels, calcium flux, etc. These signals inform the nucleus about the cell's metabolic state, remodel epigenome and regulate gene expression, and modulate mitochondrial function and dynamics through the anterograde feedback cascade to control cell fate and physiology. Disruption of this communication can lead to cellular dysfunction and disease progression, particularly in cancer. The Warburg effect is the metabolic hallmark of cancer, characterized by disruption of mitochondrial respiration and increased lactate generation from glycolysis. This metabolic reprogramming rewires retrograde signaling, leading to epigenetic changes and dedifferentiation, further reprogramming mitochondrial function and promoting carcinogenesis. Understanding these processes and their link to tumorigenesis is crucial for uncovering tumorigenesis mechanisms. Therapeutic strategies targeting these disrupted pathways, including metabolic and epigenetic components, provide promising avenues for cancer treatment.
Collapse
Affiliation(s)
- Haowen Jiang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Garcia GS, Othonicar MF, Campos ATP, Kilbourn EA, Bicego KC, Lerchner J, Tennessen JM, Oliveira MT. The alternative oxidase reconfigures the larval mitochondrial electron transport system to accelerate growth and development in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.20.639223. [PMID: 40027816 PMCID: PMC11870600 DOI: 10.1101/2025.02.20.639223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The alternative oxidase (AOX) is naturally present in the mitochondrial electron transfer system (ETS) of many organisms but absent in vertebrates and most insects. AOX oxidizes coenzyme Q and reduces O 2 in H 2 O, partially replacing the ETS cytochrome c segment and alleviating the oxidative stress caused by ETS overload. As successfully demonstrated in animal models, AOX shows potential in mitigating mitochondrial diseases. However, its non-proton-pumping nature may uncouple mitochondria, leading to excessive heat generation and interference with normal metabolism and physiology. Here we show that AOX from the tunicate Ciona intestinalis accelerates development of Drosophila melanogaster , elevating larval biomass accumulation (primarily due to increased fat), mobility and food intake, without increasing body heat production. AOX intensifies Leak respiration and lowers oxidative phosphorylation efficiency through functional interactions with the mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH). This is associated with increased complex I (CI)-driven respiration and supercomplex formation, higher cellular NAD+/NADH ratios, and an enhanced flux through the central carbon metabolism. Chemical uncouplers and rotenone confirm the roles of mitochondrial uncoupling and CI in the development of AOX-expressing larvae. Thus, AOX appears to be promoting increased growth by reinforcing the larval proliferative metabolic program via an intricate mechanism that reconfigures the larval ETS.
Collapse
|
3
|
Som R, Fink BD, Rauckhorst AJ, Taylor EB, Sivitz WI. Mitochondrial glutamic-oxaloacetic transaminase (GOT2) in the growth of C2C12 myoblasts. J Bioenerg Biomembr 2025:10.1007/s10863-025-10053-2. [PMID: 39954225 DOI: 10.1007/s10863-025-10053-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/28/2025] [Indexed: 02/17/2025]
Abstract
Glutamine is well recognized as critical to the growth of most cell types. Within mitochondria glutamine is converted to glutamate by glutaminase. Oxaloacetate and glutamate then react to form alpha-ketoglutarate (α-KG) and aspartate catalyzed by glutamic-oxaloacetic transaminase (GOT2) or directly converted to α-KG by glutamate dehydrogenase (GDH). We investigated the role of GOT2 in mediating glutamate metabolism and cell growth in undifferentiated C2C12 cells. CRISPR mediated GOT2 knockout (KO) impaired cell growth, partially overcome by higher concentrations of glutamine. Mitochondrial respiration did not differ between KO and wildtype (WT) cells. Metabolite profiling showed that GOT2KO decreased aspartate by about 50% in KO versus WT cells. In contrast, α-KG increased. Metabolites reflecting the pentose phosphate pathway were significantly increased in KO cells. Metabolic pathway analyses revealed alteration of the TCA cycle, the pentose phosphate pathway, and amino acid metabolism. Glutamine 13C-tracing revealed decreased generation of aspartate, increased ribulose phosphate and evidence for reductive carboxylation of α-KG to isocitrate in KO cells. GDH expression was detected in C2C12 cells but did not differ between WT and GOT2KO mitochondria. GDH is not or barely expressed in adult muscle, however, we observed clear expression in pre-weanling mice. Cytosolic glutamic-oxaloacetic transaminase, GOT1, expression did not differ between GOT2KO and WT cells. In summary, GOT2 is necessary for glutamate flux and generation of downstream metabolites needed for the growth of C2C12 myoblasts. Although respiration did not differ, lack of aspartate and other compounds needed for cell proliferation may have been major factors impairing growth.
Collapse
Affiliation(s)
- Ritu Som
- Department of Internal Medicine/Endocrinology and Metabolism, University of Iowa and the Iowa City Veterans Affairs Medical Center, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Brian D Fink
- Department of Internal Medicine/Endocrinology and Metabolism, University of Iowa and the Iowa City Veterans Affairs Medical Center, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Adam J Rauckhorst
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, 52242, USA
| | - Eric B Taylor
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, 52242, USA
| | - William I Sivitz
- Department of Internal Medicine/Endocrinology and Metabolism, University of Iowa and the Iowa City Veterans Affairs Medical Center, 200 Hawkins Drive, Iowa City, IA, 52242, USA.
| |
Collapse
|
4
|
Ye J, Jiang H, Tiche S, He C, Liu J, Bian F, Jedoui M, Forgo B, Islam MT, Zhao M, Emengo P, He B, Li Y, Li A, Truong A, Ho J, Simmermaker C, Yang Y, Zhou MN, Hu Z, Svensson K, Cuthbertson D, Hazard F, Xing L, Shimada H, Chiu B. Restoring Mitochondrial Quantity and Quality to Reverse Warburg Effect and Drive Tumor Differentiation. RESEARCH SQUARE 2024:rs.3.rs-5494402. [PMID: 39711563 PMCID: PMC11661309 DOI: 10.21203/rs.3.rs-5494402/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Reduced mitochondrial quality and quantity in tumors is associated with dedifferentiation and increased malignancy. However, it remains unclear how to restore mitochondrial quantity and quality in tumors, and whether mitochondrial restoration can drive tumor differentiation. Our study shows that restoring mitochondrial function using retinoic acid (RA) to boost mitochondrial biogenesis and a mitochondrial uncoupler to enhance respiration synergistically drives neuroblastoma differentiation and inhibits proliferation. U-13C-glucose/glutamine isotope tracing revealed a metabolic shift from the pentose phosphate pathway to oxidative phosphorylation, accelerating the TCA cycle and switching substrate preference from glutamine to glucose. These effects were reversed by ETC inhibitors or in ρ0 cells lacking mtDNA, emphasizing the necessity of mitochondrial function for differentiation. Dietary RA and uncoupler treatment promoted tumor differentiation in an orthotopic neuroblastoma xenograft model, evidenced by neuropil production and Schwann cell recruitment. Single-cell RNA sequencing analysis of the orthotopic xenografts revealed that this strategy effectively eliminated the stem cell population, promoted differentiation, and increased mitochondrial gene signatures along the differentiation trajectory, which could potentially significantly improve patient outcomes. Collectively, our findings establish a mitochondria-centric therapeutic strategy for inducing tumor differentiation, suggesting that maintaining/driving differentiation in tumor requires not only ATP production but also continuous ATP consumption and sustained ETC activity.
Collapse
|
5
|
Gan Z, van der Stelt I, Li W, Hu L, Song J, Grefte S, van de Westerlo E, Zhang D, van Schothorst EM, Claahsen-van der Grinten HL, Teerds KJ, Adjobo-Hermans MJW, Keijer J, Koopman WJH. Mitochondrial Nicotinamide Nucleotide Transhydrogenase: Role in Energy Metabolism, Redox Homeostasis, and Cancer. Antioxid Redox Signal 2024; 41:927-956. [PMID: 39585234 DOI: 10.1089/ars.2024.0694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Significance: Dimeric nicotinamide nucleotide transhydrogenase (NNT) is embedded in the mitochondrial inner membrane and couples the conversion of NADP+/NADH into NADPH/NAD+ to mitochondrial matrix proton influx. NNT was implied in various cancers, but its physiological role and regulation still remain incompletely understood. Recent Advances: NNT function was analyzed by studying: (1) NNT gene mutations in human (adrenal) glucocorticoid deficiency 4 (GCCD4), (2) Nnt gene mutation in C57BL/6J mice, and (3) the effect of NNT knockdown/overexpression in (cancer) cells. In these three models, altered NNT function induced both common and differential aberrations. Critical Issues: Information on NNT protein expression in GCCD4 patients is still scarce. Moreover, NNT expression levels are tissue-specific in humans and mice and the functional consequences of NNT deficiency strongly depend on experimental conditions. In addition, data from intact cells and isolated mitochondria are often unsuited for direct comparison. This prevents a proper understanding of NNT-linked (patho)physiology in GCCD4 patients, C57BL/6J mice, and cancer (cell) models, which complicates translational comparison. Future Directions: Development of mice with conditional NNT deletion, cell-reprogramming-based adrenal (organoid) models harboring specific NNT mutations, and/or NNT-specific chemical inhibitors/activators would be useful. Moreover, live-cell analysis of NNT substrate levels and mitochondrial/cellular functioning with fluorescent reporter molecules might provide novel insights into the conditions under which NNT is active and how this activity links to other metabolic and signaling pathways. This would also allow a better dissection of local signaling and/or compartment-specific (i.e., mitochondrial matrix, cytosol, nucleus) effects of NNT (dys)function in a cellular context. Antioxid. Redox Signal. 41, 927-956.
Collapse
Affiliation(s)
- Zhuohui Gan
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Inge van der Stelt
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Weiwei Li
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Liangyu Hu
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Jingyi Song
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Sander Grefte
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Els van de Westerlo
- Department of Medical BioSciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Deli Zhang
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | | | | | - Katja J Teerds
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Merel J W Adjobo-Hermans
- Department of Medical BioSciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Werner J H Koopman
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, The Netherlands
- Department of Pediatrics, Amalia Children's Hospital, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Jiang H, Jedoui M, Ye J. The Warburg effect drives dedifferentiation through epigenetic reprogramming. Cancer Biol Med 2024; 20:j.issn.2095-3941.2023.0467. [PMID: 38318838 PMCID: PMC10845936 DOI: 10.20892/j.issn.2095-3941.2023.0467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/20/2023] [Indexed: 02/07/2024] Open
Affiliation(s)
- Haowen Jiang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mohamed Jedoui
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
7
|
He B, Stoffel L, He CJ, Cho K, Li AM, Jiang H, Flowers BM, Nguyen KT, Wang KW, Zhao AY, Zhou MN, Ferreira S, Attardi LD, Ye J. Epigenetic priming targets tumor heterogeneity to shift transcriptomic phenotype of pancreatic ductal adenocarcinoma towards a Vitamin D susceptible state. Cell Death Dis 2024; 15:89. [PMID: 38272889 PMCID: PMC10810848 DOI: 10.1038/s41419-024-06460-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024]
Abstract
As a highly heterogeneous tumor, pancreatic ductal adenocarcinoma (PDAC) exhibits non-uniform responses to therapies across subtypes. Overcoming therapeutic resistance stemming from this heterogeneity remains a significant challenge. Here, we report that Vitamin D-resistant PDAC cells hijacked Vitamin D signaling to promote tumor progression, whereas epigenetic priming with glyceryl triacetate (GTA) and 5-Aza-2'-deoxycytidine (5-Aza) overcame Vitamin D resistance and shifted the transcriptomic phenotype of PDAC toward a Vitamin D-susceptible state. Increasing overall H3K27 acetylation with GTA and reducing overall DNA methylation with 5-Aza not only elevated the Vitamin D receptor (VDR) expression but also reprogrammed the Vitamin D-responsive genes. Consequently, Vitamin D inhibited cell viability and migration in the epigenetically primed PDAC cells by activating genes involved in apoptosis as well as genes involved in negative regulation of cell proliferation and migration, while the opposite effect of Vitamin D was observed in unprimed cells. Studies in genetically engineered mouse PDAC cells further validated the effects of epigenetic priming for enhancing the anti-tumor activity of Vitamin D. Using gain- and loss-of-function experiments, we further demonstrated that VDR expression was necessary but not sufficient for activating the favorable transcriptomic phenotype in respond to Vitamin D treatment in PDAC, highlighting that both the VDR and Vitamin D-responsive genes were prerequisites for Vitamin D response. These data reveal a previously undefined mechanism in which epigenetic state orchestrates the expression of both VDR and Vitamin D-responsive genes and determines the therapeutic response to Vitamin D in PDAC.
Collapse
Affiliation(s)
- Bo He
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lauren Stoffel
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Clifford Jiajun He
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kumsun Cho
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Albert M Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Haowen Jiang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Brittany M Flowers
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kha The Nguyen
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kelly Wen Wang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Audrey Yixin Zhao
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Meng-Ning Zhou
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sofia Ferreira
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Laura D Attardi
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|