1
|
Sarfraz M, Nasim MJ, Gruhlke MCH, Handzlik J, Jacob C. To Cut the Mustard: Antimicrobial Activity of Selenocyanates on the Plate and in the Gas Phase. Antibiotics (Basel) 2023; 12:antibiotics12020290. [PMID: 36830201 PMCID: PMC9952309 DOI: 10.3390/antibiotics12020290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Organic selenocyanates (RSeCN) are among the most reactive and biologically active Se species, often exhibiting a pronounced cytotoxic activity against mammalian cells and microorganisms. Various aromatic selenocyanates have been synthesized and, similar to some of the most Reactive Sulfur Species (RSS), such as allicin, found to be active against a range of bacteria, including Escherichia coli, Pseudomonas syringae and Micrococcus luteus, and fungi, including Verticillium dahlia, Verticillium longisporum, Alternaria brassicicola, and Botrytis cinerea, even via the gas phase. The highest antimicrobial activity has been observed for benzyl selenocyanate, which inhibited the growth of all bacteria considerably, even at the lowest tested concentration of 50 µM. Notably, neither the analogues thiocyanate (BTC) nor isothiocyanate (BITC) show any of these activities, rendering this selenium motif rather special in activity and mode of action. Eventually, these findings advocate a range of potential applications of organic selenocyanates in medicine and agriculture.
Collapse
Affiliation(s)
- Muhammad Sarfraz
- Department of Plant Physiology, RWTH Aachen University, Worringer Weg 1, 52056 Aachen, Germany
- Division of Bioorganic Chemistry, Saarland University, Campus B2 1, 66123 Saarbruecken, Germany
| | - Muhammad Jawad Nasim
- Division of Bioorganic Chemistry, Saarland University, Campus B2 1, 66123 Saarbruecken, Germany
- Correspondence: (M.J.N.); (C.J.); Tel.: +49-681-302-57335 (M.J.N.); +49-681-302-3129 (C.J.)
| | - Martin C. H. Gruhlke
- Department of Plant Physiology, RWTH Aachen University, Worringer Weg 1, 52056 Aachen, Germany
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Cracow, Poland
| | - Claus Jacob
- Division of Bioorganic Chemistry, Saarland University, Campus B2 1, 66123 Saarbruecken, Germany
- Correspondence: (M.J.N.); (C.J.); Tel.: +49-681-302-57335 (M.J.N.); +49-681-302-3129 (C.J.)
| |
Collapse
|
2
|
Rai V, Sorabad GS, Maddani MR. Efficient and Direct Selenocyanation of Ketene Dithioacetals Using Malononitrile‐SeO
2
Under Transition‐Metal‐Free Conditions. ChemistrySelect 2021. [DOI: 10.1002/slct.202101208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Vishakha Rai
- Department of Chemistry Mangalore University, Mangalgangothri- 574199 Karnataka India
| | - Ganesh S. Sorabad
- Department of Chemistry Mangalore University, Mangalgangothri- 574199 Karnataka India
| | | |
Collapse
|
3
|
Chuai H, Zhang SQ, Bai H, Li J, Wang Y, Sun J, Wen E, Zhang J, Xin M. Small molecule selenium-containing compounds: Recent development and therapeutic applications. Eur J Med Chem 2021; 223:113621. [PMID: 34217061 DOI: 10.1016/j.ejmech.2021.113621] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023]
Abstract
Selenium (Se) is an essential micronutrient of organism and has important function. It participates in the functions of selenoprotein in several manners. In recent years, Se has attracted much attention because of its therapeutic potential against several diseases. Many natural and synthetic organic Se-containing compounds were studied and explored for the treatment of cancer and other diseases. Studies have showed that incorporation of Se atom into small molecules significantly enhanced their bioactivities. In this paper, according to different applications and structural characteristics, the research progress and therapeutic application of Se-containing compounds are reviewed, and more than 110 Se-containing compounds were selected as representatives which showed potent activities such as anticancer, antioxidant, antifibrolytic, antiparasitic, antibacterial, antiviral, antifungal and central nervous system related effects. This review is expected to provide a basis for further study of new promising Se-containing compounds.
Collapse
Affiliation(s)
- Hongyan Chuai
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Huanrong Bai
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Jiyu Li
- Henan Xibaikang Health Industry Co., Ltd, Jiyuan, Henan, 459006, PR China
| | - Yang Wang
- Henan Xibaikang Health Industry Co., Ltd, Jiyuan, Henan, 459006, PR China
| | - Jiajia Sun
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Ergang Wen
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Jiye Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Minhang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
4
|
Michalczyk M, Malik M, Zierkiewicz W, Scheiner S. Experimental and Theoretical Studies of Dimers Stabilized by Two Chalcogen Bonds in the Presence of a N···N Pnicogen Bond. J Phys Chem A 2021; 125:657-668. [PMID: 33423496 DOI: 10.1021/acs.jpca.0c10814] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The structure of the 5,6-dichloro-2,1,3-benzoselenadiazole homodimer, obtained by adding the ligand, 4,5-dichloro-o-phenylenediamine, to the methanolic solution of SeCl4, was determined by X-ray crystallography, augmented by Fourier transform infrared, Raman, and NMR spectroscopy. The binding motif involves a pair of Se···N chalcogen bonds, with a supplementary N···N pnicogen bond. Quantum calculations provide assessments of the strengths of the individual interactions as well as their contributing factors. All together, these three bonds compose a total interaction energy between 5.4 and 16.8 kcal/mol, with the larger chalcogen atom associated with the strongest interactions. Replacement of the Se atoms by S and Te analogues allows analysis of the dependence of these forces on the nature of the chalcogen atom. Calculations also measure the importance to the binding of the presence of a second N atom on each diazole unit as well as the substituted phenyl ring to which it is fused.
Collapse
Affiliation(s)
- Mariusz Michalczyk
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Magdalena Malik
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Wiktor Zierkiewicz
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University Logan, Logan, Utah 84322-0300, United States
| |
Collapse
|
5
|
Zhang J, Wang H, Chen Y, Xie H, Ding C, Tan J, Xu K. Electrochemical synthesis of selenocyanated imidazo[1,5-a]quinolines under metal catalyst- and chemical oxidant-free conditions. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.11.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Yang Z, He J, Wei Y, Li W, Liu P, Zhao J, Wei Y. NCS-promoted thiocyanation and selenocyanation of pyrrolo[1,2-a]quinoxalines. Org Biomol Chem 2020; 18:9088-9094. [DOI: 10.1039/d0ob01818j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An efficient NCS-promoted thiocyanation of pyrrolo[1,2-a]quinoxalines with NH4SCN or KSCN was developed. Moreover, in the presence of KSeCN, the selenocyanation of pyrrolo[1,2-a]quinoxalines was also achieved.
Collapse
Affiliation(s)
- Zhen Yang
- School of Chemistry and Chemical Engineering
- the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi City
- China
| | - Jing He
- School of Chemistry and Chemical Engineering
- the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi City
- China
| | - Yueting Wei
- School of Chemistry and Chemical Engineering
- the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi City
- China
| | - Weiwei Li
- School of Chemistry and Chemical Engineering
- the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi City
- China
| | - Ping Liu
- School of Chemistry and Chemical Engineering
- the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi City
- China
| | - Jixing Zhao
- School of Chemistry and Chemical Engineering
- the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi City
- China
| | - Yu Wei
- School of Chemistry and Chemical Engineering
- the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi City
- China
| |
Collapse
|
7
|
Sorabad GS, Maddani MR. Facile, regioselective oxidative selenocyanation of N-aryl enaminones under transition-metal-free conditions. NEW J CHEM 2020. [DOI: 10.1039/c9nj05845a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The present selenocyanation is applied for the synthesis of selenocyanated chromones, indoles and anilines in good to excellent yields.
Collapse
Affiliation(s)
- Ganesh Shivayogappa Sorabad
- Department of Post-Graduate Studies and Research in Chemistry Mangalore University
- Mangalgangothri-574199
- India
| | | |
Collapse
|
8
|
Collery P. Strategies for the development of selenium-based anticancer drugs. J Trace Elem Med Biol 2018; 50:498-507. [PMID: 29548612 DOI: 10.1016/j.jtemb.2018.02.024] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 02/20/2018] [Accepted: 02/26/2018] [Indexed: 02/07/2023]
Abstract
Many experimental models demonstrated that inorganic and organic selenium (Se) compounds may have an anticancer activity. However, large clinical studies failed to demonstrate that Se supplementations may prevent the outcome of cancers. Moreover, there are few randomized trials in cancer patients and there is not yet any Se compound recognized as anticancer drug. There is still a need to develop new Se compounds with new strategies. For that, it may be necessary to consider that Se compounds may have a dual role, either as anti-oxidant or as pro-oxidant. Experimental studies demonstrated that it is as pro-oxidant that Se compounds have anticancer effects, even though cancer cells have a pro-oxidant status. The oxidative status differs according to the type of cancer, the stage of the disease and to other parameters. We propose to adapt the doses of the Se compounds to markers of the oxidative stress, but also to markers of angiogenesis, which is strongly related with the oxidative status. A dual role of Se on angiogenesis has also been noted, either as pro-angiogenesis or as anti-angiogenesis. The objective for the development of new Se compounds, having a great selectivity on cancer cells, could be to try to normalize these oxidative and angiogenic markers in cancer patients, with an individual adaptation of doses.
Collapse
Affiliation(s)
- Philippe Collery
- Society for the Coordination of Therapeutic Researches, 20220 Algajola, France.
| |
Collapse
|
9
|
Gandin V, Khalkar P, Braude J, Fernandes AP. Organic selenium compounds as potential chemotherapeutic agents for improved cancer treatment. Free Radic Biol Med 2018; 127:80-97. [PMID: 29746900 DOI: 10.1016/j.freeradbiomed.2018.05.001] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/12/2018] [Accepted: 05/01/2018] [Indexed: 12/16/2022]
Abstract
Selenium(Se)-containing compounds have attracted a growing interest as anticancer agents over recent decades, with mounting reports demonstrating their high efficacy and selectivity against cancer cells. Typically, Se compounds exert their cytotoxic effects by acting as pro-oxidants that alter cellular redox homeostasis. However, the precise intracellular targets, signalling pathways affected and mechanisms of cell death engaged following treatment vary with the chemical properties of the selenocompound and its metabolites, as well as the cancer model that is used. Naturally occurring organic Se compounds, besides encompassing a significant antitumor activity with an apparent ability to prevent metastasis, also seem to have fewer side effects and less systemic effects as reported for many inorganic Se compounds. On this basis, many novel organoselenium compounds have also been synthesized and examined as potential chemotherapeutic agents. This review aims to summarize the most well studied natural and synthetic organoselenium compounds and provide the most recent developments in our understanding of the molecular mechanisms that underlie their potential anticancer effects.
Collapse
Affiliation(s)
- Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Prajakta Khalkar
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Jeremy Braude
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Aristi P Fernandes
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
10
|
|
11
|
Dong T, Nie J, Zhang CP. A convenient, transition metal-free synthesis of difluoromethyl selenoethers from organic selenocyanates and TMSCF2H. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Redon S, Obah Kosso AR, Broggi J, Vanelle P. Easy and efficient selenocyanation of imidazoheterocycles using triselenodicyanide. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Chalcogen containing heterocyclic scaffolds: New hybrids with antitumoral activity. Eur J Med Chem 2016; 123:407-418. [PMID: 27487570 DOI: 10.1016/j.ejmech.2016.07.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/21/2016] [Accepted: 07/19/2016] [Indexed: 12/14/2022]
Abstract
In this work, 27 novel hybrid derivatives containing diverse substituents with chalcogen atoms (selenium or sulfur) and several active heterocyclic scaffolds have been synthesized. Compounds were tested against two human cancer cells lines (MCF7 and PC-3) and a normal human mammary epithelial cell line (184B5) in order to determine their activity and selectivity against malignant cells. Ten compounds showed GI50 values below 10 μM in at least one of the cancer cell lines and six of them exhibited a selectivity index higher than 9. In general, selenium-containing compounds were more active than their corresponding sulfur analogs but we found some thiocyanate derivatives with comparable or higher activity and selectivity. Among the different substituents, the seleno- and thio-cyanate groups showed the most promising results. On the basis of their potent activity and high selectivity index, compounds 7e and 8f (containing a thiocyanate and a selenocyanate group, respectively) were selected for further biological evaluation. Both the compounds induced caspase-dependent cell death and cell cycle arrest in G2/M phase. In addition, these compounds do not violate any of the Lipinski's Rule of Five and thus possess good potential to become drugs, compound 7e being particularly promising.
Collapse
|
14
|
Muniraj N, Dhineshkumar J, Prabhu KR. N-Iodosuccinimide Catalyzed Oxidative Selenocyanation and Thiocyanation of Electron Rich Arenes. ChemistrySelect 2016. [DOI: 10.1002/slct.201600292] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Nachimuthu Muniraj
- Department of Organic Chemistry; Indian Institute of Science; Bangalore 560 012 Karnataka India
| | - Jayaraman Dhineshkumar
- Department of Organic Chemistry; Indian Institute of Science; Bangalore 560 012 Karnataka India
| | | |
Collapse
|
15
|
Collery P, Mohsen A, Kermagoret A, Corre S, Bastian G, Tomas A, Wei M, Santoni F, Guerra N, Desmaële D, d’Angelo J. Antitumor activity of a rhenium (I)-diselenoether complex in experimental models of human breast cancer. Invest New Drugs 2015; 33:848-60. [PMID: 26108551 PMCID: PMC4491361 DOI: 10.1007/s10637-015-0265-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/17/2015] [Indexed: 12/24/2022]
Abstract
Rhenium (I)-diselenother (Re-diselenoether) is a water soluble metal-based compound, combining one atom of rhenium and two atoms of selenium. This compound has been reported to exhibit marked activities against several solid tumor cell lines. We now disclose an improved synthesis of this complex. The Re-diselenoether showed a potent inhibitory effect on MDA-MB231 cell division in vitro, which lasted when the complex was no longer present in the culture. Re-diselenoether induced a remarkable reduction of the volume of the primitive breast tumors and of the pulmonary metastases without clinical signs of toxicity, in mice-bearing a MDA-MB231 Luc+ tumor, orthotopically transplanted, after a daily oral administration at the dose of 10 mg/kg/d. Interestingly, an antagonism was observed when cisplatin was administered as a single i.p. injection 1 week after the end of the Re-diselenoether administration. In an effort to gain insight of the mechanisms of action of Re-diselenoether complex, interaction with 9-methylguanine as a nucleic acid base model was studied. We have shown that Re-diselenoether gave both mono- and bis-guanine Re adducts, the species assumed to be responsible for the DNA intrastrand lesions.
Collapse
Affiliation(s)
- Philippe Collery
- />Société de Coordination de Recherches Thérapeutiques, Algajola, France
| | - Ahmed Mohsen
- />Faculté de Pharmacie, Université Paris-Sud, Institut Galien, UMR CNRS 8612, Chatenay-Malabry, France
| | - Anthony Kermagoret
- />Faculté de Pharmacie, Université Paris-Sud, UMR CNRS 8076 BIOCIS, Chatenay-Malabry, France
| | - Samantha Corre
- />Department of Life Science, Imperial College of London, London, UK
| | - Gérard Bastian
- />Département de Pharmacologie, Centre Hospitalier Universitaire Pitié-Salpêtrière, Paris, France
| | - Alain Tomas
- />Laboratoire de Cristallographie et RMN, Faculté de Pharmacie, UMR CNRS 8015, Université Paris Descartes, Paris, France
| | - Ming Wei
- />Laboratoire Cellvax, Ecole Vétérinaire Nationale d’Alfort, Maisons Alfort, France
| | - François Santoni
- />Laboratoire de l’Office d’Equipement Hydraulique de Corse, Bastia, France
| | - Nadia Guerra
- />Department of Life Science, Imperial College of London, London, UK
| | - Didier Desmaële
- />Faculté de Pharmacie, Université Paris-Sud, Institut Galien, UMR CNRS 8612, Chatenay-Malabry, France
| | - Jean d’Angelo
- />Faculté de Pharmacie, Université Paris-Sud, UMR CNRS 8076 BIOCIS, Chatenay-Malabry, France
| |
Collapse
|
16
|
Fernandes AP, Gandin V. Selenium compounds as therapeutic agents in cancer. Biochim Biophys Acta Gen Subj 2014; 1850:1642-60. [PMID: 25459512 DOI: 10.1016/j.bbagen.2014.10.008] [Citation(s) in RCA: 283] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/06/2014] [Accepted: 10/08/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND With cancer cells encompassing consistently higher production of reactive oxygen species (ROS) and with an induced antioxidant defense to counteract the increased basal ROS production, tumors have a limited reserve capacity resulting in an increased vulnerability of some cancer cells to ROS. Based on this, oxidative stress has been recognized as a tumor-specific target for the rational design of new anticancer agents. Among redox modulating compounds, selenium compounds have gained substantial attention due to their promising chemotherapeutic potential. SCOPE OF REVIEW This review aims in summarizing and providing the recent developments of our understanding of the molecular mechanisms that underlie the potential anticancer effects of selenium compounds. MAJOR CONCLUSIONS It is well established that selenium at higher doses readily can turn into a prooxidant and thereby exert its potential anticancer properties. However, the biological activity of selenium compounds and the mechanism behind these effects are highly dependent on its speciation and the specific metabolic pathways of cells and tissues. Conversely, the chemical properties and the main molecular mechanisms of the most relevant inorganic and organic selenium compounds as well as selenium-based nanoparticles must be taken into account and are discussed herein. GENERAL SIGNIFICANCE Elucidating and deepening our mechanistic knowledge of selenium compounds will help in designing and optimizing compounds with more specific antitumor properties for possible future application of selenium compounds in the treatment of cancer. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Aristi P Fernandes
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
17
|
Sinha I, Allen JE, Pinto JT, Sinha R. Methylseleninic acid elevates REDD1 and inhibits prostate cancer cell growth despite AKT activation and mTOR dysregulation in hypoxia. Cancer Med 2014; 3:252-64. [PMID: 24515947 PMCID: PMC3987075 DOI: 10.1002/cam4.198] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 11/22/2013] [Accepted: 12/26/2013] [Indexed: 12/23/2022] Open
Abstract
Methylseleninic acid (MSeA) is a monomethylated selenium metabolite theoretically derived from subsequent β-lyase or transamination reactions of dietary Se-methylselenocysteine that has potent antitumor activity by inhibiting cell proliferation of several cancers. Our previous studies showed that MSeA promotes apoptosis in invasive prostate cancer cells in part by downregulating hypoxia-inducible factor HIF-1α. We have now extended these studies to evaluate the impact of MSeA on REDD1 (an mTOR inhibitor) in inducing cell death of invasive prostate cancer cells in hypoxia. In both PTEN+ and PTEN− prostate cancer cells we show that MSeA elevates REDD1 and phosphorylation of AKT along with p70S6K in hypoxia. Furthermore, REDD1 induction by MSeA is independent of AKT and the mTOR inhibition in prostate cancer cells causes partial resistance to MSeA-induced growth reduction in hypoxia. Our data suggest that MSeA induces REDD1 and inhibits prostate cancer cell growth in hypoxia despite activation of AKT and dysregulation of mTOR. MSeA elevates REDD1 and AKT to promote cell death in invasive prostate cancer cells in hypoxia.
Collapse
Affiliation(s)
- Indu Sinha
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Penn State Hershey Cancer Institute, Hershey, Pennsylvania
| | | | | | | |
Collapse
|
18
|
Roy SS, Chakraborty P, Ghosh P, Ghosh S, Biswas J, Bhattacharya S. Influence of novel naphthalimide-based organoselenium on genotoxicity induced by an alkylating agent: the role of reactive oxygen species and selenoenzymes. Redox Rep 2013; 17:157-66. [PMID: 22981493 DOI: 10.1179/1351000212y.0000000018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVE The protection conferred by a series of synthetic organoselenium compounds against genotoxicity and oxidative stress induced by a reference mutagen cyclophosphamide (CP) was assessed. METHOD Genotoxicity was induced in mice by CP treatment (25 mg/kg b.w.) for 10 consecutive days. Organoselenium compounds (3 mg/kg b.w.) were administered orally in a concomitant and pretreatment schedule. DNA damage in peripheral blood lymphocytes and frequency of chromosomal aberration in the bone marrow cells were measured. Liver tissues were collected for analysis of the activity of antioxidant and detoxifying enzymes, lipid peroxidation (LPO) level, glutathione content, and histopathology. RESULTS Exposure to CP not only led to a significant increase in the percent of chromosomal aberration and DNA damage, but also enhanced generation of hepatic reactive oxygen species (ROS) and LPO level. The organoselenium compounds demonstrated marked functional protection against CP-induced genotoxicity. DNA damage and chromosomal aberration along with ROS generation were attenuated in the organoselenium-treated mice compared with the CP-treated control mice. CP caused marked depression in the activities of the selenoenzymes (glutathione peroxidase (GPx) and thioredoxin reductase (TRxR)) and other detoxifying and antioxidant enzymes, while treatment with organoselenium compounds restored all these activities towards normal. DISCUSSION The protective effect of these compounds may be primarily associated with the improvement of the activity of antioxidant and detoxifying enzymes (including the selenoenzymes, GPx, and TRxR) that are known to protect the DNA and other cellular components from oxidative damage.
Collapse
Affiliation(s)
- Somnath Singha Roy
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | | | | | | | | | | |
Collapse
|
19
|
Seng HL, Tiekink ERT. Anti-cancer potential of selenium- and tellurium-containing species: opportunities abound! Appl Organomet Chem 2012. [DOI: 10.1002/aoc.2928] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hoi-Ling Seng
- Department of Chemistry; University of Malaya; 50603 Kuala Lumpur Malaysia
| | | |
Collapse
|
20
|
Sanmartín C, Plano D, Sharma AK, Palop JA. Selenium compounds, apoptosis and other types of cell death: an overview for cancer therapy. Int J Mol Sci 2012; 13:9649-9672. [PMID: 22949823 PMCID: PMC3431821 DOI: 10.3390/ijms13089649] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/23/2012] [Accepted: 07/24/2012] [Indexed: 02/07/2023] Open
Abstract
Selenium (Se) is an essential trace element involved in different physiological functions of the human body and plays a role in cancer prevention and treatment. Induction of apoptosis is considered an important cellular event that can account for the cancer preventive effects of Se. The mechanisms of Se-induced apoptosis are associated with the chemical forms of Se and their metabolism as well as the type of cancer studied. So, some selenocompounds, such as SeO2 involve the activation of caspase-3 while sodium selenite induces apoptosis in the absence of the activation of caspases. Modulation of mitochondrial functions has been reported to play a key role in the regulation of apoptosis and also to be one of the targets of Se compounds. Other mechanisms for apoptosis induction are the modulation of glutathione and reactive oxygen species levels, which may function as intracellular messengers to regulate signaling pathways, or the regulation of kinase, among others. Emerging evidence indicates the overlaps between the apoptosis and other types of cell death such as autophagy. In this review we report different processes of cell death induced by Se compounds in cancer treatment and prevention.
Collapse
Affiliation(s)
- Carmen Sanmartín
- Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea 1, Pamplona E-31008, Spain; E-Mails: (D.P.); (J.A.P.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-948-425-600; Fax: +34-948-425-649
| | - Daniel Plano
- Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea 1, Pamplona E-31008, Spain; E-Mails: (D.P.); (J.A.P.)
- Department of Pharmacology, Penn State Hershey Cancer Institute, Penn State Hershey College of Medicine, CH72, 500 University Drive, Hershey, PA 17033, USA; E-Mail:
| | - Arun K. Sharma
- Department of Pharmacology, Penn State Hershey Cancer Institute, Penn State Hershey College of Medicine, CH72, 500 University Drive, Hershey, PA 17033, USA; E-Mail:
| | - Juan Antonio Palop
- Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea 1, Pamplona E-31008, Spain; E-Mails: (D.P.); (J.A.P.)
| |
Collapse
|
21
|
Emmert SW, El-Bayoumy K, Das A, Sun YW, Amin S, Desai D, Aliaga C, Richie JP. Induction of lung glutathione and glutamylcysteine ligase by 1,4-phenylenebis(methylene)selenocyanate and its glutathione conjugate: role of nuclear factor-erythroid 2-related factor 2. Free Radic Biol Med 2012; 52:2064-71. [PMID: 22542796 PMCID: PMC3475320 DOI: 10.1016/j.freeradbiomed.2012.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 03/07/2012] [Accepted: 03/24/2012] [Indexed: 01/22/2023]
Abstract
The synthetic organoselenium agent 1,4-phenylenebis(methylene)selenocyanate (p-XSC) and its glutathione (GSH) conjugate (p-XSeSG) are potent chemopreventive agents in several preclinical models. p-XSC is also an effective inducer of GSH in mouse lung. Our objectives were to test the hypothesis that GSH induction by p-XSC occurs through upregulation of the rate-limiting GSH biosynthetic enzyme glutamylcysteine ligase (GCL), through activation of antioxidant response elements (AREs) in GCL genes via activation of nuclear factor-erythroid 2-related factor 2 (Nrf2). p-XSC feeding (10 ppm Se) increased GSH (230%) and upregulated the catalytic subunit of GCL (GCLc) (55%), extracellular-related kinase (220%), and nuclear Nrf2 (610%) in lung but not liver after 14 days in the rat (P<0.05). Similarly, p-XSeSG feeding (10 ppm) induced lung GCLc (88%) and GSH (200%) (P<0.05), whereas the naturally occurring selenomethionine had no effect. Both p-XSC and p-XSeSG activated a luciferase reporter in HepG2 ARE-reporter cells up to threefold for p-XSC and greater than or equal to fivefold for p-XSeSG. Luciferase activation by p-XSeSG was associated with enhanced levels of GSH, GCLc, and nuclear Nrf2, which were significantly reduced by co-incubation with short interfering RNA targeting Nrf2. The dependence of GCL induction on Nrf2 was confirmed in Nrf2-deficient mouse embryonic fibroblasts, in which p-XSeSG induced GCL subunits in wild-type but not in Nrf2-deficient cells (P<0.05). These results indicate that p-XSC may act through the Nrf2 pathway in vivo and that p-XSeSG is the putative metabolite responsible for such activation, thus offering p-XSeSG as a less toxic, yet highly efficacious, inducer of GSH.
Collapse
Affiliation(s)
- Sans W. Emmert
- Graduate Program in Molecular Medicine, Penn State Cancer Institute, Penn State University College of Medicine, Hershey PA 17033
| | - Karam El-Bayoumy
- Department of Biochemistry and Molecular Biology, Penn State Cancer Institute, Penn State University College of Medicine, Hershey PA 17033
| | - Arunangshu Das
- Department of Biochemistry and Molecular Biology, Penn State Cancer Institute, Penn State University College of Medicine, Hershey PA 17033
| | - Yuan-Wan Sun
- Department of Biochemistry and Molecular Biology, Penn State Cancer Institute, Penn State University College of Medicine, Hershey PA 17033
| | - Shantu Amin
- Department of Pharmacology, Penn State Cancer Institute, Penn State University College of Medicine, Hershey PA 17033
| | - Dhimant Desai
- Department of Pharmacology, Penn State Cancer Institute, Penn State University College of Medicine, Hershey PA 17033
| | - Cesar Aliaga
- Department of Biochemistry and Molecular Biology, Penn State Cancer Institute, Penn State University College of Medicine, Hershey PA 17033
| | - John P. Richie
- Department of Public Health Sciences, Penn State Cancer Institute, Penn State University College of Medicine, Hershey PA 17033
- Correspondence should be directed to: John P. Richie, Jr., Department of Public Health Sciences, Penn State University College of Medicine H069, 500 University Dr., P.O. Box 850, Hershey PA, 17033, Tel: 717-531-5381, Fax: 717-531-0480,
| |
Collapse
|
22
|
Facompre ND, Sinha I, El-Bayoumy K, Pinto JT, Sinha R. Remarkable inhibition of mTOR signaling by the combination of rapamycin and 1,4-phenylenebis(methylene)selenocyanate in human prostate cancer cells. Int J Cancer 2012; 131:2134-42. [PMID: 22307455 DOI: 10.1002/ijc.27468] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 01/16/2012] [Indexed: 01/01/2023]
Abstract
Preclinical studies and clinical analyses have implicated the mammalian target of rapamycin (mTOR) pathway in the progression of prostate cancer, suggesting mTOR as a potential target for new therapies. mTOR, a serine/threonine kinase, belongs to two distinct signaling complexes: mTORC1 and mTORC2. We previously showed that the synthetic organoselenium compound, p-XSC, effectively inhibits viability and critical signaling molecules (e.g., androgen receptor, Akt) in androgen responsive (AR) and androgen independent (AI) human prostate cancer cells. On the basis of its inhibition of Akt, we hypothesized that p-XSC modulates mTORC2, an upstream regulator of the kinase. We further hypothesized that combining p-XSC with rapamycin, an mTORC1 inhibitor, would be an effective combinatory strategy for the inhibition of prostate cancer. The effects of p-XSC and rapamycin, alone or in combination, on viability and mTOR signaling were examined in AR LNCaP prostate cancer cells and AI C4-2 and DU145 cells. Phosphorylation of downstream targets of mTORC1 and mTORC2 was analyzed by immunoblotting. The interaction of mTORC1- and mTORC2-specific proteins with mTOR was probed through immunoprecipitation and immunoblotting. p-XSC inhibited phosphorylation of mTORC2 downstream targets, Akt and PCKα, and decreased the levels of rictor, an mTORC2-specific protein, coimmunoprecipitated with mTOR in C4-2 cells. The combination of p-XSC and rapamycin more effectively inhibited viability and mTOR signaling in C4-2, LNCaP and DU145 cells than either agent individually.
Collapse
Affiliation(s)
- Nicole D Facompre
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Penn State Hershey Cancer Institute, Hershey, PA PA 17033, USA
| | | | | | | | | |
Collapse
|
23
|
Shiota M, Yokomizo A, Naito S. Increased androgen receptor transcription: a cause of castration-resistant prostate cancer and a possible therapeutic target. J Mol Endocrinol 2011; 47:R25-41. [PMID: 21504942 DOI: 10.1530/jme-11-0018] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Few effective therapies exist for the treatment of castration-resistant prostate cancer (CRPC). Recent evidence suggests that CRPC may be caused by augmented androgen/androgen receptor (AR) signaling, generally involving AR overexpression. Aberrant androgen/AR signaling associated with AR overexpression also plays a key role in prostate carcinogenesis. Although AR overexpression could be attributed to gene amplification, only 10-20% of CRPCs exhibit AR gene amplification, and aberrant AR expression in the remaining instances of CRPC is thought to be attributed to transcriptional, translational, and post-translational mechanisms. Overexpression of AR at the protein level, as well as the mRNA level, has been found in CRPC, suggesting a key role for transcriptional regulation of AR expression. Since the analysis of the AR promoter region in the 1990s, several transcription factors have been reported to regulate AR transcription. In this review, we discuss the molecules involved in the control of AR gene expression, with emphasis on its transcriptional control by transcription factors in prostate cancer. We also consider the therapeutic potential of targeting AR expression.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|
24
|
Toxicology and pharmacology of selenium: emphasis on synthetic organoselenium compounds. Arch Toxicol 2011; 85:1313-59. [DOI: 10.1007/s00204-011-0720-3] [Citation(s) in RCA: 330] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 05/18/2011] [Indexed: 02/07/2023]
|
25
|
Singha Roy S, Ghosh P, Hossain Sk U, Chakraborty P, Biswas J, Mandal S, Bhattacharjee A, Bhattacharya S. Naphthalimide based novel organoselenocyanates: Finding less toxic forms of selenium that would retain protective efficacy. Bioorg Med Chem Lett 2010; 20:6951-5. [DOI: 10.1016/j.bmcl.2010.09.127] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 09/14/2010] [Accepted: 09/27/2010] [Indexed: 11/24/2022]
|