1
|
Gadi V, Shetty SR. Potential of Anti-inflammatory Molecules in the Chemoprevention of Breast Cancer. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2022; 16:60-76. [PMID: 36043708 DOI: 10.2174/2772270816666220829090716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 01/20/2023]
Abstract
Breast cancer is a global issue, affecting greater than 1 million women per annum. Over the past two decades, there have been numerous clinical trials involving the use of various pharmacological substances as chemopreventive agents for breast cancer. Various pre-clinical as well as clinical studies have established numerous anti-inflammatory molecules, including nonsteroidal anti-inflammatory drugs (NSAIDs) and dietary phytochemicals as promising agents for chemoprevention of several cancers, including breast cancer. The overexpression of COX-2 has been detected in approximately 40% of human breast cancer cases and pre-invasive ductal carcinoma in-situ lesions, associated with aggressive elements of breast cancer such as large size of the tumour, ER/PR negative and HER-2 overexpression, among others. Anti-inflammatory molecules inhibit COX, thereby inhibiting the formation of prostaglandins and inhibiting nuclear factor-κBmediated signals (NF-kB). Another probable explanation entails inflammation-induced degranulation, with the production of angiogenesis-regulating factors, such as vascular endothelial growth factor, which can be possibly regulated by anti-inflammatory molecules. Apart from NSAIDS, many dietary phytochemicals have the ability to decrease, delay, or stop the progression and/or incidence of breast cancer by their antioxidant action, regulating inflammatory and proliferative cell signalling pathways as well as inducing apoptosis. The rapid progress in chemoprevention research has also established innovative strategies that can be implemented to prevent breast cancer. This article gives a comprehensive overview of the recent advancements in using antiinflammatory molecules in the chemoprevention of breast cancer along with their mechanism of action, supported by latest preclinical and clinical data. The merits of anti-inflammatory chemopreventive agents in the prevention of cardiotoxicity have been described. We have also highlighted the ongoing research and advancements in improving the efficacy of using antiinflammatory molecules as chemopreventive agents.
Collapse
Affiliation(s)
- Vaishnavi Gadi
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMS Narsee Monjee Institute of Management Studies, Mumbai-56, Maharashtra, India
| | - Saritha Rakesh Shetty
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMS Narsee Monjee Institute of Management Studies, Mumbai-56, Maharashtra, India
| |
Collapse
|
2
|
Subbaramaiah K, Hudis CA, Dannenberg AJ. Retraction: The Prostaglandin Transporter Regulates Adipogenesis and Aromatase Transcription. Cancer Prev Res (Phila) 2022; 15:414. [PMID: 35652228 DOI: 10.1158/1940-6207.capr-22-0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Research Progress on the Relationship between Obesity-Inflammation-Aromatase Axis and Male Infertility. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6612796. [PMID: 33628365 PMCID: PMC7884171 DOI: 10.1155/2021/6612796] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/04/2021] [Accepted: 01/30/2021] [Indexed: 01/10/2023]
Abstract
Aromatase is a key enzyme in the transformation of androgen into estrogen. Its high expression will destroy the hormonal balance in the male body, and the excessive transformation of androgen into estrogen in the body will further damage the spermatogenic function of the testis, affect the normal development of the sperm, and cause spermatogenic disturbance. Adipose tissue has a high expression of aromatase and shows high enzymatic activity and ability to convert estrogen. Adipose tissue is the most estrogen-producing nongonadal tissue in the body because of its large size, accounting for about 20% of the body mass in healthy adults. PPARγ is recognized as the key adipose differentiation in the transcriptional regulation of the transcription factor. In the process of adipocyte differentiation, PPARγ regulate the expression of aromatase. The increase of aromatase is associated with the inflammatory response in adipose tissue caused by obesity. After obesity, the increase of proinflammatory factors in adipocytes will lead to enhanced transcription of the CYP19 gene encoding aromatase in adipocytes, which in turn will lead to increased expression of aromatase in adipocytes. This article reviews the regulation of male sterility from the angle of the "obesity-inflammation-aromatase" axis.
Collapse
|
4
|
Abstract
Among prostaglandins, Prostaglandin E2 (PGE2) (PGE2) is considered especially important for decidualization, ovulation, implantation and pregnancy. Four major PGE2 receptor subtypes, EP1, EP2, EP3, EP4, as well as peroxisome proliferator-activated receptors (PPARs), mediate various PGE2 effects via their coupling to distinct signaling pathways. This review summarizes up-to-date literatures on the role of prostaglandin E2 receptors in female reproduction, which could provide a broad perspective to guide further research in this field. PGE2 plays an indispensable role in decidualization, ovulation, implantation and pregnancy. However, the precise mechanism of Prostaglandin E2 (EP) receptors in the female reproductive system is still limited. More investigations should be performed on the mechanism of EP receptors in the pathological states, and the possibility of EP agonists or antagonists clinically used in improving reproductive disorders.
Collapse
|
5
|
Subbaramaiah K, Brown KA, Zahid H, Balmus G, Weiss RS, Herbert BS, Dannenberg AJ. Hsp90 and PKM2 Drive the Expression of Aromatase in Li-Fraumeni Syndrome Breast Adipose Stromal Cells. J Biol Chem 2016; 291:16011-23. [PMID: 27467582 PMCID: PMC4965552 DOI: 10.1074/jbc.m115.698902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/23/2016] [Indexed: 11/06/2022] Open
Abstract
Li-Fraumeni syndrome (LFS) patients harbor germ line mutations in the TP53 gene and are at increased risk of hormone receptor-positive breast cancers. Recently, elevated levels of aromatase, the rate-limiting enzyme for estrogen biosynthesis, were found in the breast tissue of LFS patients. Although p53 down-regulates aromatase expression, the underlying mechanisms are incompletely understood. In the present study, we found that LFS stromal cells expressed higher levels of Hsp90 ATPase activity and aromatase compared with wild-type stromal cells. Inhibition of Hsp90 ATPase suppressed aromatase expression. Silencing Aha1 (activator of Hsp90 ATPase 1), a co-chaperone of Hsp90 required for its ATPase activity, led to both inhibition of Hsp90 ATPase activity and reduced aromatase expression. In comparison with wild-type stromal cells, increased levels of the Hsp90 client proteins, HIF-1α, and PKM2 were found in LFS stromal cells. A complex comprised of HIF-1α and PKM2 was recruited to the aromatase promoter II in LFS stromal cells. Silencing either HIF-1α or PKM2 suppressed aromatase expression in LFS stromal cells. CP-31398, a p53 rescue compound, suppressed levels of Aha1, Hsp90 ATPase activity, levels of PKM2 and HIF-1α, and aromatase expression in LFS stromal cells. Consistent with these in vitro findings, levels of Hsp90 ATPase activity, Aha1, HIF-1α, PKM2, and aromatase were increased in the mammary glands of p53 null versus wild-type mice. PKM2 and HIF-1α were shown to co-localize in the nucleus of stromal cells of LFS breast tissue. Taken together, our results show that the Aha1-Hsp90-PKM2/HIF-1α axis mediates the induction of aromatase in LFS.
Collapse
Affiliation(s)
- Kotha Subbaramaiah
- From the Department of Medicine, Weill Cornell Medical College, New York, New York 10065,
| | - Kristy A Brown
- the Metabolism and Cancer Laboratory, Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia, Monash University, Clayton, Victoria 3800, Australia
| | - Heba Zahid
- the Metabolism and Cancer Laboratory, Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia, Monash University, Clayton, Victoria 3800, Australia, the Faculty of Applied Medical Science, Taibah University, Medina, Saudi Arabia
| | - Gabriel Balmus
- the Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853, and
| | - Robert S Weiss
- the Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853, and
| | - Brittney-Shea Herbert
- the Department of Medical and Molecular Genetics, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Andrew J Dannenberg
- From the Department of Medicine, Weill Cornell Medical College, New York, New York 10065
| |
Collapse
|
6
|
Leitner L, Jürets A, Itariu BK, Keck M, Prager G, Langer F, Grablowitz V, Zeyda M, Stulnig TM. Osteopontin promotes aromatase expression and estradiol production in human adipocytes. Breast Cancer Res Treat 2015; 154:63-9. [DOI: 10.1007/s10549-015-3603-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 10/09/2015] [Indexed: 10/22/2022]
|
7
|
Wang X, Docanto MM, Sasano H, Lo C, Simpson ER, Brown KA. Prostaglandin E2 inhibits p53 in human breast adipose stromal cells: a novel mechanism for the regulation of aromatase in obesity and breast cancer. Cancer Res 2015; 75:645-55. [PMID: 25634217 DOI: 10.1158/0008-5472.can-14-2164] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Obesity is a risk factor for postmenopausal breast cancer and the majority of these cancers are estrogen dependent. Aromatase converts androgens into estrogens and its increased expression in breast adipose stromal cells (ASC) is a major driver of estrogen receptor-positive breast cancer. In particular, obesity-associated and tumor-derived factors, such as prostaglandin E2 (PGE2), have been shown to drive the expression of aromatase by stimulating the activity of the proximal promoter II (PII). The tumor-suppressor p53 is a key regulator of cell-cycle arrest and apoptosis and is frequently mutated in breast cancer. Mutations in p53 are rare in tumor-associated ASCs. Therefore, it was hypothesized that p53 is regulated by PGE2 and involved in the PGE2-mediated regulation of aromatase. Results demonstrate that PGE2 causes a significant decrease in p53 transcript and nuclear protein expression, as well as phosphorylation at Ser15 in primary human breast ASCs. Stabilization of p53 with RITA leads to a significant decrease in the PGE2-stimulated aromatase mRNA expression and activity, and PII activity. Interaction of p53 with PII was demonstrated and this interaction is decreased in the presence of PGE2. Moreover, mutation of the identified p53 response element leads to an increase in the basal activity of the promoter. Immunofluorescence on clinical samples demonstrates that p53 is decreased in tumor-associated ASCs compared with ASCs from normal breast tissue, and that there is a positive association between perinuclear (inactive) p53 and aromatase expression in these cells. Furthermore, aromatase expression is increased in breast ASCs from Li-Fraumeni patients (germline TP53 mutations) compared with non-Li-Fraumeni breast tissue. Overall, our results demonstrate that p53 is a negative regulator of aromatase in the breast and its inhibition by PGE2 provides a novel mechanism for aromatase regulation in obesity and breast cancer.
Collapse
Affiliation(s)
- Xuyi Wang
- Metabolism and Cancer Laboratory, Centre for Cancer Research, MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia. Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Maria M Docanto
- Metabolism and Cancer Laboratory, Centre for Cancer Research, MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Sendai, Japan
| | - Camden Lo
- Monash Micro Imaging, Monash University, Clayton, Victoria, Australia
| | - Evan R Simpson
- Metabolism and Cancer Laboratory, Centre for Cancer Research, MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia. Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Kristy A Brown
- Metabolism and Cancer Laboratory, Centre for Cancer Research, MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia. Department of Physiology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
8
|
Kochel TJ, Fulton AM. Multiple drug resistance-associated protein 4 (MRP4), prostaglandin transporter (PGT), and 15-hydroxyprostaglandin dehydrogenase (15-PGDH) as determinants of PGE2 levels in cancer. Prostaglandins Other Lipid Mediat 2015; 116-117:99-103. [PMID: 25433169 PMCID: PMC4385402 DOI: 10.1016/j.prostaglandins.2014.11.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 11/07/2014] [Accepted: 11/17/2014] [Indexed: 01/14/2023]
Abstract
The cyclooxygenase-2 (COX-2) enzyme and major lipid product, prostaglandin E2 (PGE2) are elevated in many solid tumors including those of the breast and are associated with a poor prognosis. Targeting this enzyme is somewhat effective in preventing tumor progression, but is associated with cardiotoxic secondary effects when used chronically. PGE2 functions by signaling through four EP receptors (EP1-4), resulting in several different cellular responses, many of which are pro-tumorigenic, and there is growing interest in the therapeutic potential of targeting EP4 and EP2. Other members in this signaling pathway are gaining more attention. PGE2 is transported out of and into cells by two unique transport proteins. Multiple Drug Resistance-Associated Protein 4 (MRP4) and Prostaglandin Transporter (PGT) modulate PGE2 signaling by increasing or decreasing the levels of PGE2 available to cells. 15-hydroxyprostaglandin dehydrogenase (15-PGDH) metabolizes PGE2 and silences the pathway in this manner. The purpose of this review is to summarize the extensive data supporting the importance of the COX-2 pathway in tumor biology with a focus on more recently described pathway members and their role in modulating PGE2 signaling. This review describes evidence supporting roles for MRP4, PGT and 15-PGDH in several tumor types with an emphasis on the roles of these proteins in breast cancer. Defining the importance of these latter pathway members will be key to developing new therapeutic approaches that exploit the tumor-promoting COX-2 pathway.
Collapse
Affiliation(s)
| | - Amy M Fulton
- Department of Pathology, University of Maryland, Baltimore, Baltimore, MD, USA; Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA.
| |
Collapse
|
9
|
Margolis M, Perez O, Martinez M, Santander AM, Mendez AJ, Nadji M, Nayer A, Bhattacharya S, Torroella-Kouri M. Phospholipid makeup of the breast adipose tissue is impacted by obesity and mammary cancer in the mouse: Results of a pilot study. Biochimie 2014; 108:133-9. [PMID: 25450252 DOI: 10.1016/j.biochi.2014.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/11/2014] [Indexed: 12/23/2022]
Abstract
Obesity, an established risk factor for breast cancer (BC), is associated with systemic inflammation. The breast contains adipose tissue (bAT), yet whether it plays a role in BC progression in obese females is being intensively studied. There is scarce knowledge on the lipid composition of bAT in health and disease. The purpose of this pilot study was: 1) to determine whether obesity and BC are associated with inflammatory changes in bAT 2) to analyze for the first time the lipid profile of bAT in obese and lean mammary tumor-bearing and normal mice. Syngeneic E0771 mammary tumor cells were implanted into the mammary fat pad of lean and diet-induced obese C57BL/6 mice. BATs were analyzed four weeks after tumor cell inoculation by immunohistochemistry and mass spectrometry. Phospholipids were identified and subjected to ratiometric quantification using a TSQ Quantum Access Max triple quadrupole mass spectrometer utilizing precursor ion scan or neutral ion loss scan employing appropriate class specific lipid standards in a two step quantification process. Four main classes of phospholipids were analyzed: phosphatidylcholines phosphatidylserines, phosphatidylethanolamines and phosphatidylinositols. Our results showed that bAT in obese (normal and tumor-bearing) mice contained hypertrophic adipocytes compared with their corresponding samples in lean mice; higher numbers of macrophages and crown-like structures were observed in obese tumor bearers compared to obese normal mice. BAT from normal obese mice revealed higher concentrations of phosphatidylethanolamines. Furthermore, bAT from tumor-bearing mice expressed higher phosphatidylcholines than that from non-tumor bearing mice, suggesting the presence of the tumor is associated with phosphatidylcholines. Conversion of phosphatidylethanolamines to phosphatidylcholines will be investigated in E0771 cells. Additional studies are projected to investigate macrophage activation by these specific classes of phospholipids. Occurrence of triglycerides and free fatty acids will be examined in bAT and similar lipidomic analyses will be carried out visceral adipose tissue, highly inflamed in obesity.
Collapse
Affiliation(s)
- Michael Margolis
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 900 NW 17th St, Miami, FL 33136, USA.
| | - Osvaldo Perez
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL 33136, USA.
| | - Mitchell Martinez
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 900 NW 17th St, Miami, FL 33136, USA.
| | - Ana M Santander
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL 33136, USA.
| | - Armando J Mendez
- Diabetes Research Institute, Department of Medicine, University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL 33136, USA.
| | - Mehrdad Nadji
- Department of Pathology, University of Miami Miller School of Medicine, 1611 NW 12th Ave, Holtz-2147, Miami, FL 33136, USA.
| | - Ali Nayer
- Department of Medicine, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL 33136, USA.
| | - Sanjoy Bhattacharya
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 900 NW 17th St, Miami, FL 33136, USA.
| | - Marta Torroella-Kouri
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
10
|
Chi Y, Suadicani SO, Schuster VL. Regulation of prostaglandin EP1 and EP4 receptor signaling by carrier-mediated ligand reuptake. Pharmacol Res Perspect 2014; 2:e00051. [PMID: 25505603 PMCID: PMC4186417 DOI: 10.1002/prp2.51] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/09/2014] [Indexed: 01/28/2023] Open
Abstract
After synthesis and release from cells, prostaglandin E2 (PGE2) undergoes reuptake by the prostaglandin transporter (PGT), followed by cytoplasmic oxidation. Although genetic inactivation of PGT in mice and humans results in distinctive phenotypes, and although experiments in localized environments show that manipulating PGT alters downstream cellular events, a direct mechanistic link between PGT activity and PGE2 (EP) receptor activation has not been made. Toward this end, we created two reconstituted systems to examine the effect of PGT expression on PGE2 signaling via two of its receptors (EP1 and EP4). In human embryonic kidney cells engineered to express the EP1 receptor, exogenous PGE2 induced a dose-dependent increase in cytoplasmic Ca2+. When PGT was expressed at the plasma membrane, the PGE2 dose–response curve was right-shifted, consistent with reduction in cell surface PGE2 availability; a potent PGT inhibitor acutely reversed this shift. When bradykinin was used to induce endogenous PGE2 release, PGT expression similarly induced a reduction in Ca2+ responses. In separate experiments using Madin–Darby Canine Kidney cells engineered to express the PGE2 receptor EP4, bradykinin again induced autocrine PGE2 signaling, as judged by an abrupt increase in intracellular cAMP. As in the EP1 experiments, expression of PGT at the plasma membrane caused a reduction in bradykinin-induced cAMP accumulation. Pharmacological concentrations of exogenous PGE2 induced EP4 receptor desensitization, an effect that was mitigated by PGT. Thus, at an autocrine/paracrine level, plasma membrane PGT regulates PGE2 signaling by decreasing ligand availability at cell surface receptors.
Collapse
Affiliation(s)
- Yuling Chi
- Department of Medicine, Albert Einstein College of Medicine Bronx, New York, 10461
| | - Sylvia O Suadicani
- Department of Urology, Albert Einstein College of Medicine Bronx, New York, 10461 ; Department of Neuroscience, Albert Einstein College of Medicine Bronx, New York, 10461
| | - Victor L Schuster
- Department of Medicine, Albert Einstein College of Medicine Bronx, New York, 10461 ; Department of Physiology & Biophysics, Albert Einstein College of Medicine Bronx, New York, 10461
| |
Collapse
|
11
|
Flachs P, Rossmeisl M, Kuda O, Kopecky J. Stimulation of mitochondrial oxidative capacity in white fat independent of UCP1: A key to lean phenotype. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:986-1003. [DOI: 10.1016/j.bbalip.2013.02.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/06/2013] [Accepted: 02/09/2013] [Indexed: 02/06/2023]
|
12
|
Syeda MM, Jing X, Mirza RH, Yu H, Sellers RS, Chi Y. Prostaglandin transporter modulates wound healing in diabetes by regulating prostaglandin-induced angiogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:334-46. [PMID: 22609345 DOI: 10.1016/j.ajpath.2012.03.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 03/13/2012] [Accepted: 03/15/2012] [Indexed: 01/22/2023]
Abstract
Prostaglandin transporter (PGT) mediates prostaglandin (PG) catabolism and PG signal termination. The prostanoid PGE(2), which induces angiogenesis and vasodilation, is diminished in diabetic skin, suggesting that PGT up-regulation could be important in wound healing deficiency, typified by diabetic foot ulcer. We hypothesized that up-regulation of PGT in hyperglycemia could contribute to weakened PGE(2) signaling, leading to impaired angiogenesis and wound healing. In human dermal microvascular endothelial cells (HDMECs), exposure to hyperglycemia increased PGT expression and activity up to threefold, accompanied by reduced levels of PGE(2). Hyperglycemia reduced HDMEC migration by 50% and abolished tube formation. Deficits in PGE(2) expression, HDMEC migration, and tube formation could be corrected by treatment with the PGT inhibitor T26A, consistent with the idea that PGT hyperactivity is responsible for impairments in angiogenesis mediated by PG signaling. In vivo, PGT expression was profoundly induced in diabetes and by wounding, correlating with diminished levels of proangiogenic factors PGE(2) and VEGF in cutaneous wounds of diabetic mice. Pharmacological inhibition of PGT corrected these deficits. PGT inhibition shortened cutaneous wound closure time in diabetic mice from 22 to 16 days. This effect was associated with increased proliferation, re-epithelialization, neovascularization, and blood flow. These data provide evidence that hyperglycemia enhances PGT expression and activity, leading to diminished angiogenic signaling, a possible key mechanism underlying defective wound healing in diabetes.
Collapse
Affiliation(s)
- Mahrukh M Syeda
- Department of Medicine, Albert Einstein College of Medicine, New York City, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
13
|
vom Saal FS, Nagel SC, Coe BL, Angle BM, Taylor JA. The estrogenic endocrine disrupting chemical bisphenol A (BPA) and obesity. Mol Cell Endocrinol 2012; 354:74-84. [PMID: 22249005 PMCID: PMC3306519 DOI: 10.1016/j.mce.2012.01.001] [Citation(s) in RCA: 296] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 12/30/2011] [Accepted: 01/02/2012] [Indexed: 11/29/2022]
Abstract
There is increasing experimental and epidemiological evidence that fetal programming of genetic systems is a contributing factor in the recent increase in adult obesity and other components of metabolic syndrome. In particular, there is evidence that epigenetic changes associated with the use of manmade chemicals may interact with other factors that influence fetal and postnatal growth in contributing to the current obesity epidemic. The focus of this review is on the developmental effects of estrogenic endocrine disrupting chemicals (EDCs), and more specifically on effects of exposure to the estrogenic EDC bisphenol A (BPA), on adipocytes and their function, and the ultimate impact on adult obesity; BPA exposure also results in impaired reproductive capacity. We discuss the interaction of EDCs with other factors that impact growth during fetal and neonatal life, such as placental blood flow and nutrient transport to fetuses, and how these influence fetal growth and abnormalities in homeostatic control systems required to maintain normal body weight throughout life.
Collapse
Affiliation(s)
- Frederick S. vom Saal
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO, 65211 USA
| | - Susan C. Nagel
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri-Columbia, Columbia, MO, 65211 USA
| | - Benjamin L. Coe
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO, 65211 USA
| | - Brittany M. Angle
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO, 65211 USA
| | - Julia A. Taylor
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO, 65211 USA
| |
Collapse
|