1
|
Lee J, Kim J, Jeong C, Baek KH, Ha J. Beyond breast cancer: role of selective estrogen receptor modulators in reducing systemic malignancies: evidence from population-based data. Curr Med Res Opin 2024; 40:1589-1596. [PMID: 39115280 DOI: 10.1080/03007995.2024.2390649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Raloxifene and bazedoxifene are selective estrogen receptor modulators (SERMs) used to prevent and treat osteoporosis in postmenopausal women. Raloxifene is also known for its preventive effect against invasive breast cancer; however, its effect on other cancer types is unclear. This study investigated the incidence of various cancers in osteoporosis patients receiving SERM therapy to determine its association with the risk of developing specific cancer types. METHODS This retrospective cohort study examined the association between SERM use and the incidence of cervical, endometrial, ovarian, and colorectal cancers in postmenopausal women using data from the Korean National Health Insurance Service. Propensity score matching ensured group comparability by analyzing 95,513 participants. Cox proportional hazard models were used to calculate the hazard ratios (HRs) and 95% confidence intervals (CIs) to assess the cancer risk associated with SERM therapy, differentiating between the effects of raloxifene and bazedoxifene. RESULTS SERM therapy was associated with a reduced risk of cervical (adjusted HR = 0.47, 95% CI = 0.31-0.71), ovarian (adjusted HR = 0.61, 95% CI = 0.42-0.88), and colorectal cancer (adjusted HR = 0.49, 95% CI = 0.42-0.57). No significant risk reduction was observed for endometrial cancer (adjusted HR = 1.05, 95% CI = 0.70-1.59). A comparison between raloxifene and bazedoxifene revealed no significant differences in their cancer prevention effects. CONCLUSION SERM therapy administration is associated with a decreased incidence of cervical, ovarian, and colorectal cancers. Notably, the effects of raloxifene and bazedoxifene were consistent. Further investigations are crucial to elucidate the mechanisms underlying these observations and their clinical implications.
Collapse
Affiliation(s)
- Jeongmin Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jinyoung Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chaiho Jeong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Republic of Korea
| | - Ki-Hyun Baek
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeonghoon Ha
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
2
|
Manickasamy MK, Jayaprakash S, Girisa S, Kumar A, Lam HY, Okina E, Eng H, Alqahtani MS, Abbas M, Sethi G, Kumar AP, Kunnumakkara AB. Delineating the role of nuclear receptors in colorectal cancer, a focused review. Discov Oncol 2024; 15:41. [PMID: 38372868 PMCID: PMC10876515 DOI: 10.1007/s12672-023-00808-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/20/2023] [Indexed: 02/20/2024] Open
Abstract
Colorectal cancer (CRC) stands as one of the most prevalent form of cancer globally, causing a significant number of deaths, surpassing 0.9 million in the year 2020. According to GLOBOCAN 2020, CRC ranks third in incidence and second in mortality in both males and females. Despite extensive studies over the years, there is still a need to establish novel therapeutic targets to enhance the patients' survival rate in CRC. Nuclear receptors (NRs) are ligand-activated transcription factors (TFs) that regulate numerous essential biological processes such as differentiation, development, physiology, reproduction, and cellular metabolism. Dysregulation and anomalous expression of different NRs has led to multiple alterations, such as impaired signaling cascades, mutations, and epigenetic changes, leading to various diseases, including cancer. It has been observed that differential expression of various NRs might lead to the initiation and progression of CRC, and are correlated with poor survival outcomes in CRC patients. Despite numerous studies on the mechanism and role of NRs in this cancer, it remains of significant scientific interest primarily due to the diverse functions that various NRs exhibit in regulating key hallmarks of this cancer. Thus, modulating the expression of NRs with their agonists and antagonists, based on their expression levels, holds an immense prospect in the diagnosis, prognosis, and therapeutical modalities of CRC. In this review, we primarily focus on the role and mechanism of NRs in the pathogenesis of CRC and emphasized the significance of targeting these NRs using a variety of agents, which may represent a novel and effective strategy for the prevention and treatment of this cancer.
Collapse
Affiliation(s)
- Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Sujitha Jayaprakash
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Huiyan Eng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
3
|
Bowen CM, Walter L, Borras E, Wu W, Ozcan Z, Chang K, Bommi PV, Taggart MW, Thirumurthi S, Lynch PM, Reyes-Uribe L, Scheet PA, Sinha KM, Vilar E. Combination of Sulindac and Bexarotene for Prevention of Intestinal Carcinogenesis in Familial Adenomatous Polyposis. Cancer Prev Res (Phila) 2021; 14:851-862. [PMID: 34266857 DOI: 10.1158/1940-6207.capr-20-0496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/23/2021] [Accepted: 05/25/2021] [Indexed: 01/07/2023]
Abstract
Familial adenomatous polyposis (FAP) is a hereditary colorectal cancer syndrome, which results in the development of hundreds of adenomatous polyps carpeting the gastrointestinal tract. NSAIDs have reduced polyp burden in patients with FAP and synthetic rexinoids have demonstrated the ability to modulate cytokine-mediated inflammation and WNT signaling. This study examined the use of the combination of an NSAID (sulindac) and a rexinoid (bexarotene) as a durable approach for reducing FAP colonic polyposis to prevent colorectal cancer development. Whole transcriptomic analysis of colorectal polyps and matched normal mucosa in a cohort of patients with FAP to identify potential targets for prevention in FAP was performed. Drug-dose synergism of sulindac and bexarotene in cell lines and patient-derived organoids was assessed, and the drug combination was tested in two different mouse models. This work explored mRNA as a potential predictive serum biomarker for this combination in FAP. Overall, transcriptomic analysis revealed significant activation of inflammatory and cell proliferation pathways. A synergistic effect of sulindac (300 μmol/L) and bexarotene (40 μmol/L) was observed in FAP colonic organoids with primary targeting of polyp tissue compared with normal mucosa. This combination translated into a significant reduction in polyp development in ApcMin/+ and ApcLoxP/+-Cdx2 mice. Finally, the reported data suggest miRNA-21 could serve as a predictive serum biomarker for polyposis burden in patients with FAP. These findings support the clinical development of the combination of sulindac and bexarotene as a treatment modality for patients with FAP. PREVENTION RELEVANCE: This study identified a novel chemopreventive regimen combining sulindac and bexarotene to reduce polyposis in patients with FAP using in silico tools, ex vivo, and in vivo models. This investigation provides the essential groundwork for moving this drug combination forward into a clinical trial.
Collapse
Affiliation(s)
- Charles M Bowen
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lewins Walter
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ester Borras
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wenhui Wu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zuhal Ozcan
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kyle Chang
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Prashant V Bommi
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Melissa W Taggart
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Selvi Thirumurthi
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patrick M Lynch
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Laura Reyes-Uribe
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul A Scheet
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Krishna M Sinha
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
4
|
Xia L, Shen D, Zhang Y, Lu J, Wang M, Wang H, Chen Y, Xue D, Xie D, Li G. Targeting the TR4 nuclear receptor with antagonist bexarotene can suppress the proopiomelanocortin signalling in AtT-20 cells. J Cell Mol Med 2021; 25:2404-2417. [PMID: 33491272 PMCID: PMC7933964 DOI: 10.1111/jcmm.16074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/29/2020] [Accepted: 10/25/2020] [Indexed: 01/12/2023] Open
Abstract
Drug options for the life‐threatening Cushing's disease are limited, and surgical resection or radiation therapy is not invariably effective. Testicular receptor 4 (TR4) has been identified as a novel drug target to treat Cushing's disease. We built the structure model of TR4 and searched the TR4 antagonist candidate via in silico virtual screening. Bexarotene was identified as an antagonist of TR4 that can directly interact with TR4 ligand binding domain (TR4‐LBD) and induces a conformational change in the secondary structure of TR4‐LBD. Bexarotene suppressed AtT‐20 cell growth, proopiomelanocortin (POMC) expression and adrenocorticotropin (ACTH) secretion. Mechanism dissection revealed that bexarotene could suppress TR4‐increased POMC expression via promoting the TR4 translocation from the nucleus to the cytoplasm. This TR4 translocation might then result in reducing the TR4 binding to the TR4 response element (TR4RE) on the 5’ promoter region of POMC. Results from in vivo mouse model also revealed that oral bexarotene administration markedly suppressed ACTH‐secreting tumour growth, adrenal enlargement and the secretion of ACTH and corticosterone in mice with already established tumours. Together, these results suggest that bexarotene may be developed as a potential novel therapeutic drug to better suppress Cushing's disease.
Collapse
Affiliation(s)
- Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danyang Shen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Youyun Zhang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jieyang Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingchao Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huan Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanlei Chen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dingwei Xue
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dajiang Xie
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
A carotenoid-enriched extract from pumpkin delays cell proliferation in a human chronic lymphocytic leukemia cell line through the modulation of autophagic flux. CURRENT RESEARCH IN BIOTECHNOLOGY 2020. [DOI: 10.1016/j.crbiot.2020.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
6
|
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related morbidity and mortality worldwide. Although targeted therapy in combination with chemotherapy in CRC prolongs the overall survival of patients with metastatic disease, acquired resistance and relapse hinder their clinical benefits. Moreover, patients with some specific genetic profile are unlikely to benefit from targeted therapy, suggesting the need for safe and effective treatment strategies. Retinoids, comprising of natural and synthetic analogs, are a class of chemical compounds that regulate cellular proliferation, differentiation, and cell death. Retinoids have been used in the clinic for several leukemias and solid tumors, either as single agents or in combination therapy. Furthermore, retinoids have shown potent chemotherapeutic and chemopreventive properties in different cancer models, including CRC. In this review, we summarize the major preclinical findings in CRC in which natural and synthetic retinoids showed promising antitumor activities and stress on the proposed mechanisms of action. Understanding of the retinoids' antitumor mechanisms would provide insights to support and warrant their development in the management of CRC.
Collapse
|
7
|
Shen D, Yu X, Wu Y, Chen Y, Li G, Cheng F, Xia L. Emerging roles of bexarotene in the prevention, treatment and anti-drug resistance of cancers. Expert Rev Anticancer Ther 2018. [PMID: 29521139 DOI: 10.1080/14737140.2018.1449648] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Danyang Shen
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoming Yu
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Wu
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanlei Chen
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gonghui Li
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Cheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Liqun Xia
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Significance of intratissue estrogen concentration coupled with estrogen receptors levels in colorectal cancer prognosis. Oncotarget 2017; 8:115546-115560. [PMID: 29383180 PMCID: PMC5777792 DOI: 10.18632/oncotarget.23309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 12/05/2017] [Indexed: 12/17/2022] Open
Abstract
Dysregulation of estrogen related pathways is implicated colorectal cancer (CRC) development. However, significance of intratissue concentration of estrone (E1) and 17β-estradiol (E2) in relation to estrogen receptor (ESR) expression level was not addressed so far. Herein, we measured E1 and E2 intratissue concentration using liquid chromatography electrospray ionization tandem mass spectrometry (ESI LC/MS) and mRNA levels of ESR1 and ESR2 using RT-qPCR in cancerous and histopathologically unchanged tissue from 75 and 110 CRC patients, respectively. The obtained results were associated with clinicopathological factors, expression of estrogen dependent genes (CTNNB1, CCND1) and prognostic significance. We found no statistically significant differences in E1 or E2 concentration between cancerous tissue and histopathologically unchanged counterparts. Moreover, mRNA levels of ESR1 and ESR2 were significantly decreased in cancerous tissue compared with histopathologically unchanged (p=0.00001). Log rank analysis revealed no benefit of low E1 to E2 ratio, high E1, E2 concentration or ESR1, ESR2 mRNA level for patients’ overall (OS) and disease free survival (DFS). Interestingly, we have observed that patients with low ESR1 mRNA level coupled with low E1 intratissue concentration had a significant decrease in DFS compared with group of patients with high ESR1 mRNA level and high E1 concentration (HR=0.16, 95% CI 0.02-1.05; p=0.06). Furthermore, patients with low E1 concentration and low ESR1 transcript had significantly higher CTNNB1 and CCND1 mRNA level compare with subgroup with high level of both grouping factors. Our study indicates a potential value of estrogen intratissue concentration and its receptor expression level for CRC patients’ prognosis.
Collapse
|
9
|
Weckle A, McGowen MR, Xing J, Chen C, Sterner KN, Hou ZC, Romero R, Wildman DE. Ancestral resurrection of anthropoid estrogen receptor β demonstrates functional consequences of positive selection. Mol Phylogenet Evol 2017; 117:2-9. [PMID: 28916155 PMCID: PMC6071416 DOI: 10.1016/j.ympev.2017.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 02/07/2023]
Abstract
Anthropoid primates arose during the Eocene approximately 55 million years ago (mya), and extant anthropoids share a most recent common ancestor ∼40mya. Paleontology has been very successful at describing the morphological phenotypes of extinct anthropoids. Less well understood is the molecular biology of these extinct species as well as the phenotypic consequences of evolutionary variation in their genomes. Here we resurrect the most recent common ancestral anthropoid estrogen receptor β gene (ESR2) and demonstrate that the function of this ancestral estrogen receptor has been maintained during human descent but was altered during early New World monkey (NWM) evolution by becoming a more potent transcriptional activator. We tested hypotheses of adaptive evolution in the protein coding sequences of ESR2, and determined that ESR2 evolved via episodic positive selection on the NWM stem lineage. We separately co-transfected ESR2 constructs for human, NWM, and the anthropoid ancestor along with reporter gene vectors and performed hormone binding dose response experiments that measure transactivation activity. We found the transactivation potentials of the ancestral and human sequences to be significantly lower (p<0.0001 in each comparison) than that of the NWM when treated with estradiol, the most prevalent estrogen. We conclude the difference in fold activation is due to positive selection in the NWM ERβ ligand binding domain. Our study validates inferential methods for detecting adaptive evolution that predict functional consequences of nucleotide substitutions and points a way toward examining the functional consequences of positive Darwinian selection.
Collapse
Affiliation(s)
- Amy Weckle
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Michael R McGowen
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom
| | - Jun Xing
- Center for Molecular Medicine & Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Caoyi Chen
- Life Science Institute, Nantong University, Nantong, People's Republic of China
| | | | - Zhuo-Cheng Hou
- Department of Animal Genetics, China Agricultural University, Beijing, China
| | - Roberto Romero
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom; Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Derek E Wildman
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
10
|
Berberine binds RXRα to suppress β-catenin signaling in colon cancer cells. Oncogene 2017; 36:6906-6918. [PMID: 28846104 PMCID: PMC5735301 DOI: 10.1038/onc.2017.296] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/22/2017] [Accepted: 07/17/2017] [Indexed: 02/07/2023]
Abstract
Berberine, an isoquinoline alkaloid, is a traditional oriental medicine used to treat diarrhea and gastroenteritis. Recently, we reported that it could inhibit the growth of intestinal polyp in animals and in patients with the familial adenomatous polyposis by downregulating β-catenin signaling. However, the intracellular target mediating the effects of berberine remains elusive. Here, we provide evidence that berberine inhibits β-catenin function via directly binding to a unique region comprising residues Gln275, Arg316 and Arg371 in nuclear receptor retinoid X receptor alpha (RXRα), where berberine concomitantly binding to and synergistically activating RXRα with 9-cis-retinoic acid (9-cis-RA), a natural ligand binding to the classical ligand-binding pocket of RXRα. Berberine binding promotes RXRα interaction with nuclear β-catenin, leading to c-Cbl mediated degradation of β-catenin, and consequently inhibits the proliferation of colon cancer cells. Furthermore, berberine suppresses the growth of human colon carcinoma xenograft in nude mice in an RXRα-dependent manner. Together, our study not only identifies RXRα as a direct protein target for berberine but also dissects their binding mode and validates that berberine indeed suppresses β-catenin signaling and cell growth in colon cancer via binding RXRα, which provide new strategies for the design of new RXRα-based antitumor agents and drug combinations.
Collapse
|
11
|
Potentiating NK cell activity by combination of Rosuvastatin and Difluoromethylornithine for effective chemopreventive efficacy against Colon Cancer. Sci Rep 2016; 6:37046. [PMID: 27841323 PMCID: PMC5107958 DOI: 10.1038/srep37046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/21/2016] [Indexed: 11/08/2022] Open
Abstract
Colorectal cancer (CRC) is the second highest cause of cancer-related deaths. A successful strategy to improve chemopreventive efficacies is by down-regulating tumor polyamines and enhancing NK cell activities. Colonic carcinogenesis was induced by azoxymethane (AOM) in male F344 rats. Eight weeks after AOM treatment, animals were fed diets containing Rosuvastatin and difluromethylornithine (DFMO) individually and in combination for 40 weeks. Both agents showed significant suppression of adenocarcinoma multiplicity and incidence with no toxicity compared to untreated rats. Low-dose Rosuvastatin plus DFMO suppressed colon adenocarcinoma multiplicity by 76% compared to low-dose Rosuvastatin (29%) and DFMO (46%), suggesting additive efficacy. Furthermore, low-dose combination caused a delay in colonic adenocarcinoma progression. DFMO, Rosuvastatin and/or combinations significantly decreased polyamine content and increased intra-tumoral NK cells expressing perforin plus IFN-γ compared to untreated colon tumors. Further ex-vivo analysis of splenic NK cells exposed to DFMO, Rosuvastatin or combination resulted in an increase of NKs with perforin expression. This is the first report on Rosuvastatin alone or combination strategy using clinically relevant statin plus DFMO doses which shows a significant suppression of colon adenocarcinomas, and their potential in increasing functional NK cells. This strategy has potential for further testing in high risk individuals for colon cancer.
Collapse
|
12
|
Alam S, Pal A, Kumar R, Mir SS, Ansari KM. Nexrutine inhibits azoxymethane-induced colonic aberrant crypt formation in rat colon and induced apoptotic cell death in colon adenocarcinoma cells. Mol Carcinog 2016; 55:1262-74. [PMID: 26259065 DOI: 10.1002/mc.22368] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 06/23/2015] [Accepted: 07/06/2015] [Indexed: 12/18/2022]
Abstract
Colon cancer is the third most common cause of death in the United States. Therefore, new preventive strategies are warranted for preventing colon cancer. Nexrutine (NX), an herbal extract from Phellodendron amurense, has been shown to have anti-inflammatory, anti-microbial and anti-cancer activity for various tissue specific cancers, but its chemopreventive efficacy has not been evaluated against colon cancer. Here, we explored the mechanism of chemopreventive/chemotherapeutic efficacy of NX against colon cancer. We found that dietary exposure of NX significantly reduced the number of azoxymethane (AOM)-induced aberrant crypt foci (ACF) in rats. In addition, significant inhibition in AOM-induced cell proliferation and reduced expression of the inflammatory markers COX-2, iNOS as well as the proliferative markers PCNA and cyclin D1 were also seen. Moreover, NX exposure significantly enhanced apoptosis in the colon of AOM treated rats. Furthermore, in in vitro studies, NX (2.5, 5, 10 μg/ml, 48 h) decreased cell survival and colony formation while inducing G0/G1 cell cycle arrest and apoptosis in colon adenocarcinoma cells COLO205 and HCT-15. However, NX had minimal cytotoxic effect on IEC-6 normal rat intestinal cells, suggesting its high therapeutic index. NX treatment also modulates the level of Bax and Bcl-2 proteins along with cytochrome c release, cleavage and enhanced expression of poly (adenosine diphosphate-ribose) polymerase as well as the catalytic activity of caspase 3 and caspase 9 in both COLO205 and HCT-15 cells. Based on these in vivo and in vitro findings, we suggest that NX could be useful candidate agent for colon cancer chemoprevention and treatment. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shamshad Alam
- Environmental Carcinogenesis Division, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow, India
- Department of Bio-engineering, Integral University, Lucknow, India
| | - Anu Pal
- Environmental Carcinogenesis Division, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow, India
| | - Rahul Kumar
- Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow, India
| | - Snober S Mir
- Department of Bio-engineering, Integral University, Lucknow, India
| | - Kausar M Ansari
- Environmental Carcinogenesis Division, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow, India
| |
Collapse
|
13
|
Heo JC, Jung TH, Lee S, Kim HY, Choi G, Jung M, Jung D, Lee HK, Lee JO, Park JH, Hwang D, Seol HJ, Cho H. Effect of bexarotene on differentiation of glioblastoma multiforme compared with ATRA. Clin Exp Metastasis 2016; 33:417-29. [DOI: 10.1007/s10585-016-9786-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/25/2016] [Indexed: 12/27/2022]
|
14
|
Williams C, DiLeo A, Niv Y, Gustafsson JÅ. Estrogen receptor beta as target for colorectal cancer prevention. Cancer Lett 2016; 372:48-56. [PMID: 26708506 PMCID: PMC4744541 DOI: 10.1016/j.canlet.2015.12.009] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/05/2015] [Accepted: 12/07/2015] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is a leading cause of death in the United States. Despite its slow development and the capacity for early diagnosis, current preventive approaches are not sufficient. However, a role for estrogen has been demonstrated in multiple epidemiologic studies, which may benefit CRC prevention. A large body of evidence from preclinical studies indicates that expression of the estrogen receptor beta (ERβ/ESR2) demonstrates an inverse relationship with the presence of colorectal polyps and stage of tumors, and can mediate a protective response. Natural compounds, including phytoestrogens, or synthetic ERβ selective agonists, can activate or upregulate ERβ in the colon and promote apoptosis in preclinical models and in clinical experience. Importantly, this activity has been associated with a reduction in polyp formation and, in rodent models of CRC, has been shown to lower incidence of colon adenocarcinoma. Collectively, these findings indicate that targeted activation of ERβ may represent a novel clinical approach for management of colorectal adenomatous polyps and prevention of colorectal carcinoma in patients at risk for this condition. In this review, we discuss the potential of new chemopreventive or dietary approaches based on estrogen signaling.
Collapse
Affiliation(s)
- Cecilia Williams
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5056, USA; SciLifeLab, School of Biotechnology, KTH Royal Institute of Technology, 171 21 Solna, Sweden; Department of Biosciences and Nutrition, Novum, Karolinska Institutet, 141 83 Stockholm, Sweden.
| | - Alfredo DiLeo
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Yaron Niv
- Department of Gastroenterology, Rabin Medical Center, Tel Aviv University, Petach Tikva 49100, Israel
| | - Jan-Åke Gustafsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5056, USA; Department of Biosciences and Nutrition, Novum, Karolinska Institutet, 141 83 Stockholm, Sweden
| |
Collapse
|