1
|
Luzhin A, Rajan P, Safina A, Leonova K, Stablewski A, Wang J, Robinson D, Isaeva N, Kantidze O, Gurova K. Comparison of cell response to chromatin and DNA damage. Nucleic Acids Res 2023; 51:11836-11855. [PMID: 37855682 PMCID: PMC10681726 DOI: 10.1093/nar/gkad865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/30/2023] [Accepted: 10/16/2023] [Indexed: 10/20/2023] Open
Abstract
DNA-targeting drugs are widely used for anti-cancer treatment. Many of these drugs cause different types of DNA damage, i.e. alterations in the chemical structure of DNA molecule. However, molecules binding to DNA may also interfere with DNA packing into chromatin. Interestingly, some molecules do not cause any changes in DNA chemical structure but interfere with DNA binding to histones and nucleosome wrapping. This results in histone loss from chromatin and destabilization of nucleosomes, a phenomenon that we call chromatin damage. Although the cellular response to DNA damage is well-studied, the consequences of chromatin damage are not. Moreover, many drugs used to study DNA damage also cause chromatin damage, therefore there is no clarity on which effects are caused by DNA or chromatin damage. In this study, we aimed to clarify this issue. We treated normal and tumor cells with bleomycin, nuclease mimicking drug which cut predominantly nucleosome-free DNA and therefore causes DNA damage in the form of DNA breaks, and CBL0137, which causes chromatin damage without direct DNA damage. We describe similarities and differences between the consequences of DNA and chromatin damage. Both agents were more toxic for tumor than normal cells, but while DNA damage causes senescence in both normal and tumor cells, chromatin damage does not. Both agents activated p53, but chromatin damage leads to the accumulation of higher levels of unmodified p53, which transcriptional activity was similar to or lower than that of p53 activated by DNA damage. Most importantly, we found that while transcriptional changes caused by DNA damage are limited by p53-dependent activation of a small number of p53 targets, chromatin damage activated many folds more genes in p53 independent manner.
Collapse
Affiliation(s)
- Artyom Luzhin
- Department of Cellular Genomics, Institute of Gene Biology of the Russian Academy of Sciences, Moscow 119334, Russia
| | - Priyanka Rajan
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Sts, Buffalo, NY 14263, USA
| | - Alfiya Safina
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Sts, Buffalo, NY 14263, USA
| | - Katerina Leonova
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Sts, Buffalo, NY 14263, USA
| | - Aimee Stablewski
- Gene Targeting and Transgenic Shared Resource, Roswell Park Comprehensive Cancer Center, Elm and Carlton Sts, Buffalo, NY 14263, USA
| | - Jianmin Wang
- Department of Bioinformatics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Sts, Buffalo, NY 14263, USA
| | - Denisha Robinson
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Sts, Buffalo, NY 14263, USA
| | - Natalia Isaeva
- Department of Otolaryngology/Head and Neck Surgery; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Katerina Gurova
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Sts, Buffalo, NY 14263, USA
| |
Collapse
|
2
|
Maksimova V, Popova V, Prus A, Lylova E, Usalka O, Sagitova G, Zhidkova E, Makus J, Trapeznikova E, Belitsky G, Yakubovskaya M, Kirsanov K. Insights into the Mechanism of Curaxin CBL0137 Epigenetic Activity: The Induction of DNA Demethylation and the Suppression of BET Family Proteins. Int J Mol Sci 2023; 24:12874. [PMID: 37629054 PMCID: PMC10454690 DOI: 10.3390/ijms241612874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The development of malignant tumors is caused by a complex combination of genetic mutations and epigenetic alterations, the latter of which are induced by either external environmental factors or signaling disruption following genetic mutations. Some types of cancer demonstrate a significant increase in epigenetic enzymes, and targeting these epigenetic alterations represents a compelling strategy to reverse cell transcriptome to the normal state, improving chemotherapy response. Curaxin CBL0137 is a new potent anticancer drug that has been shown to activate epigenetically silenced genes. However, its detailed effects on the enzymes of the epigenetic system of transcription regulation have not been studied. Here, we report that CBL0137 inhibits the expression of DNA methyltransferase DNMT3a in HeLa TI cells, both at the level of mRNA and protein, and it decreases the level of integral DNA methylation in Ca Ski cells. For the first time, it is shown that CBL0137 decreases the level of BET family proteins, BRD2, BRD3, and BRD4, the key participants in transcription elongation, followed by the corresponding gene expression enhancement. Furthermore, we demonstrate that CBL0137 does not affect the mechanisms of histone acetylation and methylation. The ability of CBL0137 to suppress DNMT3A and BET family proteins should be taken into consideration when combined chemotherapy is applied. Our data demonstrate the potential of CBL0137 to be used in the therapy of tumors with corresponding aberrant epigenetic profiles.
Collapse
Affiliation(s)
- Varvara Maksimova
- Department of Chemical Carcinogenesis, Institute of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (V.M.); (V.P.); (A.P.); (E.L.); (O.U.); (E.Z.); (J.M.); (E.T.); (G.B.); (K.K.)
| | - Valeriia Popova
- Department of Chemical Carcinogenesis, Institute of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (V.M.); (V.P.); (A.P.); (E.L.); (O.U.); (E.Z.); (J.M.); (E.T.); (G.B.); (K.K.)
| | - Anzhelika Prus
- Department of Chemical Carcinogenesis, Institute of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (V.M.); (V.P.); (A.P.); (E.L.); (O.U.); (E.Z.); (J.M.); (E.T.); (G.B.); (K.K.)
- Department of Biotechnology and Industrial Pharmacy, Lomonosov Institute of Fine Chemical Technologies, Russian Technological University (MIREA), 86 Vernadsky Avenue, 119571 Moscow, Russia
| | - Evgeniya Lylova
- Department of Chemical Carcinogenesis, Institute of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (V.M.); (V.P.); (A.P.); (E.L.); (O.U.); (E.Z.); (J.M.); (E.T.); (G.B.); (K.K.)
| | - Olga Usalka
- Department of Chemical Carcinogenesis, Institute of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (V.M.); (V.P.); (A.P.); (E.L.); (O.U.); (E.Z.); (J.M.); (E.T.); (G.B.); (K.K.)
- Institute of Clinical Medicine, Sechenov First Moscow State Medical University, 8-2 Trubetskaya Street, 119991 Moscow, Russia;
| | - Guzel Sagitova
- Institute of Clinical Medicine, Sechenov First Moscow State Medical University, 8-2 Trubetskaya Street, 119991 Moscow, Russia;
| | - Ekaterina Zhidkova
- Department of Chemical Carcinogenesis, Institute of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (V.M.); (V.P.); (A.P.); (E.L.); (O.U.); (E.Z.); (J.M.); (E.T.); (G.B.); (K.K.)
| | - Julia Makus
- Department of Chemical Carcinogenesis, Institute of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (V.M.); (V.P.); (A.P.); (E.L.); (O.U.); (E.Z.); (J.M.); (E.T.); (G.B.); (K.K.)
| | - Ekaterina Trapeznikova
- Department of Chemical Carcinogenesis, Institute of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (V.M.); (V.P.); (A.P.); (E.L.); (O.U.); (E.Z.); (J.M.); (E.T.); (G.B.); (K.K.)
- Institute of Clinical Medicine, Sechenov First Moscow State Medical University, 8-2 Trubetskaya Street, 119991 Moscow, Russia;
| | - Gennady Belitsky
- Department of Chemical Carcinogenesis, Institute of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (V.M.); (V.P.); (A.P.); (E.L.); (O.U.); (E.Z.); (J.M.); (E.T.); (G.B.); (K.K.)
| | - Marianna Yakubovskaya
- Department of Chemical Carcinogenesis, Institute of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (V.M.); (V.P.); (A.P.); (E.L.); (O.U.); (E.Z.); (J.M.); (E.T.); (G.B.); (K.K.)
| | - Kirill Kirsanov
- Department of Chemical Carcinogenesis, Institute of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (V.M.); (V.P.); (A.P.); (E.L.); (O.U.); (E.Z.); (J.M.); (E.T.); (G.B.); (K.K.)
- Institute of Medicine, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| |
Collapse
|
3
|
Yang C, Wang ZQ, Zhang ZC, Lou G, Jin WL. CBL0137 activates ROS/BAX signaling to promote caspase-3/GSDME-dependent pyroptosis in ovarian cancer cells. Biomed Pharmacother 2023; 161:114529. [PMID: 37002567 DOI: 10.1016/j.biopha.2023.114529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Curaxin CBL0137 was designed to regulate p53 and nuclear factor-κB simultaneously and exhibits antitumor activity by inhibiting tumor cell proliferation and inducing apoptosis in multiple cancers. However, whether CBL0137 can induce pyroptosis has not yet been reported. This study demonstrated that CBL0137 induces caspase-3/gasdermin E (GSDME)-dependent pyroptosis via the reactive oxygen species (ROS)/BAX pathway. In ovarian cancer cells, CBL0137 inactivated the chromatin remodeling complex which could facilitate chromatin transcription, leading to the decreased transcription of antioxidant genes and oxidation and causing increased ROS levels. BAX was recruited on the mitochondrial membrane by mitochondrial ROS and induced the release of cytochrome c to cleave caspase-3. This led to the cleavage of the N-terminal of GSDME to form pores on the cell membrane and induced pyroptosis. Results of in vivo experiments revealed that CBL0137 also had anti-tumor effects on ovarian cancer cells in vivo. Our study outcomes reveal the mechanisms and targets of CBL0137 inducing pyroptosis in ovarian cancer cells and indicate that CBL0137 is a promising therapeutic agent for ovarian cancer.
Collapse
Affiliation(s)
- Chang Yang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China
| | - Zhi-Qiang Wang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China
| | - Zhao-Cong Zhang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China
| | - Ge Lou
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China.
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
4
|
Fetisov TI, Borunova AA, Antipova AS, Antoshina EE, Trukhanova LS, Gorkova TG, Zuevskaya SN, Maslov A, Gurova K, Gudkov A, Lesovaya EA, Belitsky GA, Yakubovskaya MG, Kirsanov KI. Targeting Features of Curaxin CBL0137 on Hematological Malignancies In Vitro and In Vivo. Biomedicines 2023; 11:biomedicines11010230. [PMID: 36672738 PMCID: PMC9856019 DOI: 10.3390/biomedicines11010230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/31/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
The anticancer activity of Curaxin CBL0137, a DNA-binding small molecule with chromatin remodulating effect, has been demonstrated in different cancers. Herein, a comparative evaluation of CBL0137 activity was performed in respect to acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic myeloid leukemia and multiple myeloma (MM) cultured in vitro. MTT assay showed AML and MM higher sensitivity to CBL0137's cytostatic effect comparatively to other hematological malignancy cells. Flow cytometry cell cycle analysis revealed an increase in subG1 and G2/M populations after CBL0137 cell treatment, but the prevalent type of arrest varied. Apoptosis activation by CBL0137 measured by Annexin-V/PI dual staining was more active in AML and MM cells. RT2 PCR array showed that changes caused by CBL0137 in signaling pathways involved in cancer pathogenesis were more intensive in AML and MM cells. On the murine model of AML WEHI-3, CBL0137 showed significant anticancer effects in vivo, which were evaluated by corresponding changes in spleen and liver. Thus, more pronounced anticancer effects of CBL0137 in vitro were observed in respect to AML and MM. Experiments in vivo also indicated the perspective of CBL0137 use for AML treatment. This in accordance with the frontline treatment approach in AML using epigenetic drugs.
Collapse
Affiliation(s)
- Timur I. Fetisov
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Anna A. Borunova
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Alina S. Antipova
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Elena E. Antoshina
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Lubov S. Trukhanova
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Tatyana G. Gorkova
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | | | - Alexei Maslov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Katerina Gurova
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Andrei Gudkov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Ekaterina A. Lesovaya
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
- Department of Oncology, I.P. Pavlov Ryazan State Medical University, 390026 Ryazan, Russia
| | - Gennady A. Belitsky
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | | | - Kirill I. Kirsanov
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
- Correspondence:
| |
Collapse
|
5
|
Li D, Cao Y, Wang J, Yang H, Liu W, Cui J, Wu W. Regulatory effect between HMGA2 and the Wnt/β-catenin signaling pathway in the carcinogenesis of sporadic colorectal tubular adenoma. Oncol Lett 2021; 22:849. [PMID: 34733367 PMCID: PMC8561620 DOI: 10.3892/ol.2021.13110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
Due to the high incidence of colorectal cancer worldwide, the underlying molecular mechanisms have been extensively investigated. The Wnt/β-catenin signaling pathway plays a key role in the carcinogenesis of colorectal adenoma. In addition, the high mobility group AT-hook 2 (HMGA2) protein, which is involved in several biological processes, such as proliferation, differentiation, transformation and metastasis, is expressed at significantly high levels in colorectal cancer tissues compared with adjacent normal tissues. Currently, the role of HMGA2 in the carcinogenesis of sporadic colorectal tubular adenoma remains unclear. The downstream Wnt/β-catenin signaling molecule, T-cell factor/lymphoid enhancing factor (TCF/LEF), shares a similar domain with HMGA2, which enhances β-catenin transcriptional activity and TCF/LEF binding. Thus, the present study investigated the association between HMGA2 and the Wnt/β-catenin signaling pathway, and their role in the carcinogenesis of sporadic colorectal tubular adenoma via immunohistochemistry, siRNA, quantitative PCR and western blot analyses. The results demonstrated that the positive rate of HMGA2 expression gradually increased during tumor progression. Furthermore, HMGA2 expression was positively correlated with Wnt/β-catenin signaling protein expression [Wnt, β-catenin, cyclin-dependent kinase 4 (CDK4) and cyclin D1], suggesting its involvement in the carcinogenesis of sporadic colorectal tubular adenoma and its potential to synergistically interact with the Wnt/β-catenin signaling pathway. HMGA2 knockdown in the human colorectal cancer cell line, HCT 116 decreased β-catenin expression and its downstream targets, CDK4 and cyclin D1. Furthermore, silencing of Wnt or β-catenin decreased HMGA2 expression. Taken together, the results of the present study suggest the coordinated regulation of HMGA2 and the Wnt/β-catenin signaling pathway in the carcinogenesis of sporadic colorectal tubular adenoma.
Collapse
Affiliation(s)
- Dan Li
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Yanan Cao
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Juan Wang
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Haiyan Yang
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Weina Liu
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Jinfeng Cui
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Wenxin Wu
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
6
|
Potential of olive oil and its phenolic compounds as therapeutic intervention against colorectal cancer: a comprehensive review. Br J Nutr 2021; 128:1257-1273. [PMID: 34338174 DOI: 10.1017/s0007114521002919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is one of the major causes of death across the world and incidence rate of CRC increasing alarmingly each passing year. Diet, genomic anomalies, inflammation and deregulated signalling pathways are among the major causes of CRC. Because of numerous side effects of CRC therapies available now, researchers all over the world looking for alternative treatment/preventive strategy with lesser/no side effects. Olive oil which is part of Mediterranean diet contains numerous phenolic compounds that fight against free radicals and inflammation and also well-known for protective role against CRC. The current review focused on the recent evidences where olive oil and its phenolic compounds such as hydroxytyrosol, oleuropein and oleocanthal showed activities against CRC as well to analyse the cellular and molecular signalling mechanism through which these compounds act on. These compounds shown to combat CRC by reducing proliferation, migration, invasion and angiogenesis through regulation of numerous signalling pathways including MAPK pathway, PI3K-Akt pathway and Wnt/β-catenin pathway and at the same time, induce apoptosis in different CRC model. However, further research is an absolute necessity to establish these compounds as nutritional supplements and develop therapeutic strategy in CRC.
Collapse
|
7
|
|