1
|
Skaro M, Hill M, Zhou Y, Quinn S, Davis MB, Sboner A, Murph M, Arnold J. Are we there yet? A machine learning architecture to predict organotropic metastases. BMC Med Genomics 2021; 14:281. [PMID: 34819069 PMCID: PMC8611885 DOI: 10.1186/s12920-021-01122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND & AIMS Cancer metastasis into distant organs is an evolutionarily selective process. A better understanding of the driving forces endowing proliferative plasticity of tumor seeds in distant soils is required to develop and adapt better treatment systems for this lethal stage of the disease. To this end, we aimed to utilize transcript expression profiling features to predict the site-specific metastases of primary tumors and second, to identify the determinants of tissue specific progression. METHODS We used statistical machine learning for transcript feature selection to optimize classification and built tree-based classifiers to predict tissue specific sites of metastatic progression. RESULTS We developed a novel machine learning architecture that analyzes 33 types of RNA transcriptome profiles from The Cancer Genome Atlas (TCGA) database. Our classifier identifies the tumor type, derives synthetic instances of primary tumors metastasizing to distant organs and classifies the site-specific metastases in 16 types of cancers metastasizing to 12 locations. CONCLUSIONS We have demonstrated that site specific metastatic progression is predictable using transcriptomic profiling data from primary tumors and that the overrepresented biological processes in tumors metastasizing to congruent distant loci are highly overlapping. These results indicate site-specific progression was organotropic and core features of biological signaling pathways are identifiable that may describe proliferative plasticity in distant soils.
Collapse
Affiliation(s)
- Michael Skaro
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA.
| | - Marcus Hill
- Department of Computer Science, University of Georgia, Athens, GA, 30602, USA
| | - Yi Zhou
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Shannon Quinn
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- Department of Computer Science, University of Georgia, Athens, GA, 30602, USA
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Melissa B Davis
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine, New York, NY, 10065, USA
| | - Andrea Sboner
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine, New York, NY, 10065, USA
- Weill Cornell Medicine, HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, NY, 10021, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Mandi Murph
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Jonathan Arnold
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
2
|
Sun R, He X, Jiang X, Tao H. The new role of riluzole in the treatment of pancreatic cancer through the apoptosis and autophagy pathways. J Cell Biochem 2021; 122:934-944. [PMID: 31709624 DOI: 10.1002/jcb.29533] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/08/2019] [Indexed: 01/25/2023]
Abstract
Pancreatic cancer is always diagnosed at an advanced stage. Hence, chemotherapy becomes the best choice for patients. Therefore, new anticancer drugs for pancreatic cancer are needed. Riluzole (RIL) is mainly used to treat amyotrophic lateral sclerosis clinically, but many previous studies have shown that RIL could inhibit tumors. However, no report has explored the association between RIL and pancreatic cancer. To validate this association, we performed this study. Our data showed that RIL could induce cytotoxicity, block the cell cycle, and inhibit clone formation, apoptosis, and migration in pancreatic cancer cells. Moreover, we demonstrated that RIL could suppress autophagy. However, more experiments will be needed to validate the reliability of our conclusions. In summary, our data suggest that RIL might provide clues for the development of a treatment for human pancreatic cancer in the future.
Collapse
Affiliation(s)
- Rulin Sun
- Clinical Laboratory Center, Zhejiang Provincial People's Hospital, Zhejiang, P. R. China
- People's Hospital of Hangzhou Medical College, Hangzhou, P. R. China
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Zhejiang, P. R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Zhejiang, P. R. China
| | - Xujun He
- People's Hospital of Hangzhou Medical College, Hangzhou, P. R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Zhejiang, P. R. China
| | - Xiaoting Jiang
- Clinical Laboratory Center, Zhejiang Provincial People's Hospital, Zhejiang, P. R. China
- People's Hospital of Hangzhou Medical College, Hangzhou, P. R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Zhejiang, P. R. China
| | - Houquan Tao
- People's Hospital of Hangzhou Medical College, Hangzhou, P. R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Zhejiang, P. R. China
| |
Collapse
|
3
|
Fujita Y, Matsuda S, Sasaki Y, Masugi Y, Kitago M, Yagi H, Abe Y, Shinoda M, Tokino T, Sakamoto M, Kitagawa Y. Pathogenesis of multiple pancreatic cancers involves multicentric carcinogenesis and intrapancreatic metastasis. Cancer Sci 2020; 111:739-748. [PMID: 31799787 PMCID: PMC7004534 DOI: 10.1111/cas.14268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/13/2019] [Accepted: 12/01/2019] [Indexed: 12/19/2022] Open
Abstract
There are increased opportunities in oncology clinics to identify multiple pancreatic ductal adenocarcinomas (PDAC) that co-occur simultaneously or arise metachronously in the pancreatic parenchyma, yet their pathogenesis remains elusive. We hypothesized that two potential pathways, multicentric carcinogenesis and intrapancreatic metastasis, might contribute to forming multiple PDAC. Among 241 resected cases, we identified 20 cancer nodules from nine patients with multiple PDAC (six with synchronous PDAC, one with metachronous PDAC, and two with both synchronous and metachronous PDAC). Integrated clinical, pathological, and mutational analyses, using TP53 and SMAD4 immunostaining and targeted next-generation sequencing of 50 cancer-related genes, were conducted to examine the intertumor relationships. Four of the nine patients were assessed as having undergone multicentric carcinogenesis because of heterogeneity of immunohistochemical and/or mutation characteristics. In contrast, tumors in the other five patients showed intertumor molecular relatedness. Two of these five patients, available for matched sequencing data, showed two or more shared mutations. Moreover, all the smaller nodules in these five patients showed identical TP53 and SMAD4 expression patterns to the corresponding main tumors. Consequently, these five patients were considered to have undergone intrapancreatic metastasis. None of the five smaller nodules arising from intrapancreatic metastasis was accompanied by pancreatic intraepithelial neoplasia, and three of them were tiny (≤1mm). Patients whose tumors resulted from intrapancreatic metastasis appeared to have higher disease stages and worse outcome than those with tumors from multicentric carcinogenesis. Our results provide insight into pancreatic carcinogenesis, showing that the development of multiple PDAC involves distinct evolutionary paths that potentially affect patient prognosis.
Collapse
Affiliation(s)
- Yusuke Fujita
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Sachiko Matsuda
- Endowed Research Chair in Molecular Targeted Therapy of Gastrointestinal Cancer, Keio University School of Medicine, Tokyo, Japan
| | - Yasushi Sasaki
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| | - Yohei Masugi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Minoru Kitago
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Yagi
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yuta Abe
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Shinoda
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Tokino
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| | - Michiie Sakamoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|