1
|
Hashimoto T, Nakamura Y, Fujisawa T, Imai M, Shibuki T, Iida N, Ozaki H, Nonomura N, Morizane C, Iwata H, Okano S, Yamagami W, Yamazaki N, Kadowaki S, Taniguchi H, Ueno M, Boku S, Oki E, Komatsu Y, Yuki S, Makiyama A, Otsuka T, Hara H, Okano N, Nishina T, Sakamoto Y, Miki I, Kobayashi S, Yuda J, Kageyama SI, Nagamine M, Sakashita S, Sakamoto N, Yamashita R, Koga Y, Bando H, Ishii G, Kuwata T, Park WY, Ohtsu A, Yoshino T. The SCRUM-MONSTAR Cancer-Omics Ecosystem: Striving for a Quantum Leap in Precision Medicine. Cancer Discov 2024; 14:2243-2261. [PMID: 39023403 PMCID: PMC11528206 DOI: 10.1158/2159-8290.cd-24-0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/23/2024] [Accepted: 06/22/2024] [Indexed: 07/20/2024]
Abstract
The SCRUM-Japan MONSTAR-SCREEN consortium is a nationwide molecular profiling project employing artificial intelligence-driven multiomics analyses for patients with advanced malignancies, aiming to develop novel therapeutics and diagnostics and deliver effective drugs to patients. Concurrently, studies assessing molecular residual disease-based precision medicine for resectable solid tumors, including CIRCULATE-Japan, are ongoing. The substantial data generated by these platforms are stored within a state-of-the-art supercomputing infrastructure, VAPOR CONE. Since 2015, our project has registered over 24,000 patients as of December 2023. Among 16,144 patients with advanced solid tumors enrolled in MONSTAR-SCREEN projects, 5.0% have participated in matched clinical trials, demonstrating a 29.2% objective response rate and 14.8-month median survival (95% CI, 13.4-16.3) for patients treated in the matched clinical trials. Notably, patients who received matched therapy demonstrated significantly prolonged overall survival compared with those who did not (hazard ratio 0.77; 95% confidence interval, 0.71-0.83). Significance: Our nationwide molecular profiling initiative played pivotal roles in facilitating the enrollment of patients with advanced solid tumors into matched clinical trials and highlighted the substantial survival benefits of patients treated with matched therapy. We aim to facilitate an industry-academia data-sharing infrastructure ecosystem, fostering new drug discovery paradigms and precision medicine.
Collapse
Affiliation(s)
- Tadayoshi Hashimoto
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yoshiaki Nakamura
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takao Fujisawa
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Mitsuho Imai
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Taro Shibuki
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Naoko Iida
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hiroshi Ozaki
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Chigusa Morizane
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hiroji Iwata
- Department of Breast Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Susumu Okano
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Wataru Yamagami
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Naoya Yamazaki
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Shigenori Kadowaki
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Hiroya Taniguchi
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Makoto Ueno
- Department of Gastroenterology, Kanagawa Cancer Center, Yokohama, Japan
| | - Shogen Boku
- Cancer Treatment Center, Kansai Medical University Hospital, Osaka, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshito Komatsu
- Department of Cancer Center, Hokkaido University Hospital, Sapporo, Japan
| | - Satoshi Yuki
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Sapporo, Japan
| | - Akitaka Makiyama
- Cancer Center, Gifu University Hospital, Gifu, Japan
- Center for One Medicine Innovative Translational Research, Gifu University, Gifu, Japan
| | - Tomoyuki Otsuka
- Department of Medical Oncology, Osaka International Cancer Institute Osaka Prefectural Hospital Organization, Osaka, Japan
| | - Hiroki Hara
- Department of Gastroenterology, Saitama Cancer Center, Saitama, Japan
| | - Naohiro Okano
- Department of Medical Oncology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Tomohiro Nishina
- Department of Gastrointestinal Medical Oncology, National Hospital Organization Shikoku Cancer Center, Matsuyama, Japan
| | - Yasutoshi Sakamoto
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Izumi Miki
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Shin Kobayashi
- Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Junichiro Yuda
- Department of Hematology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Shun-Ichiro Kageyama
- Department of Radiation Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Michiko Nagamine
- TR Sample Management Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Shingo Sakashita
- TR Sample Management Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Naoya Sakamoto
- TR Sample Management Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Riu Yamashita
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yoshikatsu Koga
- Division of Developmental Therapeutics, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hideaki Bando
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Genichiro Ishii
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takeshi Kuwata
- Department of Genetic Medicine and Services, National Cancer Center Hospital East, Kashiwa, Japan
| | - Woong-Yang Park
- GxD Inc., Kashiwa, Japan
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Atsushi Ohtsu
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
2
|
Pokorna P, Palova H, Adamcova S, Jugas R, Al Tukmachi D, Kyr M, Knoflickova D, Kozelkova K, Bystry V, Mejstrikova S, Merta T, Trachtova K, Podlipna E, Mudry P, Pavelka Z, Bajciova V, Tinka P, Jarosova M, Ivkovic TC, Madlener S, Pal K, Stepien N, Mayr L, Tichy B, Drabova K, Jezova M, Kozakova S, Vanackova J, Radova L, Steininger K, Haberler C, Gojo J, Sterba J, Slaby O. Real-world performance of integrative clinical genomics in pediatric precision oncology. J Transl Med 2024:102161. [PMID: 39442669 DOI: 10.1016/j.labinv.2024.102161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/16/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
Despite significant improvement in the survival of pediatric cancer patients, treatment outcomes for high-risk, relapsed, and refractory cancers remain unsatisfactory. Moreover, prolonged survival is frequently associated with long-term adverse effects due to intensive multimodal treatments. Accelerating the progress of pediatric oncology requires both therapeutic advances and strategies to mitigate the long-term cytotoxic side effects, potentially through targeting specific molecular drivers of pediatric malignancies. In this report, we present the results of integrative genomic and transcriptomic profiling of 230 patients with malignant solid tumors (the "primary cohort") and 18 patients with recurrent or otherwise difficult-to-treat nonmalignant conditions (the "secondary cohort"). The integrative workflow for the primary cohort enabled the identification of clinically significant single-nucleotide variants, small insertions/deletions, and fusion genes, which were found in 55% and 28% of patients, respectively. For 38% of patients, molecularly informed treatment recommendations were made. In the secondary cohort, known or potentially driving alteration was detected in 89% of cases, including a suspected novel causal gene for patients with inclusion body infantile digital fibromatosis. Furthermore, 47% of findings also brought therapeutic implications for subsequent management. Across both cohorts, changes or refinements to the original histopathological diagnoses were achieved in 4% of cases. Our study demonstrates the efficacy of integrating advanced genomic and transcriptomic analyses to identify therapeutic targets, refine diagnoses, and optimize treatment strategies for challenging pediatric and young adult malignancies and underscores the need for broad implementation of precision oncology in clinical settings.
Collapse
Affiliation(s)
- Petra Pokorna
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic; Center for Precision Medicine, University Hospital Brno, Brno, Czech Republic
| | - Hana Palova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sona Adamcova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Robin Jugas
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Dagmar Al Tukmachi
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Michal Kyr
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Dana Knoflickova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Katerina Kozelkova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Vojtech Bystry
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Sona Mejstrikova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Tomas Merta
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Karolina Trachtova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Eliska Podlipna
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Peter Mudry
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zdenek Pavelka
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Viera Bajciova
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pavel Tinka
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marie Jarosova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Tina Catela Ivkovic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Sibylle Madlener
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Karol Pal
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Natalia Stepien
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Lisa Mayr
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Boris Tichy
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Klara Drabova
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marta Jezova
- Department of Pathology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sarka Kozakova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Pharmacy, University Hospital Brno, Brno, Czech Republic
| | - Jitka Vanackova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Lenka Radova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Karin Steininger
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Johannes Gojo
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Jaroslav Sterba
- Center for Precision Medicine, University Hospital Brno, Brno, Czech Republic; Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Center for Precision Medicine, University Hospital Brno, Brno, Czech Republic; Department of Pathology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
3
|
Owens CEL, Tan O, Kuroiwa-Trzmielina J, Shrestha RN, O'Brien T, Tyrrell V, Schofield DJ. The economic costs of precision medicine for clinical translational research among children with high-risk cancer. NPJ Precis Oncol 2024; 8:224. [PMID: 39367129 PMCID: PMC11452525 DOI: 10.1038/s41698-024-00711-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024] Open
Abstract
Embedding precision medicine in paediatric oncology shows promise to have a positive impact on how children with cancer will be treated in the future. While there are a number of studies of precision medicine in childhood cancer, there is limited evidence available on the cost of implementing the related testing. This is the first Australian study that systematically measures the cost of using precision medicine in the care of high-risk childhood cancers, through the Zero Childhood Cancer Precision Medicine Programme. In 2021 Australian dollars, the estimated costs inclusive of genomic and preclinical testing were: (A) $12,743 per patient for access; (B) $14,262 per identification of molecular cause; and (C) $21,769 per MTB recommendation. The information gained supports the understanding of the cost of reporting clinically significant outcomes relevant to the biology of the tumour, diagnosis, prognosis and potentially improving clinical management for a child.
Collapse
Affiliation(s)
- Christopher E L Owens
- Centre for Economic Impacts of Genomic Medicine, Macquarie Business School, Macquarie University, Sydney, NSW, Australia
| | - Owen Tan
- Centre for Economic Impacts of Genomic Medicine, Macquarie Business School, Macquarie University, Sydney, NSW, Australia
| | | | - Rupendra N Shrestha
- Centre for Economic Impacts of Genomic Medicine, Macquarie Business School, Macquarie University, Sydney, NSW, Australia.
| | - Tracey O'Brien
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Vanessa Tyrrell
- Children's Cancer Institute, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
| | - Deborah J Schofield
- Centre for Economic Impacts of Genomic Medicine, Macquarie Business School, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
4
|
van Schaik LF, Engelhardt EG, Wilthagen EA, Steeghs N, Fernández Coves A, Joore MA, van Harten WH, Retèl VP. Factors for a broad technology assessment of comprehensive genomic profiling in advanced cancer, a systematic review. Crit Rev Oncol Hematol 2024; 202:104441. [PMID: 39002790 DOI: 10.1016/j.critrevonc.2024.104441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/12/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024] Open
Abstract
Comprehensive Genomic Profiling (CGP) allows for the identification of many targets. Reimbursement decision-making is, however, challenging because besides the health benefits of on-label treatments and costs, other factors related to diagnostic and treatment pathways may also play a role. The aim of this study was to identify which other factors are relevant for the technology assessment of CGP and to summarize the available evidence for these factors. After a scoping search and two expert sessions, five factors were identified: feasibility, test journey, wider implications of diagnostic results, organisation of laboratories, and "scientific spillover". Subsequently, a systematic search identified 83 studies collecting mainly evidence for the factors "test journey" and "wider implications of diagnostic results". Its nature was, however, of limited value for decision-making. We recommend the use of comparative strategies, uniformity in outcome definitions, and the inclusion of a comprehensive set of factors in future evidence generation.
Collapse
Affiliation(s)
- L F van Schaik
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, P.O. Box 90103, Amsterdam 1006 BE, the Netherlands; Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Rotterdam, the Netherlands.
| | - E G Engelhardt
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, P.O. Box 90103, Amsterdam 1006 BE, the Netherlands.
| | - E A Wilthagen
- Scientific Information Service, Netherlands Cancer Institute, Antoni van Leeuwenhoek, Plesmanlaan 121, Amsterdam CX 1066, the Netherlands.
| | - N Steeghs
- Department of Medical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam CX 1066, the Netherlands.
| | - A Fernández Coves
- Department of Clinical Epidemiology and Medical Technology Assessment (KEMTA), P. Debyelaan 25, Oxford Building, P.O. Box 5800a, Maastricht, Limburg, the Netherlands; Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands.
| | - M A Joore
- Department of Clinical Epidemiology and Medical Technology Assessment (KEMTA), P. Debyelaan 25, Oxford Building, P.O. Box 5800a, Maastricht, Limburg, the Netherlands; Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands.
| | - W H van Harten
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, P.O. Box 90103, Amsterdam 1006 BE, the Netherlands; Department of Health Technology and Services Research, University of Twente, Enschede, the Netherlands.
| | - V P Retèl
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, P.O. Box 90103, Amsterdam 1006 BE, the Netherlands; Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
5
|
Ahmed M, Sieben A, Van Genechten T, Libbrecht S, Gilis N, De Praeter M, Fricx C, Calò P, Van Campenhout C, D’Haene N, Witte OD, Kempen LCV, Lammens M, Salmon I, Lebrun L. Rare Oncogenic Fusions in Pediatric Central Nervous System Tumors: A Case Series and Literature Review. Cancers (Basel) 2024; 16:3344. [PMID: 39409964 PMCID: PMC11475864 DOI: 10.3390/cancers16193344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Background and Objectives: Central Nervous System (CNS) pediatric tumors represent the most common solid tumors in children with a wide variability in terms of survival and therapeutic response. By contrast to their adult counterpart, the mutational landscape of pediatric CNS tumors is characterized by oncogenic fusions rather than multiple mutated genes. CNS pediatric tumors associated with oncogenic fusions represent a complex landscape of tumors with wide radiological, morphological and clinical heterogeneity. In the fifth CNS WHO classification, there are few pediatric CNS tumors for which diagnosis is based on a single oncogenic fusion. This work aims to provide an overview of the impact of rare oncogenic fusions (NTRK, ROS, ALK, MET, FGFR, RAF, MN1, BCOR and CIC genes) on pathogenesis, histological phenotype, diagnostics and theranostics in pediatric CNS tumors. We report four cases of pediatric CNS tumors associated with NTRK (n = 2), ROS (n = 1) and FGFR3 (n = 1) oncogenic fusion genes as a proof of concept. Cases presentation and literature review: The literature review and the cohort that we described here underline that most of these rare oncogenic fusions are not specific to a single morpho-molecular entity. Even within tumors harboring the same oncogenic fusions, a wide range of morphological, molecular and epigenetic entities can be observed. Conclusions: These findings highlight the need for caution when applying the fifth CNS WHO classification, as the vast majority of these fusions are not yet incorporated in the diagnosis, including grade evaluation and DNA methylation classification.
Collapse
Affiliation(s)
- Melek Ahmed
- Division of Pathology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Anne Sieben
- Division of Pathology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
- Instituut Born Bunge (IBB), 2610 Wilrijk, Belgium
| | - Toon Van Genechten
- Division of Pediatric Oncology and Hematology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Sasha Libbrecht
- Division of Pathology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Nathalie Gilis
- Department of Neurosurgery, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Erasme University Hospital, 1070 Brussels, Belgium
| | - Mania De Praeter
- Division of Neurosurgery, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Christophe Fricx
- Department of Pediatrics, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Erasme University Hospital, 1070 Brussels, Belgium
| | - Pierluigi Calò
- Department of Pediatric Oncology and Hematology, Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), 1020 Brussels, Belgium
| | - Claude Van Campenhout
- Department of Pathology, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Erasme University Hospital, 1070 Brussels, Belgium
| | - Nicky D’Haene
- Department of Pathology, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Erasme University Hospital, 1070 Brussels, Belgium
| | - Olivier De Witte
- Department of Neurosurgery, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Erasme University Hospital, 1070 Brussels, Belgium
| | - Léon C. Van Kempen
- Division of Pathology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Martin Lammens
- Division of Pathology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Isabelle Salmon
- DIAPath, Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium
- Department of Pathology, Centre Universitaire Inter Regional d’Expertise en Anatomie Pathologique Hospitaliere (CurePath), 6040 Charleroi, Belgium
| | - Laetitia Lebrun
- Department of Pathology, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Erasme University Hospital, 1070 Brussels, Belgium
| |
Collapse
|
6
|
Pujol Manresa A, Buendía López S, Andión M, Herrero B, Lassaletta Á, Ramirez M, Ruano D, Hernández-Marqués C, Varo A, de Rojas T, Cortés Hernández M, Verdú-Amorós J, Martín Prado S, Artigas A, Redondo E, Ruiz Pato J, Herreros López P, Sevilla J, Madero L, Moreno L, Bautista Sirvent F, Rubio-San-Simón A. Safety and outcome of children, adolescents and young adults participating in phase I/II clinical oncology trials: a 9-year center experience. Front Pediatr 2024; 12:1423484. [PMID: 39318620 PMCID: PMC11421171 DOI: 10.3389/fped.2024.1423484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/13/2024] [Indexed: 09/26/2024] Open
Abstract
Introduction Enrolling children with cancer in early phase trials is crucial to access innovative treatments, contributing to advancing pediatric oncology research and providing tailored therapeutic options. Our objective is to analyze the impact of these trials on patient outcomes and safety, and to examine the evolution and feasibility of trials in pediatric cancer over the past decade. Methods All patients recruited in pediatric anticancer phase I/II clinical trials from January 2014 to December 2022 were included. Clinical records and trial protocols were analyzed. Results A total of 215 patients (median age 11.2 years, range 1-29.5) were included in 52 trials (258 inclusions). Patients with extracranial solid tumors (67%), central nervous system (CNS) tumors (24%), and leukemia (9%) were included. The most common investigational drugs were small molecules (28.3%) and antibodies (20.5%). Serious adverse events were experienced by 41% of patients, 4.4% discontinued treatment because of toxicity and two had toxic deaths. Median event-free survival was 3.7 months (95%CI: 2.8-4.5), longer in phase II trials than in phase I (2 vs. 6.3 months; p ≤ 0.001). Median overall survival was 12 months (95%CI: 9-15), higher in target-specific vs. non-target-specific trials (14 vs. 6 months; p ≤ 0.001). Discussion A significant and increasing number of patients have been included in early clinical trials, suggesting that both oncologists and families consider it valuable to be referred to specialized Units to access new therapies. Moreover, our data suggests that participation in early clinical trials, although not without potential toxicities, might have a positive impact on individual outcomes.
Collapse
Affiliation(s)
- Anna Pujol Manresa
- Pediatric Hematology-Oncology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Division of Pediatric Hematology and Oncology, Hospital Universitari Vall D'Hebron, Barcelona, Spain
| | - Susana Buendía López
- Pediatric Hematology-Oncology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Maitane Andión
- Pediatric Hematology-Oncology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- La Princesa Institute of Health, Madrid, Spain
| | - Blanca Herrero
- Pediatric Hematology-Oncology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- La Princesa Institute of Health, Madrid, Spain
| | - Álvaro Lassaletta
- Pediatric Hematology-Oncology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Manuel Ramirez
- Pediatric Hematology-Oncology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- La Princesa Institute of Health, Madrid, Spain
| | - David Ruano
- Pediatric Hematology-Oncology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- La Princesa Institute of Health, Madrid, Spain
| | - Carmen Hernández-Marqués
- Pediatric Hematology-Oncology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Amalia Varo
- Pediatric Hematology-Oncology Department, Pediatric Cancer Center Barcelona, Barcelona, Spain
| | | | - Marta Cortés Hernández
- Pediatric Hematology-Oncology Department, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Jaime Verdú-Amorós
- Pediatric Hematology-Oncology Department, Hospital Clínico Universitario, Valencia, Spain
- Biomedical Research Institute, INCLIVA, Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Silvia Martín Prado
- Pharmacy Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Andrea Artigas
- Pediatric Hematology-Oncology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Esther Redondo
- Pediatric Hematology-Oncology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Julia Ruiz Pato
- Pediatric Hematology-Oncology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Pilar Herreros López
- Pediatric Hematology-Oncology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Julián Sevilla
- Pediatric Hematology-Oncology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Luis Madero
- Pediatric Hematology-Oncology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- La Princesa Institute of Health, Madrid, Spain
| | - Lucas Moreno
- Division of Pediatric Hematology and Oncology, Hospital Universitari Vall D'Hebron, Barcelona, Spain
| | - Francisco Bautista Sirvent
- Pediatric Hematology-Oncology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Trial and Data Centrum, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Alba Rubio-San-Simón
- Pediatric Hematology-Oncology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- La Princesa Institute of Health, Madrid, Spain
| |
Collapse
|
7
|
Laetsch TW, Ludwig K, Williams PM, Roy-Chowdhuri S, Patton DR, Coffey B, Reid JM, Piao J, Saguilig L, Alonzo TA, Berg SL, Mhlanga J, Fox E, Weigel BJ, Hawkins DS, Mooney MM, Takebe N, Tricoli JV, Janeway KA, Seibel NL, Parsons DW. Phase II Study of Samotolisib in Children and Young Adults With Tumors Harboring Phosphoinositide 3-Kinase/Mammalian Target of Rapamycin Pathway Alterations: Pediatric MATCH APEC1621D. JCO Precis Oncol 2024; 8:e2400258. [PMID: 39298693 DOI: 10.1200/po.24.00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/03/2024] [Accepted: 07/29/2024] [Indexed: 09/22/2024] Open
Abstract
PURPOSE Patients age 1-21 years with relapsed or refractory solid and CNS tumors were assigned to phase II studies of molecularly targeted therapies on the National Cancer Institute-Children's Oncology Group (NCI-COG) Pediatric Molecular Analysis for Therapy Choice (MATCH) trial. Patients whose tumors harbored predefined genetic alterations in the phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway and lacked mitogen-activated protein kinase pathway activating alterations were treated with the PI3K/mTOR inhibitor samotolisib. METHODS Patients received samotolisib twice daily in 28-day cycles until disease progression or unacceptable toxicity. A rolling 6 limited dose escalation was performed as, to our knowledge, this was the first pediatric study of samotolisib. The primary end point was the objective response rate; secondary end points included progression-free survival (PFS) and the recommended phase II dose and toxicity of samotolisib in children. RESULTS A total of 3.4% (41/1,206) of centrally tested patients were matched to this arm. Seventeen patients were treated. Among treated patients, the most common diagnoses included osteosarcoma (n = 6) and high-grade glioma (n = 5) harboring alterations in phosphatase and tensin homolog (n = 6), PIK3CA (n = 5), and tuberous sclerosis complex 2 (n = 3). No objective responses or prolonged stable disease were observed. Three-month PFS was 12% (95% CI, 2 to 31). Two patients experienced dose-limiting toxicities (mucositis and pneumonitis). Dose level 2 (115 mg/m2/dose twice daily) was determined to be the recommended phase II dose of samotolisib in children. CONCLUSION This nationwide study was successful at identifying patients and evaluating the efficacy of molecularly targeted therapy for rare molecular subgroups of patients in a histology-agnostic fashion. Unfortunately, there was no activity of samotolisib against tumors with PI3K/mTOR pathway alterations. Prospective trials such as the NCI-COG Pediatric MATCH are necessary to evaluate the efficacy of molecularly targeted therapies given their increasing use in clinical practice.
Collapse
Affiliation(s)
- Theodore W Laetsch
- Children's Hospital of Philadelphia/University of Pennsylvania, Philadelphia, PA
| | | | | | | | - David R Patton
- Center for Biomedical Informatics and Information Technology, NCI, NIH, Bethesda, MD
| | - Brent Coffey
- Center for Biomedical Informatics and Information Technology, NCI, NIH, Bethesda, MD
| | - Joel M Reid
- Mayo Clinic Comprehensive Cancer Center, Rochester, MN
| | - Jin Piao
- Keck School of Medicine, University of Southern California, Los Angeles, CA
| | | | - Todd A Alonzo
- Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Stacey L Berg
- Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX
| | - Joyce Mhlanga
- Washington University School of Medicine, St Louis, MO
| | | | | | - Douglas S Hawkins
- Seattle Children's Hospital and University of Washington, Seattle, WA
| | - Margaret M Mooney
- Division of Cancer Treatment and Diagnosis, Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD
| | - Naoko Takebe
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - James V Tricoli
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | | | - Nita L Seibel
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | | |
Collapse
|
8
|
Geoerger B, Bautista F, André N, Berlanga P, Gatz SA, Marshall LV, Rubino J, Archambaud B, Marchais A, Rubio-San-Simón A, Ducassou S, Zwaan CM, Casanova M, Nysom K, Pellegrino S, Hoog-Labouret N, Buzyn A, Blanc P, Paoletti X, Vassal G. Precision cancer medicine platform trials: Concepts and design of AcSé-ESMART. Eur J Cancer 2024; 208:114201. [PMID: 39018630 DOI: 10.1016/j.ejca.2024.114201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/19/2024]
Abstract
Precision cancer medicine brought the promise of improving outcomes for patients with cancer. High-throughput molecular profiling of tumors at treatment failure aims to direct a patient to a treatment matched to the tumor profile. In this way, improved outcome has been achieved in a small number of patients whose tumors exhibit unique targetable oncogenic drivers. Most cancers, however, contain multiple genetic alterations belonging to and of various hallmarks of cancer; for most of these alterations, there is limited knowledge on the level of evidence, their hierarchical roles in oncogenicity, and utility as biomarkers for response to targeted treatment(s). We developed a proof-of-concept trial that explores new treatment strategies in a molecularly-enriched tumor-agnostic, pediatric population. The evaluation of novel agents, including first-in-child molecules, alone or in combination, is guided by the available understanding of or hypotheses for the mechanisms of action of the diverse cancer events. Main objectives are: to determine 1) recommended phase 2 doses, 2) activity signals to provide the basis for disease specific development, and 3) to define new predictive biomarkers. Here we outline concepts, rationales and designs applied in the European AcSé-ESMART trial and highlight the feasibility but also complexity and challenges of such innovative platform trials.
Collapse
Affiliation(s)
- Birgit Geoerger
- Gustave Roussy Cancer Campus, Department of Pediatric and Adolescent Oncology, Université Paris-Saclay, Villejuif, France; Gustave Roussy Cancer Campus, INSERM U1015, Université Paris-Saclay, Villejuif, France.
| | - Francisco Bautista
- Hospital Niño Jesús, Department of Pediatric Oncology, Hematology and Stem Cell Transplantation, Madrid, Spain; Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Nicolas André
- Hôpital de la Timone, Department of Pediatric Oncology, AP-HM, Marseille, France; UMR INSERM 1068, CNRS UMR 7258, Aix Marseille Université U105, Marseille Cancer Research Center (CRCM), France; Metronomics Global Health Initiative, Marseille, France
| | - Pablo Berlanga
- Gustave Roussy Cancer Campus, Department of Pediatric and Adolescent Oncology, Université Paris-Saclay, Villejuif, France
| | - Susanne A Gatz
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Lynley V Marshall
- Royal Marsden Hospital NHS Foundation Trust Paediatric and Adolescent Oncology Drug Development Unit, and & The Institute of Cancer Research, Division of Clinical Studies, London, United Kingdom
| | - Jonathan Rubino
- Gustave Roussy Cancer Campus, Clinical Research Direction, Université Paris-Saclay, Villejuif, France
| | - Baptiste Archambaud
- Inserm, Université Paris-Saclay, CESP U1018, Oncostat, labeled Ligue Contre le Cancer, Villejuif, France; Gustave Roussy Cancer Campus, Office of Biostatistics and Epidemiology, Université Paris-Saclay, Villejuif, France, Université Paris-Saclay, CESP U1018, Oncostat, labeled Ligue Contre le Cancer, Villejuif, France
| | - Antonin Marchais
- Gustave Roussy Cancer Campus, Department of Pediatric and Adolescent Oncology, Université Paris-Saclay, Villejuif, France; Gustave Roussy Cancer Campus, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Alba Rubio-San-Simón
- Hospital Niño Jesús, Department of Pediatric Oncology, Hematology and Stem Cell Transplantation, Madrid, Spain
| | - Stephane Ducassou
- Centre Hospitalier Universitaire Pellegrin - Hôpital des Enfants, Bordeaux, France
| | - C Michel Zwaan
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Michela Casanova
- Fondazione IRCCS Istituto Nazionale dei Tumori, Pediatric Oncology Unit, Milan, Italy
| | - Karsten Nysom
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Sophie Pellegrino
- Gustave Roussy Cancer Campus, Clinical Research Direction, Université Paris-Saclay, Villejuif, France
| | | | - Agnes Buzyn
- Institut National de Cancer, Boulogne, France
| | | | - Xavier Paoletti
- Inserm, Université Paris-Saclay, CESP U1018, Oncostat, labeled Ligue Contre le Cancer, Villejuif, France; Gustave Roussy Cancer Campus, Office of Biostatistics and Epidemiology, Université Paris-Saclay, Villejuif, France, Université Paris-Saclay, CESP U1018, Oncostat, labeled Ligue Contre le Cancer, Villejuif, France
| | - Gilles Vassal
- Gustave Roussy Cancer Campus, Department of Pediatric and Adolescent Oncology, Université Paris-Saclay, Villejuif, France; Gustave Roussy Cancer Campus, Clinical Research Direction, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
9
|
Seiboldt T, Zeiser C, Nguyen D, Celikyürekli S, Herter S, Najafi S, Stroh-Dege A, Meulenbroeks C, Mack N, Salem-Altintas R, Westermann F, Schlesner M, Milde T, Kool M, Holland-Letz T, Vogler M, Peterziel H, Witt O, Oehme I. Synergy of retinoic acid and BH3 mimetics in MYC(N)-driven embryonal nervous system tumours. Br J Cancer 2024; 131:763-777. [PMID: 38942989 PMCID: PMC11333474 DOI: 10.1038/s41416-024-02740-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Certain paediatric nervous system malignancies have dismal prognoses. Retinoic acid (RA) is used in neuroblastoma treatment, and preclinical data indicate potential benefit in selected paediatric brain tumour entities. However, limited single-agent efficacy necessitates combination treatment approaches. METHODS We performed drug sensitivity profiling of 76 clinically relevant drugs in combination with RA in 16 models (including patient-derived tumouroids) of the most common paediatric nervous system tumours. Drug responses were assessed by viability assays, high-content imaging, and apoptosis assays and RA relevant pathways by RNAseq from treated models and patient samples obtained through the precision oncology programme INFORM (n = 2288). Immunoprecipitation detected BCL-2 family interactions, and zebrafish embryo xenografts were used for in vivo efficacy testing. RESULTS Group 3 medulloblastoma (MBG3) and neuroblastoma models were highly sensitive to RA treatment. RA induced differentiation and regulated apoptotic genes. RNAseq analysis revealed high expression of BCL2L1 in MBG3 and BCL2 in neuroblastomas. Co-treatments with RA and BCL-2/XL inhibitor navitoclax synergistically decreased viability at clinically achievable concentrations. The combination of RA with navitoclax disrupted the binding of BIM to BCL-XL in MBG3 and to BCL-2 in neuroblastoma, inducing apoptosis in vitro and in vivo. CONCLUSIONS RA treatment primes MBG3 and NB cells for apoptosis, triggered by navitoclax cotreatment.
Collapse
Affiliation(s)
- Till Seiboldt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology (B310), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Constantia Zeiser
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology (B310), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Duy Nguyen
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simay Celikyürekli
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology (B310), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sonja Herter
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology (B310), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Sara Najafi
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology (B310), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - Alexandra Stroh-Dege
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology (B310), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
| | | | - Norman Mack
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Rabia Salem-Altintas
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology (B310), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Frank Westermann
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
- Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Schlesner
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Biomedical Informatics, Data Mining and Data Analytics, Faculty of Applied Computer Science and Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Till Milde
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology (B310), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Tim Holland-Letz
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Meike Vogler
- Institute for Experimental Pediatric Hematology and Oncology, Goethe-University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt, Germany
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe-University Frankfurt, Frankfurt, Germany
| | - Heike Peterziel
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology (B310), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
| | - Olaf Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology (B310), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ina Oehme
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Clinical Cooperation Unit Pediatric Oncology (B310), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.
- National Center for Tumor Diseases Heidelberg, Heidelberg, Germany.
| |
Collapse
|
10
|
Matt GY, Sioson E, Shelton K, Wang J, Lu C, Zaldivar Peraza A, Gangwani K, Paul R, Reilly C, Acić A, Liu Q, Sandor SR, McLeod C, Patel J, Wang F, Im C, Wang Z, Sapkota Y, Wilson CL, Bhakta N, Ness KK, Armstrong GT, Hudson MM, Robison LL, Zhang J, Yasui Y, Zhou X. St. Jude Survivorship Portal: Sharing and Analyzing Large Clinical and Genomic Datasets from Pediatric Cancer Survivors. Cancer Discov 2024; 14:1403-1417. [PMID: 38593228 PMCID: PMC11294819 DOI: 10.1158/2159-8290.cd-23-1441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/08/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024]
Abstract
Childhood cancer survivorship studies generate comprehensive datasets comprising demographic, diagnosis, treatment, outcome, and genomic data from survivors. To broadly share this data, we created the St. Jude Survivorship Portal (https://survivorship.stjude.cloud), the first data portal for sharing, analyzing, and visualizing pediatric cancer survivorship data. More than 1,600 phenotypic variables and 400 million genetic variants from more than 7,700 childhood cancer survivors can be explored on this free, open-access portal. Summary statistics of variables are computed on-the-fly and visualized through interactive and customizable charts. Survivor cohorts can be customized and/or divided into groups for comparative analysis. Users can also seamlessly perform cumulative incidence and regression analyses on the stored survivorship data. Using the portal, we explored the ototoxic effects of platinum-based chemotherapy, uncovered a novel association between mental health, age, and limb amputation, and discovered a novel haplotype in MAGI3 strongly associated with cardiomyopathy specifically in survivors of African ancestry. Significance: The St. Jude Survivorship Portal is the first data portal designed to share and explore clinical and genetic data from childhood cancer survivors. The portal provides both open- and controlled-access features and will fulfill a wide range of data sharing needs of the survivorship research community and beyond. See co-corresponding author Xin Zhou discuss this research article, published simultaneously at the AACR Annual Meeting 2024: https://vimeo.com/932617204/7d99fa4958.
Collapse
Affiliation(s)
- Gavriel Y. Matt
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Edgar Sioson
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Kyla Shelton
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Jian Wang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Congyu Lu
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Airen Zaldivar Peraza
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Karishma Gangwani
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Robin Paul
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Colleen Reilly
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Aleksandar Acić
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Qi Liu
- School of Public Health, University of Alberta, Edmonton, Canada.
| | - Stephanie R. Sandor
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Clay McLeod
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Jaimin Patel
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Fan Wang
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Cindy Im
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota.
| | - Zhaoming Wang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee.
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Yadav Sapkota
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Carmen L. Wilson
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Nickhill Bhakta
- Department of Global Pediatric Medicine, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Kirsten K. Ness
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Gregory T. Armstrong
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Melissa M. Hudson
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee.
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Leslie L. Robison
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| | - Yutaka Yasui
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee.
- School of Public Health, University of Alberta, Edmonton, Canada.
| | - Xin Zhou
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee.
| |
Collapse
|
11
|
Ryl T, Afanasyeva E, Hartmann T, Schwermer M, Schneider M, Schröder C, Wagemanns M, Bister A, Kanber D, Steenpass L, Schramm K, Jones B, Jones DTW, Biewald E, Astrahantseff K, Hanenberg H, Rahmann S, Lohmann DR, Schramm A, Ketteler P. A MYCN-driven de-differentiation profile identifies a subgroup of aggressive retinoblastoma. Commun Biol 2024; 7:919. [PMID: 39079981 PMCID: PMC11289481 DOI: 10.1038/s42003-024-06596-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/17/2024] [Indexed: 08/02/2024] Open
Abstract
Retinoblastoma are childhood eye tumors arising from retinal precursor cells. Two distinct retinoblastoma subtypes with different clinical behavior have been described based on gene expression and methylation profiling. Using consensus clustering of DNA methylation analysis from 61 retinoblastomas, we identify a MYCN-driven cluster of subtype 2 retinoblastomas characterized by DNA hypomethylation and high expression of genes involved in protein synthesis. Subtype 2 retinoblastomas outside the MYCN-driven cluster are characterized by high expression of genes from mesodermal development, including NKX2-5. Knockdown of MYCN expression in retinoblastoma cell models causes growth arrest and reactivates a subtype 1-specific photoreceptor signature. These molecular changes suggest that removing the driving force of MYCN oncogenic activity rescues molecular circuitry driving subtype 1 biology. The MYCN-RB gene signature generated from the cell models better identifies MYCN-driven retinoblastoma than MYCN amplification and can identify cases that may benefit from MYCN-targeted therapy. MYCN drives tumor progression in a molecularly defined retinoblastoma subgroup, and inhibiting MYCN activity could restore a more differentiated and less aggressive tumor biology.
Collapse
Affiliation(s)
- Tatsiana Ryl
- Department of Pediatric Hematology and Oncology, University Hospital Essen, Essen, Germany
| | - Elena Afanasyeva
- Department of Pediatric Hematology and Oncology, University Hospital Essen, Essen, Germany
| | - Till Hartmann
- Algorithms for Reproducible Bioinformatics, Genome Informatics, Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Melanie Schwermer
- Department of Pediatric Hematology and Oncology, University Hospital Essen, Essen, Germany
| | - Markus Schneider
- Department of Pediatric Hematology and Oncology, University Hospital Essen, Essen, Germany
| | - Christopher Schröder
- Algorithms for Reproducible Bioinformatics, Genome Informatics, Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Maren Wagemanns
- Department of Pediatric Hematology and Oncology, University Hospital Essen, Essen, Germany
| | - Arthur Bister
- Department of Pediatric Hematology and Oncology, University Hospital Essen, Essen, Germany
| | - Deniz Kanber
- Institute of Human Genetics, University Hospital Essen, University Duisburg Essen, Essen, Germany
| | - Laura Steenpass
- Human and Animal Cell Lines, Leibniz Institute DSMZ German Collection of Microorganisms and Cell Cultures, 38124, Braunschweig, Germany
| | - Kathrin Schramm
- Division of Pediatric Glioma Research, Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Barbara Jones
- Division of Pediatric Glioma Research, Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - David T W Jones
- Division of Pediatric Glioma Research, Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Eva Biewald
- Department of Ophthalmology, Medical Faculty, University of Duisburg-Essen, 45147, Essen, Germany
| | - Kathy Astrahantseff
- Department of Pediatric Oncology and Hematology, Charité - University Medicine Berlin, Berlin, Germany
| | - Helmut Hanenberg
- Department of Pediatric Hematology and Oncology, University Hospital Essen, Essen, Germany
| | - Sven Rahmann
- Algorithmic Bioinformatics, Center for Bioinformatics Saar and Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
| | - Dietmar R Lohmann
- Institute of Human Genetics, University Hospital Essen, University Duisburg Essen, Essen, Germany
| | - Alexander Schramm
- Laboratory for Molecular Oncology, Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Petra Ketteler
- Department of Pediatric Hematology and Oncology, University Hospital Essen, Essen, Germany.
- Institute of Human Genetics, University Hospital Essen, University Duisburg Essen, Essen, Germany.
| |
Collapse
|
12
|
Bautista F, Verdú-Amorós J, Geoerger B, Rubio-San-Simón A, Paoletti X, Zwaan CM, Casanova M, Marshall LV, Carceller F, Doz F, Lecinse C, Vassal G, Pearson ADJ, Kearns P, Moreno L. Evolution of the Innovative Therapies for Children With Cancer Consortium Trial Portfolio for Drug Development for Children With Cancer. J Clin Oncol 2024; 42:2516-2526. [PMID: 38743911 DOI: 10.1200/jco.23.01237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 02/09/2024] [Accepted: 02/29/2024] [Indexed: 05/16/2024] Open
Abstract
PURPOSE The aim of the Innovative Therapies for Children with Cancer (ITCC) consortium is to improve access to novel therapies for children and adolescents with cancer. The evolution of the ITCC clinical trial portfolio since 2003 was reviewed. METHODS All ITCC-labeled phase I/II trials opened between January 1, 2003 and February 3, 2018 were analyzed in two periods (2003-2010 and 2011-2018), and data were extracted from the ITCC database, regulatory agencies' registries, and publications. RESULTS Sixty-one trials (62% industry-sponsored) enrolled 3,198 patients. The number of trials in the second period increased by almost 300% (16 v 45). All biomarker-driven trials (n = 14) were conducted in the second period. The use of rolling six and model-based designs increased (1 of 9, 11% v 21 of 31, 68%), and that of 3 + 3 designs decreased (5 of 9, 55% v 5 of 31, 16%; P = .014). The proportion of studies evaluating chemotherapeutics only decreased (5 of 16, 31% v 4 of 45, 9%), the proportion of single-agent targeted therapies did not change (9 of 16, 56.2% v 24 of 45, 53.3%), the proportion of combination targeted therapies trials increased (2 of 16, 12%, v 17 of 45, 38%), the proportion of randomized phase II trials increased (1 of 7, 14% v 8 of 14, 57%). More trials were part of a pediatric investigation plan in the second period (4 of 16, 25% v 21 of 45, 46%). The median time for Ethics Committees' approvals was 1.7 times longer for academic compared with industry-sponsored trials. CONCLUSION This study reports a shift in the paradigm of early drug development for childhood cancers, with more biologically relevant targets evaluated in biomarker-driven trials or in combination with other therapies and with more model-based or randomized designs and a greater focus on fulfilling regulatory requirements. Improvement of trial setup and recruitment could increase the number of patients benefiting from novel agents.
Collapse
Affiliation(s)
- Francisco Bautista
- Division of Pediatric Hematology and Oncology, Hospital Universitario Niño Jesús, Madrid, Spain
- Princess Máxima Center, Utrecht, the Netherlands
| | - Jaime Verdú-Amorós
- Division of Pediatric Hematology and Oncology, Hospital Universitario Niño Jesús, Madrid, Spain
- Division of Pediatric Hematology and Oncology, Hospital Clínico Universitario de Valencia, Biomedical Research Institute, INCLIVA, Valencia, Spain
| | - Birgit Geoerger
- Pediatric and Adolescent Oncology Department, Gustave Roussy Cancer Campus, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Alba Rubio-San-Simón
- Division of Pediatric Hematology and Oncology, Hospital Universitario Niño Jesús, Madrid, Spain
| | - Xavier Paoletti
- Institut Curie & Université Versailles St Quentin & INSERM U900 STAMPM, Paris, France
| | - C Michel Zwaan
- Princess Máxima Center, Utrecht, the Netherlands
- Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Michela Casanova
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Lynley V Marshall
- Pediatric and Adolescent Oncology Drug Development, Children & Young People's Unit, The Royal Marsden NHS Foundation Trust, London, United Kingdom
- Division of Clinical Studies and Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Fernando Carceller
- Pediatric and Adolescent Oncology Drug Development, Children & Young People's Unit, The Royal Marsden NHS Foundation Trust, London, United Kingdom
- Division of Clinical Studies and Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Francois Doz
- SIREDO Cancer Center (Care, Innovation and Research in Pediatric, Adolescents, and Young Adults Oncology), Curie Institute Paris, and University Paris Cité, Paris, France
| | - Carole Lecinse
- Innovative Therapies for Children with Cancer, Gustave Roussy Cancer Campus, Villejuif, France
| | - Gilles Vassal
- Innovative Therapies for Children with Cancer, Gustave Roussy Cancer Campus, Villejuif, France
| | - Andrew D J Pearson
- Pediatric and Adolescent Oncology Drug Development, Children & Young People's Unit, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Pamela Kearns
- Institute of Cancer and Genomic Sciences, NIHR Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, United Kingdom
| | - Lucas Moreno
- Division of Pediatric Hematology and Oncology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| |
Collapse
|
13
|
Forrest SJ, Gupta H, Ward A, Li YY, Doan D, Al-Ibraheemi A, Alexandrescu S, Bandopadhayay P, Shusterman S, Mullen EA, Collins NB, Chi SN, Wright KD, Kumari P, Mazor T, Ligon KL, Shivdasani P, Manam M, MacConaill LE, Ceca E, Benich SN, London WB, Schilsky RL, Bruinooge SS, Guidry Auvil JM, Cerami E, Rollins BJ, Meyerson ML, Lindeman NI, Johnson BE, Cherniack AD, Church AJ, Janeway KA. Molecular profiling of 888 pediatric tumors informs future precision trials and data-sharing initiatives in pediatric cancer. Nat Commun 2024; 15:5837. [PMID: 38992034 PMCID: PMC11239876 DOI: 10.1038/s41467-024-49944-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 06/18/2024] [Indexed: 07/13/2024] Open
Abstract
To inform clinical trial design and real-world precision pediatric oncology practice, we classified diagnoses, assessed the landscape of mutations, and identified genomic variants matching trials in a large unselected institutional cohort of solid tumors patients sequenced at Dana-Farber / Boston Children's Cancer and Blood Disorders Center. Tumors were sequenced with OncoPanel, a targeted next-generation DNA sequencing panel. Diagnoses were classified according to the International Classification of Diseases for Oncology (ICD-O-3.2). Over 6.5 years, 888 pediatric cancer patients with 95 distinct diagnoses had successful tumor sequencing. Overall, 33% (n = 289/888) of patients had at least 1 variant matching a precision oncology trial protocol, and 14% (41/289) were treated with molecularly targeted therapy. This study highlights opportunities to use genomic data from hospital-based sequencing performed either for research or clinical care to inform ongoing and future precision oncology clinical trials. Furthermore, the study results emphasize the importance of data sharing to define the genomic landscape and targeted treatment opportunities for the large group of rare pediatric cancers we encounter in clinical practice.
Collapse
Affiliation(s)
- Suzanne J Forrest
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Hersh Gupta
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Abigail Ward
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Yvonne Y Li
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Duong Doan
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Alyaa Al-Ibraheemi
- Harvard Medical School, Boston, MA, USA
- Boston Children's Hospital, Boston, MA, USA
| | - Sanda Alexandrescu
- Harvard Medical School, Boston, MA, USA
- Boston Children's Hospital, Boston, MA, USA
| | - Pratiti Bandopadhayay
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Suzanne Shusterman
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Elizabeth A Mullen
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Natalie B Collins
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Susan N Chi
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Karen D Wright
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Tali Mazor
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Keith L Ligon
- Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Boston Children's Hospital, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | - Evelina Ceca
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Sidney N Benich
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Wendy B London
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | | | | | | | | | - Barrett J Rollins
- Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Matthew L Meyerson
- Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Bruce E Johnson
- Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Andrew D Cherniack
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alanna J Church
- Harvard Medical School, Boston, MA, USA
- Boston Children's Hospital, Boston, MA, USA
| | - Katherine A Janeway
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Gretser S, Kinzler MN, Theilen TM, Wild PJ, Vogler M, Gradhand E. Fluorescence confocal microscopy for evaluation of fresh surgical specimens and consecutive tumor cell isolation in rare pediatric tumors. Virchows Arch 2024:10.1007/s00428-024-03861-1. [PMID: 38980338 DOI: 10.1007/s00428-024-03861-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
Fluorescence confocal microscopy (FCM) is an optical technique that uses laser light sources of different wavelengths to generate real-time images of fresh, unfixed tissue specimens. FCM allows histological evaluation of fresh tissue samples without the associated cryo artifacts after frozen sectioning. The aim of this study was to prospectively evaluate pediatric tumor specimens and assess their suitability for fresh tumor sampling. In addition, we aimed to determine whether tumor cell isolation for stable cell culture is still feasible after FCM imaging. Pediatric tumor specimens were imaged using FCM. Tumor viability and suitability for tissue sampling were evaluated and compared with H&E staining after paraffin embedding. In addition, FCM-processed and non-FCM-processed tissue samples were sent for tumor cell isolation to evaluate possible effects after FCM processing. When comparing estimated tumor cell viability using FCM and H&E, we found good to excellent correlating estimates (intraclass correlation coefficient = 0.891, p < 0.001), as well as substantial agreement in whether the tissue appeared adequate for fresh tissue collection (κ = 0.762, p < 0.001). After FCM, seven out of eight samples yielded passable cell cultures, compared to eight out of eight for non-FCM processed samples. Our study suggests that the use of FCM in tumor sampling can increase the yield of suitable fresh tumor samples by identifying viable tumor areas and ensuring that sufficient tissue remains for diagnosis. Our study also provides first evidence that the isolation and growth of tumor cells in culture are not compromised by the FCM technique.
Collapse
Affiliation(s)
- S Gretser
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Pathology, Theodor-Stern-Kai 6, 60590, Frankfurt Am Main, Germany.
| | - M N Kinzler
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt Am Main, Germany
| | - T M Theilen
- Goethe University Frankfurt, University Hospital, Department of Pediatric Surgery and Pediatric Urology, Frankfurt Am Main, Germany
| | - P J Wild
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Pathology, Theodor-Stern-Kai 6, 60590, Frankfurt Am Main, Germany
| | - M Vogler
- Goethe University Frankfurt, Institute for Experimental Pediatric Hematology and Oncology, Frankfurt Am Main, Germany
| | - E Gradhand
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Pathology, Theodor-Stern-Kai 6, 60590, Frankfurt Am Main, Germany
| |
Collapse
|
15
|
Glade Bender JL, Pinkney K, Williams PM, Roy-Chowdhuri S, Patton DR, Coffey BD, Reid JM, Piao J, Saguilig L, Alonzo TA, Berg SL, Ramirez NC, Fox E, Weigel BJ, Hawkins DS, Mooney MM, Takebe N, Tricoli JV, Janeway KA, Seibel NL, Parsons DW. Olaparib for childhood tumors harboring defects in DNA damage repair genes: arm H of the NCI-COG Pediatric MATCH trial. Oncologist 2024; 29:638-e952. [PMID: 38815151 PMCID: PMC11224971 DOI: 10.1093/oncolo/oyae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/26/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND The National Cancer Institute-Children's Oncology Group Pediatric Molecular Analysis for Therapy Choice (MATCH) precision oncology platform trial enrolled children aged 1-21 years with treatment-refractory solid tumors and predefined actionable genetic alterations. Patients with tumors harboring alterations in DNA damage repair (DDR) genes were assigned to receive olaparib. METHODS Tumor and blood samples were submitted for centralized molecular testing. Tumor and germline sequencing were conducted in parallel. Olaparib was given twice daily for 28-day cycles starting at a dose 30% lower than the adult recommended phase 2 dose (RP2D). The primary endpoint was the objective response. RESULTS Eighteen patients matched (1.5% of those screened) based on the presence of a deleterious gene alteration in BRCA1/2, RAD51C/D, or ATM detected by tumor sequencing without germline subtraction or analysis of loss of heterozygosity (LOH). Eleven (61%) harbored a germline mutation, with only one exhibiting LOH. Six patients enrolled and received the olaparib starting dose of 135 mg/m2/dose. Two participants were fully evaluable; 4 were inevaluable because <85% of the prescribed dose was administered during cycle 1. There were no dose-limiting toxicities or responses. Minimal hematologic toxicity was observed. CONCLUSION Most DDR gene alterations detected in Pediatric MATCH were germline, monoallelic, and unlikely to confer homologous recombination deficiency predicting sensitivity to olaparib monotherapy. The study closed due to poor accrual. CLINICALTRIALS.GOV IDENTIFIER NCT03233204. IRB approved: initial July 24, 2017.
Collapse
Affiliation(s)
- Julia L Glade Bender
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Kerice Pinkney
- Department of Hematology-Oncology, Memorial Regional Hospital/Joe Dimaggio Children’s Hospital, Hollywood, FL, United States
| | - Paul M Williams
- Molecular Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Sinchita Roy-Chowdhuri
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - David R Patton
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Brent D Coffey
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Joel M Reid
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Jin Piao
- Department of Biostatistics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lauren Saguilig
- Children’s Oncology Group Statistical Center, Monrovia, CA, United States
| | - Todd A Alonzo
- Department of Biostatistics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Stacey L Berg
- Texas Children’s Cancer and Hematology Center, Baylor College of Medicine, Houston, TX, United States
| | - Nilsa C Ramirez
- Biopathology Center, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Elizabeth Fox
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, TN, United States
| | - Brenda J Weigel
- Department of Pediatrics, Hem/Onc/BMT, University of Minnesota Medical Center, Pediatric Hematology Oncology, Minneapolis, MN, United States
| | - Douglas S Hawkins
- Department of Hematology-Oncology, Seattle Children’s Hospital, University of Washington, Seattle, WA, United States
| | - Margaret M Mooney
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Cancer Therapy Evaluation Program, Bethesda, MD, United States
| | - Naoko Takebe
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Cancer Therapy Evaluation Program, Bethesda, MD, United States
| | - James V Tricoli
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, United States
| | - Katherine A Janeway
- Department of Pediatrics, Dana Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, United States
| | - Nita L Seibel
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Cancer Therapy Evaluation Program, Bethesda, MD, United States
| | - Donald W Parsons
- Texas Children’s Cancer and Hematology Center, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
16
|
Lau LMS, Khuong-Quang DA, Mayoh C, Wong M, Barahona P, Ajuyah P, Senapati A, Nagabushan S, Sherstyuk A, Altekoester AK, Fuentes-Bolanos NA, Yeung V, Sullivan A, Omer N, Diamond Y, Jessop S, Battaglia L, Zhukova N, Cui L, Lin A, Gifford AJ, Fleuren EDG, Dalla-Pozza L, Moore AS, Khaw SL, Eisenstat DD, Gottardo NG, Wood PJ, Tapp H, Alvaro F, McCowage G, Nicholls W, Hansford JR, Manoharan N, Kotecha RS, Mateos MK, Lock RB, Tyrrell V, Haber M, Trahair TN, Cowley MJ, Ekert PG, Marshall GM, Ziegler DS. Precision-guided treatment in high-risk pediatric cancers. Nat Med 2024; 30:1913-1922. [PMID: 38844796 PMCID: PMC11271405 DOI: 10.1038/s41591-024-03044-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/06/2024] [Indexed: 07/21/2024]
Abstract
Recent research showed that precision medicine can identify new treatment strategies for patients with childhood cancers. However, it is unclear which patients will benefit most from precision-guided treatment (PGT). Here we report consecutive data from 384 patients with high-risk pediatric cancer (with an expected cure rate of less than 30%) who had at least 18 months of follow-up on the ZERO Childhood Cancer Precision Medicine Program PRecISion Medicine for Children with Cancer (PRISM) trial. A total of 256 (67%) patients received PGT recommendations and 110 (29%) received a recommended treatment. PGT resulted in a 36% objective response rate and improved 2-year progression-free survival compared with standard of care (26% versus 12%; P = 0.049) or targeted agents not guided by molecular findings (26% versus 5.2%; P = 0.003). PGT based on tier 1 evidence, PGT targeting fusions or commenced before disease progression had the greatest clinical benefit. Our data show that PGT informed by comprehensive molecular profiling significantly improves outcomes for children with high-risk cancers. ClinicalTrials.gov registration: NCT03336931.
Collapse
Affiliation(s)
- Loretta M S Lau
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, New South Wales, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Sydney, New South Wales, Australia
| | - Dong-Anh Khuong-Quang
- Children's Cancer Centre, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, Murdoch Children's Research Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Marie Wong
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Paulette Barahona
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Pamela Ajuyah
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Akanksha Senapati
- Kids Cancer Centre, Sydney Children's Hospital, Sydney, New South Wales, Australia
| | - Sumanth Nagabushan
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, New South Wales, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Sydney, New South Wales, Australia
| | - Alexandra Sherstyuk
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Ann-Kristin Altekoester
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Noemi A Fuentes-Bolanos
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, New South Wales, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Sydney, New South Wales, Australia
| | - Veronica Yeung
- Kids Cancer Centre, Sydney Children's Hospital, Sydney, New South Wales, Australia
| | - Ashleigh Sullivan
- Oncology Services Group, Children's Health Queensland Hospital & Health Service, Brisbane, Queensland, Australia
| | - Natacha Omer
- Oncology Services Group, Children's Health Queensland Hospital & Health Service, Brisbane, Queensland, Australia
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Yonatan Diamond
- Children's Cancer Centre, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Sophie Jessop
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- Michael Rice Centre for Haematology and Oncology, Women's and Children's Hospital, Adelaide, South Australia, Australia
| | - Lauren Battaglia
- Children's Cancer Centre, Monash Children's Hospital, Melbourne, Victoria, Australia
| | - Nataliya Zhukova
- Children's Cancer Centre, Monash Children's Hospital, Melbourne, Victoria, Australia
- Centre for Cancer Research, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Paediatrics, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Louise Cui
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Angela Lin
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Andrew J Gifford
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, New South Wales, Australia
- Anatomical Pathology, NSW Health Pathology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Emmy D G Fleuren
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Luciano Dalla-Pozza
- Cancer Centre for Children, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Andrew S Moore
- Oncology Services Group, Children's Health Queensland Hospital & Health Service, Brisbane, Queensland, Australia
| | - Seong-Lin Khaw
- Children's Cancer Centre, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, Murdoch Children's Research Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - David D Eisenstat
- Children's Cancer Centre, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, Murdoch Children's Research Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Nicholas G Gottardo
- Department of Paediatric and Adolescent Oncology and Haematology, Perth Children's Hospital, Perth, Western Australia, Australia
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Paul J Wood
- Children's Cancer Centre, Monash Children's Hospital, Melbourne, Victoria, Australia
- Centre for Cancer Research, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Paediatrics, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Heather Tapp
- Michael Rice Centre for Haematology and Oncology, Women's and Children's Hospital, Adelaide, South Australia, Australia
| | - Frank Alvaro
- Children's Cancer and Blood Disorders, John Hunter Children's Hospital, University of Newcastle, Newcastle, New South Wales, Australia
| | - Geoffrey McCowage
- Cancer Centre for Children, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Wayne Nicholls
- Oncology Services Group, Children's Health Queensland Hospital & Health Service, Brisbane, Queensland, Australia
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Jordan R Hansford
- Children's Cancer Centre, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, Murdoch Children's Research Institute, University of Melbourne, Melbourne, Victoria, Australia
- Michael Rice Centre for Haematology and Oncology, Women's and Children's Hospital, Adelaide, South Australia, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
- South Australia Health and Medical Research Institute, Adelaide, South Australia, Australia
- South Australian immunoGENomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Neevika Manoharan
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, New South Wales, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Sydney, New South Wales, Australia
| | - Rishi S Kotecha
- Department of Paediatric and Adolescent Oncology and Haematology, Perth Children's Hospital, Perth, Western Australia, Australia
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
- Curtin Medical School, Curtin University, Perth, Western Australia, Australia
| | - Marion K Mateos
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, New South Wales, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Sydney, New South Wales, Australia
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, New South Wales, Australia
- UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, New South Wales, Australia
| | - Vanessa Tyrrell
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Toby N Trahair
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, New South Wales, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Sydney, New South Wales, Australia
| | - Mark J Cowley
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Paul G Ekert
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, New South Wales, Australia
- Department of Paediatrics, Murdoch Children's Research Institute, University of Melbourne, Melbourne, Victoria, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Glenn M Marshall
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, New South Wales, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Sydney, New South Wales, Australia
| | - David S Ziegler
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia.
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, New South Wales, Australia.
- Kids Cancer Centre, Sydney Children's Hospital, Sydney, New South Wales, Australia.
| |
Collapse
|
17
|
Mangum R, Lin FY, Parsons DW. Recent Advancements and Innovations in Pediatric Precision Oncology. J Pediatr Hematol Oncol 2024; 46:262-271. [PMID: 38857189 DOI: 10.1097/mph.0000000000002871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 03/29/2024] [Indexed: 06/12/2024]
Abstract
Precision oncology incorporates comprehensive genomic profiling into the individualized clinical care of pediatric cancer patients. In recent years, comprehensive pan-cancer analyses have led to the successful implementation of genomics-based pediatric trials and accelerated approval of novel targeted agents. In addition, disease-specific studies have resulted in molecular subclassification of myriad cancer types with subsequent tailoring of treatment intensity based on the patient's prognostic factors. This review discusses the progress of the field and highlights developments that are leading to more personalized cancer care and improved patient outcomes. Increased understanding of the evolution of precision oncology over recent decades emphasizes the tremendous impact of improved genomic applications. New technologies and improved diagnostic modalities offer further promise for future advancements within the field.
Collapse
Affiliation(s)
- Ross Mangum
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, AZ
| | - Frank Y Lin
- Department of Pediatrics, Texas Children's Cancer Center
- The Dan L. Duncan Cancer Center
| | - D Williams Parsons
- Department of Pediatrics, Texas Children's Cancer Center
- The Dan L. Duncan Cancer Center
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
18
|
Boer JM, Ilan U, Boeree A, Langenberg KPS, Koster J, Koudijs MJ, Hehir-Kwa JY, Nierkens S, Rossi C, Molenaar JJ, Goemans BF, den Boer ML, Zwaan CM. Oncogenic and immunological targets for matched therapy of pediatric blood cancer patients: Dutch iTHER study experience. Hemasphere 2024; 8:e122. [PMID: 39011126 PMCID: PMC11247331 DOI: 10.1002/hem3.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/15/2024] [Accepted: 06/04/2024] [Indexed: 07/17/2024] Open
Abstract
Over the past 10 years, institutional and national molecular tumor boards have been implemented for relapsed or refractory pediatric cancer to prioritize targeted drugs for individualized treatment based on actionable oncogenic lesions, including the Dutch iTHER platform. Hematological malignancies form a minority in precision medicine studies. Here, we report on 56 iTHER leukemia/lymphoma patients for which we considered cell surface markers and oncogenic aberrations as actionable events, supplemented with ex vivo drug sensitivity for six patients. Prior to iTHER registration, 34% of the patients had received allogeneic hematopoietic cell transplantation (HCT) and 18% CAR-T therapy. For 51 patients (91%), a sample with sufficient tumor percentage (≥20%) required for comprehensive diagnostic testing was obtained. Up to 10 oncogenic actionable events were prioritized in 49/51 patients, and immunotherapy targets were identified in all profiled patients. Targeted treatment(s) based on the iTHER advice was given to 24 of 51 patients (47%), including immunotherapy in 17 patients, a targeted drug matching an oncogenic aberration in 12 patients, and a drug based on ex vivo drug sensitivity in one patient, resulting in objective responses and a bridge to HCT in the majority of the patients. In conclusion, comprehensive profiling of relapsed/refractory hematological malignancies showed multiple oncogenic and immunotherapy targets for a precision medicine approach, which requires multidisciplinary expertise to prioritize the best treatment options for this rare, heavily pretreated pediatric population.
Collapse
Affiliation(s)
- Judith M Boer
- Princess Máxima Center for Pediatric Oncology Utrecht The Netherlands
| | - Uri Ilan
- Princess Máxima Center for Pediatric Oncology Utrecht The Netherlands
| | - Aurélie Boeree
- Princess Máxima Center for Pediatric Oncology Utrecht The Netherlands
| | | | - Jan Koster
- Amsterdam UMC University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology Amsterdam The Netherlands
| | - Marco J Koudijs
- Princess Máxima Center for Pediatric Oncology Utrecht The Netherlands
| | - Jayne Y Hehir-Kwa
- Princess Máxima Center for Pediatric Oncology Utrecht The Netherlands
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology Utrecht The Netherlands
- Center for Translational Immunology UMC Utrecht Utrecht The Netherlands
| | - Corinne Rossi
- Department of Pediatric Oncology, Hematology, and Immunology Heidelberg University Hospital Heidelberg Germany
| | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology Utrecht The Netherlands
| | - Bianca F Goemans
- Princess Máxima Center for Pediatric Oncology Utrecht The Netherlands
| | - Monique L den Boer
- Princess Máxima Center for Pediatric Oncology Utrecht The Netherlands
- Department of Pediatric Oncology and Hematology Erasmus Medical Center - Sophia Children's Hospital Rotterdam The Netherlands
| | - C Michel Zwaan
- Princess Máxima Center for Pediatric Oncology Utrecht The Netherlands
- Department of Pediatric Oncology and Hematology Erasmus Medical Center - Sophia Children's Hospital Rotterdam The Netherlands
| |
Collapse
|
19
|
Koscielniak E, Klingebiel T. Randomised trials in children with rhabdomyosarcoma: time for a change? Lancet Oncol 2024; 25:828-830. [PMID: 38936374 DOI: 10.1016/s1470-2045(24)00287-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/29/2024]
Affiliation(s)
- Ewa Koscielniak
- Pediatrics 5 (Oncology, Hematology, Immunology), Klinikum Stuttgart, Olgahospital, Stuttgart 79174, Germany; University of Tübingen, Medical Faculty, Tübingen, Germany.
| | - Thomas Klingebiel
- Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| |
Collapse
|
20
|
Sun H, Xie Y, Wu X, Hu W, Chen X, Wu K, Wang H, Zhao S, Shi Q, Wang X, Cui B, Wu W, Fan R, Rao J, Wang R, Wang Y, Zhong Y, Yu H, Zhou BS, Shen S, Liu Y. circRNAs as prognostic markers in pediatric acute myeloid leukemia. Cancer Lett 2024; 591:216880. [PMID: 38621457 DOI: 10.1016/j.canlet.2024.216880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/23/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
Circular RNAs (circRNAs) arise from precursor mRNA processing through back-splicing and have been increasingly recognized for their functions in various cancers including acute myeloid leukemia (AML). However, the prognostic implications of circRNA in AML remain unclear. We conducted a comprehensive genome-wide analysis of circRNAs using RNA-seq data in pediatric AML. We revealed a group of circRNAs associated with inferior outcomes, exerting effects on cancer-related pathways. Several of these circRNAs were transcribed directly from genes with established functions in AML, such as circRUNX1, circWHSC1, and circFLT3. Further investigations indicated the increased number of circRNAs and linear RNAs splicing were significantly correlated with inferior clinical outcomes, highlighting the pivotal role of splicing dysregulation. Subsequent analysis identified a group of upregulated RNA binding proteins in AMLs associated with high number of circRNAs, with TROVE2 being a prominent candidate, suggesting their involvement in circRNA associated prognosis. Through the integration of drug sensitivity data, we pinpointed 25 drugs that could target high-risk AMLs characterized by aberrant circRNA transcription. These findings underscore prognostic significance of circRNAs in pediatric AML and offer an alternative perspective for treating high-risk cases in this malignancy.
Collapse
Affiliation(s)
- Huiying Sun
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yangyang Xie
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyan Wu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenting Hu
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxiao Chen
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kefei Wu
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Han Wang
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuang Zhao
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiaoqiao Shi
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Wang
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bowen Cui
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenyan Wu
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rongrong Fan
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianan Rao
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ronghua Wang
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Wang
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Zhong
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Yu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Binbing S Zhou
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Shuhong Shen
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Yu Liu
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Fujian Children's Hospital, Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Fuzhou, China.
| |
Collapse
|
21
|
Church AJ, Wakefield CE, Hetherington K, Shern JF. Promise and Perils of Precision Oncology for Patients With Pediatric and Young Adult Sarcomas. Am Soc Clin Oncol Educ Book 2024; 44:e432794. [PMID: 38924707 DOI: 10.1200/edbk_432794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The completion of multiple national pediatric precision oncology platform trials and the incorporation of standardized molecular profiling into the diagnostic care of pediatric and young adult patients with sarcomas have proven the feasibility and potential of the approach. In this work, we explore the current state of the art of precision oncology for pediatric and young adults with sarcoma. We highlight important lessons learned and the challenges that should be addressed in the next generation of trials. The chapter outlines current efforts to improve standardization of molecular assays, harmonization of data collection, and novel molecular tools such as cell-free DNA analyses. Finally, we discuss the impacts and psychosocial outcomes experienced by patients and communication strategies for providers.
Collapse
Affiliation(s)
- Alanna J Church
- Department of Pathology, Boston Children's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Claire E Wakefield
- School of Clinical Medicine, Faculty of Medicine, UNSW Sydney, Randwick, NSW, Australia
- Behavioural Sciences Unit, Kids Cancer Centre, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Kate Hetherington
- School of Clinical Medicine, Faculty of Medicine, UNSW Sydney, Randwick, NSW, Australia
- Behavioural Sciences Unit, Kids Cancer Centre, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Jack F Shern
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
22
|
Chen X, Yang W, Roberts CWM, Zhang J. Developmental origins shape the paediatric cancer genome. Nat Rev Cancer 2024; 24:382-398. [PMID: 38698126 DOI: 10.1038/s41568-024-00684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 05/05/2024]
Abstract
In the past two decades, technological advances have brought unprecedented insights into the paediatric cancer genome revealing characteristics distinct from those of adult cancer. Originating from developing tissues, paediatric cancers generally have low mutation burden and are driven by variants that disrupt the transcriptional activity, chromatin state, non-coding cis-regulatory regions and other biological functions. Within each tumour, there are multiple populations of cells with varying states, and the lineages of some can be tracked to their fetal origins. Genome-wide genetic screening has identified vulnerabilities associated with both the cell of origin and transcription deregulation in paediatric cancer, which have become a valuable resource for designing new therapeutic approaches including those for small molecules, immunotherapy and targeted protein degradation. In this Review, we present recent findings on these facets of paediatric cancer from a pan-cancer perspective and provide an outlook on future investigations.
Collapse
Affiliation(s)
- Xiaolong Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wentao Yang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles W M Roberts
- Comprehensive Cancer Center, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
23
|
Mohr A, Marques Da Costa ME, Fromigue O, Audinot B, Balde T, Droit R, Abbou S, Khneisser P, Berlanga P, Perez E, Marchais A, Gaspar N. From biology to personalized medicine: Recent knowledge in osteosarcoma. Eur J Med Genet 2024; 69:104941. [PMID: 38677541 DOI: 10.1016/j.ejmg.2024.104941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
High-grade osteosarcoma is the most common paediatric bone cancer. More than one third of patients relapse and die of osteosarcoma using current chemotherapeutic and surgical strategies. To improve outcomes in osteosarcoma, two crucial challenges need to be tackled: 1-the identification of hard-to-treat disease, ideally from diagnosis; 2- choosing the best combined or novel therapies to eradicate tumor cells which are resistant to current therapies leading to disease dissemination and metastasize as well as their favorable microenvironment. Genetic chaos, tumor complexity and heterogeneity render this task difficult. The development of new technologies like next generation sequencing has led to an improvement in osteosarcoma oncogenesis knownledge. This review summarizes recent biological and therapeutical advances in osteosarcoma, as well as the challenges that must be overcome in order to develop personalized medicine and new therapeutic strategies and ultimately improve patient survival.
Collapse
Affiliation(s)
- Audrey Mohr
- National Institute for Health and Medical Research (INSERM) U1015, Gustave Roussy Institute, Villejuif, France
| | | | - Olivia Fromigue
- National Institute for Health and Medical Research (INSERM) U981, Gustave Roussy Institute, Villejuif, France
| | - Baptiste Audinot
- National Institute for Health and Medical Research (INSERM) U1015, Gustave Roussy Institute, Villejuif, France
| | - Thierno Balde
- National Institute for Health and Medical Research (INSERM) U1015, Gustave Roussy Institute, Villejuif, France
| | - Robin Droit
- National Institute for Health and Medical Research (INSERM) U1015, Gustave Roussy Institute, Villejuif, France
| | - Samuel Abbou
- National Institute for Health and Medical Research (INSERM) U1015, Gustave Roussy Institute, Villejuif, France; Department of Oncology for Children and Adolescents, Gustave Roussy Institute, Villejuif, France
| | - Pierre Khneisser
- Department of medical Biology and Pathology, Gustave Roussy Institute, Villejuif, France
| | - Pablo Berlanga
- Department of Oncology for Children and Adolescents, Gustave Roussy Institute, Villejuif, France
| | - Esperanza Perez
- Department of Oncology for Children and Adolescents, Gustave Roussy Institute, Villejuif, France
| | - Antonin Marchais
- National Institute for Health and Medical Research (INSERM) U1015, Gustave Roussy Institute, Villejuif, France
| | - Nathalie Gaspar
- National Institute for Health and Medical Research (INSERM) U1015, Gustave Roussy Institute, Villejuif, France; Department of Oncology for Children and Adolescents, Gustave Roussy Institute, Villejuif, France.
| |
Collapse
|
24
|
Linga BG, Mohammed SGAA, Farrell T, Rifai HA, Al-Dewik N, Qoronfleh MW. Genomic Newborn Screening for Pediatric Cancer Predisposition Syndromes: A Holistic Approach. Cancers (Basel) 2024; 16:2017. [PMID: 38893137 PMCID: PMC11171256 DOI: 10.3390/cancers16112017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
As next-generation sequencing (NGS) has become more widely used, germline and rare genetic variations responsible for inherited illnesses, including cancer predisposition syndromes (CPSs) that account for up to 10% of childhood malignancies, have been found. The CPSs are a group of germline genetic disorders that have been identified as risk factors for pediatric cancer development. Excluding a few "classic" CPSs, there is no agreement regarding when and how to conduct germline genetic diagnostic studies in children with cancer due to the constant evolution of knowledge in NGS technologies. Various clinical screening tools have been suggested to aid in the identification of individuals who are at greater risk, using diverse strategies and with varied outcomes. We present here an overview of the primary clinical and molecular characteristics of various CPSs and summarize the existing clinical genomics data on the prevalence of CPSs in pediatric cancer patients. Additionally, we discuss several ethical issues, challenges, limitations, cost-effectiveness, and integration of genomic newborn screening for CPSs into a healthcare system. Furthermore, we assess the effectiveness of commonly utilized decision-support tools in identifying patients who may benefit from genetic counseling and/or direct genetic testing. This investigation highlights a tailored and systematic approach utilizing medical newborn screening tools such as the genome sequencing of high-risk newborns for CPSs, which could be a practical and cost-effective strategy in pediatric cancer care.
Collapse
Affiliation(s)
- BalaSubramani Gattu Linga
- Department of Research, Women’s Wellness and Research Center, Hamad Medical Corporation (HMC), P.O. Box 3050, Doha 0974, Qatar
- Translational and Precision Medicine Research, Women’s Wellness and Research Center (WWRC), Hamad Medical Corporation (HMC), Doha 0974, Qatar
| | | | - Thomas Farrell
- Department of Research, Women’s Wellness and Research Center, Hamad Medical Corporation (HMC), P.O. Box 3050, Doha 0974, Qatar
| | - Hilal Al Rifai
- Neonatal Intensive Care Unit (NICU), Newborn Screening Unit, Department of Pediatrics and Neonatology, Women’s Wellness and Research Center (WWRC), Hamad Medical Corporation (HMC), Doha 0974, Qatar
| | - Nader Al-Dewik
- Department of Research, Women’s Wellness and Research Center, Hamad Medical Corporation (HMC), P.O. Box 3050, Doha 0974, Qatar
- Translational and Precision Medicine Research, Women’s Wellness and Research Center (WWRC), Hamad Medical Corporation (HMC), Doha 0974, Qatar
- Neonatal Intensive Care Unit (NICU), Newborn Screening Unit, Department of Pediatrics and Neonatology, Women’s Wellness and Research Center (WWRC), Hamad Medical Corporation (HMC), Doha 0974, Qatar
- Genomics and Precision Medicine (GPM), College of Health & Life Science (CHLS), Hamad Bin Khalifa University (HBKU), Doha 0974, Qatar
- Faculty of Health and Social Care Sciences, Kingston University and St George’s University of London, Kingston upon Thames, Surrey, London KT1 2EE, UK
| | - M. Walid Qoronfleh
- Healthcare Research & Policy Division, Q3 Research Institute (QRI), Ann Arbor, MI 48197, USA
| |
Collapse
|
25
|
Deyell RJ, Shen Y, Titmuss E, Dixon K, Williamson LM, Pleasance E, Nelson JMT, Abbasi S, Krzywinski M, Armstrong L, Bonakdar M, Ch'ng C, Chuah E, Dunham C, Fok A, Jones M, Lee AF, Ma Y, Moore RA, Mungall AJ, Mungall KL, Rogers PC, Schrader KA, Virani A, Wee K, Young SS, Zhao Y, Jones SJM, Laskin J, Marra MA, Rassekh SR. Whole genome and transcriptome integrated analyses guide clinical care of pediatric poor prognosis cancers. Nat Commun 2024; 15:4165. [PMID: 38755180 PMCID: PMC11099106 DOI: 10.1038/s41467-024-48363-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
The role for routine whole genome and transcriptome analysis (WGTA) for poor prognosis pediatric cancers remains undetermined. Here, we characterize somatic mutations, structural rearrangements, copy number variants, gene expression, immuno-profiles and germline cancer predisposition variants in children and adolescents with relapsed, refractory or poor prognosis malignancies who underwent somatic WGTA and matched germline sequencing. Seventy-nine participants with a median age at enrollment of 8.8 y (range 6 months to 21.2 y) are included. Germline pathogenic/likely pathogenic variants are identified in 12% of participants, of which 60% were not known prior. Therapeutically actionable variants are identified by targeted gene report and whole genome in 32% and 62% of participants, respectively, and increase to 96% after integrating transcriptome analyses. Thirty-two molecularly informed therapies are pursued in 28 participants with 54% achieving a clinical benefit rate; objective response or stable disease ≥6 months. Integrated WGTA identifies therapeutically actionable variants in almost all tumors and are directly translatable to clinical care of children with poor prognosis cancers.
Collapse
Affiliation(s)
- Rebecca J Deyell
- Department of Pediatrics, BC Children's Hospital and Research Institute, Vancouver, BC, Canada.
| | - Yaoqing Shen
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Emma Titmuss
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Katherine Dixon
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Laura M Williamson
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Erin Pleasance
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Jessica M T Nelson
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Sanna Abbasi
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Martin Krzywinski
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Linlea Armstrong
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Melika Bonakdar
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Carolyn Ch'ng
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Eric Chuah
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Chris Dunham
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Alexandra Fok
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Martin Jones
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Anna F Lee
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yussanne Ma
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Karen L Mungall
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Paul C Rogers
- Department of Pediatrics, BC Children's Hospital and Research Institute, Vancouver, BC, Canada
| | - Kasmintan A Schrader
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Alice Virani
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Kathleen Wee
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Sean S Young
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Cancer Genetics and Genomics Laboratory, Department of Pathology and Laboratory Medicine, BC Cancer, Vancouver, Canada
| | - Yongjun Zhao
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Janessa Laskin
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Shahrad R Rassekh
- Department of Pediatrics, BC Children's Hospital and Research Institute, Vancouver, BC, Canada.
| |
Collapse
|
26
|
Lörsch AM, Jung J, Lange S, Pfarr N, Mogler C, Illert AL. [Personalized medicine in oncology]. PATHOLOGIE (HEIDELBERG, GERMANY) 2024; 45:180-189. [PMID: 38568256 DOI: 10.1007/s00292-024-01315-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 04/26/2024]
Abstract
Due to the considerable technological progress in molecular and genetic diagnostics as well as increasing insights into the molecular pathogenesis of diseases, there has been a fundamental paradigm shift in the past two decades from a "one-size-fits-all approach" to personalized, molecularly informed treatment strategies. Personalized medicine or precision medicine focuses on the genetic, physiological, molecular, and biochemical differences between individuals and considers their effects on the development, prevention, and treatment of diseases. As a pioneer of personalized medicine, the field of oncology is particularly noteworthy, where personalized diagnostics and treatment have led to lasting change in the treatment of cancer patients in recent years. In this article, the significant change towards personalized treatment concepts, especially in the field of personalized oncology, will be discussed and examined in more detail.
Collapse
Affiliation(s)
- Alisa Martina Lörsch
- Zentrum für Personalisierte Medizin (ZPM), Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, München, Deutschland
- Klinik und Poliklinik für Innere Medizin III, Hämatologie und Onkologie, Klinikum rechts der Isar, Technische Universität München, München, Deutschland
- Bayerisches Zentrum für Krebsforschung (BZKF), Standort Technische Universität München, München, Deutschland
| | - Johannes Jung
- Zentrum für Personalisierte Medizin (ZPM), Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, München, Deutschland
- Klinik und Poliklinik für Innere Medizin III, Hämatologie und Onkologie, Klinikum rechts der Isar, Technische Universität München, München, Deutschland
- Bayerisches Zentrum für Krebsforschung (BZKF), Standort Technische Universität München, München, Deutschland
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Standort München, München, Deutschland
| | - Sebastian Lange
- Zentrum für Personalisierte Medizin (ZPM), Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, München, Deutschland
- Bayerisches Zentrum für Krebsforschung (BZKF), Standort Technische Universität München, München, Deutschland
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technische Universität München, München, Deutschland
- Comprehensive Cancer Center München, Klinikum rechts der Isar, Technische Universität München, München, Deutschland
| | - Nicole Pfarr
- Zentrum für Personalisierte Medizin (ZPM), Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, München, Deutschland
- Bayerisches Zentrum für Krebsforschung (BZKF), Standort Technische Universität München, München, Deutschland
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Standort München, München, Deutschland
- Institut für Allgemeine Pathologie und Pathologische Anatomie, Technische Universität München, München, Deutschland
| | - Carolin Mogler
- Zentrum für Personalisierte Medizin (ZPM), Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, München, Deutschland
- Bayerisches Zentrum für Krebsforschung (BZKF), Standort Technische Universität München, München, Deutschland
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Standort München, München, Deutschland
- Comprehensive Cancer Center München, Klinikum rechts der Isar, Technische Universität München, München, Deutschland
- Institut für Allgemeine Pathologie und Pathologische Anatomie, Technische Universität München, München, Deutschland
| | - Anna Lena Illert
- Zentrum für Personalisierte Medizin (ZPM), Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, München, Deutschland.
- Klinik und Poliklinik für Innere Medizin III, Hämatologie und Onkologie, Klinikum rechts der Isar, Technische Universität München, München, Deutschland.
- Bayerisches Zentrum für Krebsforschung (BZKF), Standort Technische Universität München, München, Deutschland.
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Standort München, München, Deutschland.
- Comprehensive Cancer Center München, Klinikum rechts der Isar, Technische Universität München, München, Deutschland.
- Klinik für Innere Medizin I, Abteilung für Hämatologie, Onkologie und Stammzelltransplantation, Universitätsklinikum Freiburg, Freiburg, Deutschland.
| |
Collapse
|
27
|
Mouysset B, Le Grand M, Camoin L, Pasquier E. Poly-pharmacology of existing drugs: How to crack the code? Cancer Lett 2024; 588:216800. [PMID: 38492768 DOI: 10.1016/j.canlet.2024.216800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/15/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Drug development in oncology is highly challenging, with less than 5% success rate in clinical trials. This alarming figure points out the need to study in more details the multiple biological effects of drugs in specific contexts. Indeed, the comprehensive assessment of drug poly-pharmacology can provide insights into their therapeutic and adverse effects, to optimize their utilization and maximize the success rate of clinical trials. Recent technological advances have made possible in-depth investigation of drug poly-pharmacology. This review first highlights high-throughput methodologies that have been used to unveil new mechanisms of action of existing drugs. Then, we discuss how emerging chemo-proteomics strategies allow effectively dissecting the poly-pharmacology of drugs in an unsupervised manner.
Collapse
Affiliation(s)
- Baptiste Mouysset
- Centre de Recherche en Cancérologie de Marseille Inserm U1068, CNRS UMR7258, Aix-Marseille University U105, Marseille, France.
| | - Marion Le Grand
- Centre de Recherche en Cancérologie de Marseille Inserm U1068, CNRS UMR7258, Aix-Marseille University U105, Marseille, France.
| | - Luc Camoin
- Centre de Recherche en Cancérologie de Marseille Inserm U1068, CNRS UMR7258, Aix-Marseille University U105, Marseille, France.
| | - Eddy Pasquier
- Centre de Recherche en Cancérologie de Marseille Inserm U1068, CNRS UMR7258, Aix-Marseille University U105, Marseille, France.
| |
Collapse
|
28
|
Tesi B, Robinson KL, Abel F, Díaz de Ståhl T, Orrsjö S, Poluha A, Hellberg M, Wessman S, Samuelsson S, Frisk T, Vogt H, Henning K, Sabel M, Ek T, Pal N, Nyman P, Giraud G, Wille J, Pronk CJ, Norén-Nyström U, Borssén M, Fili M, Stålhammar G, Herold N, Tettamanti G, Maya-Gonzalez C, Arvidsson L, Rosén A, Ekholm K, Kuchinskaya E, Hallbeck AL, Nordling M, Palmebäck P, Kogner P, Smoler GK, Lähteenmäki P, Fransson S, Martinsson T, Shamik A, Mertens F, Rosenquist R, Wirta V, Tham E, Grillner P, Sandgren J, Ljungman G, Gisselsson D, Taylan F, Nordgren A. Diagnostic yield and clinical impact of germline sequencing in children with CNS and extracranial solid tumors-a nationwide, prospective Swedish study. THE LANCET REGIONAL HEALTH. EUROPE 2024; 39:100881. [PMID: 38803632 PMCID: PMC11129334 DOI: 10.1016/j.lanepe.2024.100881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/04/2024] [Accepted: 02/23/2024] [Indexed: 05/29/2024]
Abstract
Background Childhood cancer predisposition (ChiCaP) syndromes are increasingly recognized as contributing factors to childhood cancer development. Yet, due to variable availability of germline testing, many children with ChiCaP might go undetected today. We report results from the nationwide and prospective ChiCaP study that investigated diagnostic yield and clinical impact of integrating germline whole-genome sequencing (gWGS) with tumor sequencing and systematic phenotyping in children with solid tumors. Methods gWGS was performed in 309 children at diagnosis of CNS (n = 123, 40%) or extracranial (n = 186, 60%) solid tumors and analyzed for disease-causing variants in 189 known cancer predisposing genes. Tumor sequencing data were available for 74% (227/309) of patients. In addition, a standardized clinical assessment for underlying predisposition was performed in 95% (293/309) of patients. Findings The prevalence of ChiCaP diagnoses was 11% (35/309), of which 69% (24/35) were unknown at inclusion (diagnostic yield 8%, 24/298). A second-hit and/or relevant mutational signature was observed in 19/21 (90%) tumors with informative data. ChiCaP diagnoses were more prevalent among patients with retinoblastomas (50%, 6/12) and high-grade astrocytomas (37%, 6/16), and in those with non-cancer related features (23%, 20/88), and ≥2 positive ChiCaP criteria (28%, 22/79). ChiCaP diagnoses were autosomal dominant in 80% (28/35) of patients, yet confirmed de novo in 64% (18/28). The 35 ChiCaP findings resulted in tailored surveillance (86%, 30/35) and treatment recommendations (31%, 11/35). Interpretation Overall, our results demonstrate that systematic phenotyping, combined with genomics-based diagnostics of ChiCaP in children with solid tumors is feasible in large-scale clinical practice and critically guides personalized care in a sizable proportion of patients. Funding The study was supported by the Swedish Childhood Cancer Fund and the Ministry of Health and Social Affairs.
Collapse
Affiliation(s)
- Bianca Tesi
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics and Genomics, Karolinska University Hospital, Solna, Sweden
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kristina Lagerstedt Robinson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics and Genomics, Karolinska University Hospital, Solna, Sweden
| | - Frida Abel
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Teresita Díaz de Ståhl
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Sara Orrsjö
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Poluha
- Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Maria Hellberg
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office of Medical Services, Region Skåne, Lund, Sweden
| | - Sandra Wessman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Sofie Samuelsson
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office of Medical Services, Region Skåne, Lund, Sweden
| | - Tony Frisk
- Department of Pediatric Hematology and Oncology, Karolinska University Hospital, Stockholm, Sweden
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Hartmut Vogt
- Crown Princess Victoria Children’s Hospital, and Division of Children’s and Women’s Health, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Karin Henning
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatric Hematology and Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Magnus Sabel
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
- Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Torben Ek
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
- Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Niklas Pal
- Department of Pediatric Hematology and Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Per Nyman
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Geraldine Giraud
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Pediatric Oncology, Uppsala University Children’s Hospital, Uppsala, Sweden
- Department of Women’s and Children’s Health, Uppsala University, Sweden
| | - Joakim Wille
- Childhood Cancer Center, Skåne University Hospital, Lund, Sweden
| | - Cornelis Jan Pronk
- Childhood Cancer Center, Skåne University Hospital, Lund, Sweden
- Division of Molecular Hematology/Wallenberg Center for Molecular Medicine, Lund University, Sweden
| | | | - Magnus Borssén
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | - Maria Fili
- Division of Eye and Vision, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- St. Erik Eye Hospital, Stockholm, Sweden
| | - Gustav Stålhammar
- Division of Eye and Vision, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- St. Erik Eye Hospital, Stockholm, Sweden
| | - Nikolas Herold
- Department of Pediatric Hematology and Oncology, Karolinska University Hospital, Stockholm, Sweden
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Giorgio Tettamanti
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Linda Arvidsson
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office of Medical Services, Region Skåne, Lund, Sweden
| | - Anna Rosén
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Katja Ekholm
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics and Genomics, Karolinska University Hospital, Solna, Sweden
| | | | - Anna-Lotta Hallbeck
- Department of Clinical Genetics, Linköping University Hospital, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Margareta Nordling
- Department of Clinical Genetics, Linköping University Hospital, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Pia Palmebäck
- Department of Clinical Genetics, Linköping University Hospital, Linköping, Sweden
| | - Per Kogner
- Department of Pediatric Hematology and Oncology, Karolinska University Hospital, Stockholm, Sweden
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Gunilla Kanter Smoler
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Päivi Lähteenmäki
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Fransson
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tommy Martinsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alia Shamik
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Fredrik Mertens
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office of Medical Services, Region Skåne, Lund, Sweden
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics and Genomics, Karolinska University Hospital, Solna, Sweden
- Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | - Valtteri Wirta
- Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
- Science for Life Laboratory, Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institutet of Technology, Stockholm, Sweden
| | - Emma Tham
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics and Genomics, Karolinska University Hospital, Solna, Sweden
| | - Pernilla Grillner
- Department of Pediatric Hematology and Oncology, Karolinska University Hospital, Stockholm, Sweden
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Johanna Sandgren
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Gustaf Ljungman
- Pediatric Oncology, Uppsala University Children’s Hospital, Uppsala, Sweden
- Department of Women’s and Children’s Health, Uppsala University, Sweden
| | - David Gisselsson
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office of Medical Services, Region Skåne, Lund, Sweden
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics and Genomics, Karolinska University Hospital, Solna, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics and Genomics, Karolinska University Hospital, Solna, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
29
|
Dolman MEM, Ekert PG. Functional precision medicine for pediatric cancers. Nat Med 2024; 30:940-941. [PMID: 38605165 DOI: 10.1038/s41591-024-02863-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Affiliation(s)
- M Emmy M Dolman
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, New South Wales, Australia.
- UNSW Centre for Childhood Cancer Research, UNSW Sydney, Kensington, New South Wales, Australia.
| | - Paul G Ekert
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, New South Wales, Australia.
- UNSW Centre for Childhood Cancer Research, UNSW Sydney, Kensington, New South Wales, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Melbourne, Victoria, Australia.
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Murdoch Children's Research Institute, The University of Melbourne Department of Paediatrics, Parkville, Melbourne, Victoria, Australia.
| |
Collapse
|
30
|
Chaix J, Schleiermacher G, Corradini N, André N, Thebaud E, Gambart M, Defachelles AS, Entz-Werle N, Chastagner P, De Carli É, Ducassou S, Landman-Parker J, Adam-de-Beaumais T, Larive A, Michiels S, Vassal G, Valteau-Couanet D, Geoerger B, Berlanga P. Clinical trial inclusion in patients with relapsed/refractory neuroblastoma following the European Precision Cancer Medicine trial MAPPYACTS. Eur J Cancer 2024; 201:113923. [PMID: 38377775 DOI: 10.1016/j.ejca.2024.113923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
INTRODUCTION Despite poor survival for patients with relapsed or refractory neuroblastoma, only 10-16% of patients are reported to be included in early phase trials. This study aimed to explore the impact of molecular profiling within the prospective precision cancer medicine trial MAPPYACTS (NCT02613962) on subsequent early phase trial recruitment and treatment by matched targeted therapies in this population. METHODS AND MATERIALS Clinical data from all French patients with relapsed/refractory neuroblastoma enrolled in MAPPYACTS were analyzed for subsequent matched/non-matched targeted treatment based on clinical tumor board (CMTB) recommendations. RESULTS From 93 patients with neuroblastoma included in French centers, 78 (84%) underwent whole exome and RNA sequencing and were discussed in the CMTB. Higher rate of successful sequencing analysis was observed in patients with relapsed disease compared to those with refractory disease (p = 0.0002). Among the 50 patients that presented with a new disease relapse/progression after the CMTB recommendations, 35 patients (70%) had at least one actionable alteration identified on the tumor at the time of relapse. Eighteen patients (36%) were included in an early phase clinical trial, 11 of these with a matched agent, 7 with a non-matched treatment; 13 patients were included in the AcSé ESMART trial. Five patients (10%) received a matched targeted therapy outside a clinical trial. CONCLUSION Patients with neuroblastoma in the European MAPPYACTS trial were more likely to be included in early phase trials compared to previous reports. Early deep sequencing at first treatment failure, comprehensive therapeutic discussions in molecular tumor boards and innovative trials like AcSé -ESMART improve access to innovative therapies for patients with relapsed/refractory neuroblastoma. CLINICAL TRIAL REGISTRATION NCT02613962.
Collapse
Affiliation(s)
- Jordane Chaix
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Gudrun Schleiermacher
- INSERM U830, Laboratoire de Génétique et Biologie des Cancers, Research Center, PSL Research University, Institut Curie, Paris, France; SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut Curie, PSL Research University, Paris, France
| | - Nadège Corradini
- Department of Pediatric Oncology, Institut d'Hématologie et d'Oncologie Pédiatrique/Centre Léon Bérard, Lyon, France
| | - Nicolas André
- Department of Pediatric Hematology and Oncology, Hôpital de La Timone, AP-HM, Marseille, France; UMR Inserm 1068, CNRS UMR 7258, Aix Marseille Université U105, Marseille Cancer Research Center (CRCM), Marseille, France
| | - Estelle Thebaud
- Department of Pediatric Oncology, Centre Hospitalier Universitaire, Nantes, France
| | - Marion Gambart
- Department of Pediatric Oncology, Centre Hospitalier Universitaire, Toulouse, France
| | | | - Natacha Entz-Werle
- Department of Pediatric Oncology, Hospices Civils de Strasbourg, Strasbourg, France
| | - Pascal Chastagner
- Department of Pediatric Oncology, Centre Hospitalier Universitaire, Vandoeuvre les Nancy, France
| | - Émilie De Carli
- Department of Pediatric Oncology, Centre Hospitalier Universitaire, Angers, France
| | - Stéphane Ducassou
- Department of Pediatric Oncology, Centre Hospitalier Universitaire, Bordeaux, France
| | | | - Tiphaine Adam-de-Beaumais
- Clinical Research Direction, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Alicia Larive
- Biostatistics and Epidemiology Office, Gustave Roussy Cancer Campus, INSERM U1018, CESP, Université Paris-Saclay, Villejuif, France
| | - Stefan Michiels
- Biostatistics and Epidemiology Office, Gustave Roussy Cancer Campus, INSERM U1018, CESP, Université Paris-Saclay, Villejuif, France
| | - Gilles Vassal
- Clinical Research Direction, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Dominique Valteau-Couanet
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Birgit Geoerger
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France; INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Pablo Berlanga
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.
| |
Collapse
|
31
|
Acanda De La Rocha AM, Berlow NE, Fader M, Coats ER, Saghira C, Espinal PS, Galano J, Khatib Z, Abdella H, Maher OM, Vorontsova Y, Andrade-Feraud CM, Daccache A, Jacome A, Reis V, Holcomb B, Ghurani Y, Rimblas L, Guilarte TR, Hu N, Salyakina D, Azzam DJ. Feasibility of functional precision medicine for guiding treatment of relapsed or refractory pediatric cancers. Nat Med 2024; 30:990-1000. [PMID: 38605166 PMCID: PMC11031400 DOI: 10.1038/s41591-024-02848-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 01/31/2024] [Indexed: 04/13/2024]
Abstract
Children with rare, relapsed or refractory cancers often face limited treatment options, and few predictive biomarkers are available that can enable personalized treatment recommendations. The implementation of functional precision medicine (FPM), which combines genomic profiling with drug sensitivity testing (DST) of patient-derived tumor cells, has potential to identify treatment options when standard-of-care is exhausted. The goal of this prospective observational study was to generate FPM data for pediatric patients with relapsed or refractory cancer. The primary objective was to determine the feasibility of returning FPM-based treatment recommendations in real time to the FPM tumor board (FPMTB) within a clinically actionable timeframe (<4 weeks). The secondary objective was to assess clinical outcomes from patients enrolled in the study. Twenty-five patients with relapsed or refractory solid and hematological cancers were enrolled; 21 patients underwent DST and 20 also completed genomic profiling. Median turnaround times for DST and genomics were within 10 days and 27 days, respectively. Treatment recommendations were made for 19 patients (76%), of whom 14 received therapeutic interventions. Six patients received subsequent FPM-guided treatments. Among these patients, five (83%) experienced a greater than 1.3-fold improvement in progression-free survival associated with their FPM-guided therapy relative to their previous therapy, and demonstrated a significant increase in progression-free survival and objective response rate compared to those of eight non-guided patients. The findings from our proof-of-principle study illustrate the potential for FPM to positively impact clinical care for pediatric and adolescent patients with relapsed or refractory cancers and warrant further validation in large prospective studies. ClinicalTrials.gov registration: NCT03860376 .
Collapse
Affiliation(s)
- Arlet M Acanda De La Rocha
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, USA
| | | | - Maggie Fader
- Division of Pediatric Hematology Oncology, Department of Pediatrics, Nicklaus Children's Hospital, Miami, FL, USA
| | - Ebony R Coats
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, USA
| | - Cima Saghira
- Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Paula S Espinal
- Center for Precision Medicine, Nicklaus Children's Hospital, Miami, FL, USA
| | - Jeanette Galano
- Center for Precision Medicine, Nicklaus Children's Hospital, Miami, FL, USA
| | - Ziad Khatib
- Division of Pediatric Hematology Oncology, Department of Pediatrics, Nicklaus Children's Hospital, Miami, FL, USA
| | - Haneen Abdella
- Division of Pediatric Hematology Oncology, Department of Pediatrics, Nicklaus Children's Hospital, Miami, FL, USA
| | - Ossama M Maher
- Division of Pediatric Hematology Oncology, Department of Pediatrics, Nicklaus Children's Hospital, Miami, FL, USA
| | - Yana Vorontsova
- Center for Precision Medicine, Nicklaus Children's Hospital, Miami, FL, USA
| | - Cristina M Andrade-Feraud
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, USA
| | - Aimee Daccache
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, USA
| | - Alexa Jacome
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, USA
| | - Victoria Reis
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, USA
| | - Baylee Holcomb
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, USA
| | - Yasmin Ghurani
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, USA
| | - Lilliam Rimblas
- Division of Pediatric Hematology Oncology, Department of Pediatrics, Nicklaus Children's Hospital, Miami, FL, USA
| | - Tomás R Guilarte
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, USA
| | - Nan Hu
- Department of Biostatistics, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, USA
| | - Daria Salyakina
- Center for Precision Medicine, Nicklaus Children's Hospital, Miami, FL, USA
| | - Diana J Azzam
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, USA.
| |
Collapse
|
32
|
Stepien N, Mayr L, Schmook MT, Raimann A, Dorfer C, Peyrl A, Azizi AA, Schramm K, Haberler C, Gojo J. Feasibility and antitumour activity of the FGFR inhibitor erdafitnib in three paediatric CNS tumour patients. Pediatr Blood Cancer 2024; 71:e30836. [PMID: 38177074 DOI: 10.1002/pbc.30836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
Alterations of the fibroblast growth factor (FGF) signalling pathway are increasingly recognized as frequent oncogenic drivers of paediatric brain tumours. We report on three patients treated with the selective FGFR1-4 inhibitor erdafitinib. Two patients were diagnosed with a posterior fossa ependymoma group A (PFA EPN) and one with a low-grade glioma (LGG), harbouring FGFR3/FGFR1 overexpression and an FGFR1 internal tandem duplication (ITD), respectively. While both EPN patients did not respond to erdafitinib treatment, the FGFR1-ITD-harbouring tumour showed a significant decrease in tumour volume and contrast enhancement throughout treatment. The tumour remained stable 6 months after treatment discontinuation.
Collapse
Affiliation(s)
- Natalia Stepien
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Lisa Mayr
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Maria T Schmook
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Adalbert Raimann
- Clinical Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Vienna Bone and Growth Center, Medical University of Vienna, Vienna, Austria
| | - Christian Dorfer
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Andreas Peyrl
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Amedeo A Azizi
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Kathrin Schramm
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research (B360), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christine Haberler
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
| | - Johannes Gojo
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
33
|
Amayiri N, Al-Hussaini M, Maraqa B, Alyazjeen S, Alzoubi Q, Musharbash A, Ibrahimi AK, Sarhan N, Obeidat M, Hawkins C, Bouffet E. Next-generation sequencing for pediatric CNS tumors: does it add value in a middle-income country setup? Front Oncol 2024; 14:1329024. [PMID: 38440233 PMCID: PMC10910540 DOI: 10.3389/fonc.2024.1329024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/29/2024] [Indexed: 03/06/2024] Open
Abstract
Introduction Advances in molecular diagnostics led to improved targeted interventions in the treatment of pediatric CNS tumors. However, the capacity to test for these is limited in LMICs, and thus their value needs exploration. Methods We reviewed our experience with NGS testing (TruSight RNA Pan-Cancer-seq panel) for pediatric CNS tumors at KHCC/Jordan (March/2022-April/2023). Paraffin blocks' scrolls were shipped to the SickKids laboratory based on the multidisciplinary clinic (MDC) recommendations. We reviewed the patients' characteristics, the tumor types, and the NGS results' impact on treatment. Results Of 237 patients discussed during the MDC meetings, 32 patients (14%) were included. They were 16 boys and 16 girls; the median age at time of testing was 9.5 years (range, 0.9-21.9 years). There were 21 samples sent at diagnosis and 11 upon tumor progression. The main diagnoses were low-grade-glioma (15), high-grade-glioma (10), and other histologies (7). Reasons to request NGS included searching for a targetable alteration (20) and to better characterize the tumor behavior (12). The median turnaround time from samples' shipment to receiving the results was 23.5 days (range, 15-49 days) with a median laboratory processing time of 16 days (range, 8-39 days) at a cost of US$1,000/sample. There were 19 (59%) tumors that had targetable alterations (FGFR/MAPK pathway inhibitors (14), checkpoint inhibitors (2), NTRK inhibitors (2), and one with PI3K inhibitor or IDH1 inhibitor). Two rare BRAF mutations were identified (BRAFp.G469A, BRAFp.K601E). One tumor diagnosed initially as undifferentiated round cell sarcoma harbored NAB2::STAT6 fusion and was reclassified as an aggressive metastatic solitary fibrous tumor. Another tumor initially diagnosed as grade 2 astroblastoma grade 2 was reclassified as low-grade-glioma in the absence of MN1 alteration. NGS failed to help characterize a tumor that was diagnosed histologically as small round blue cell tumor. Nine patients received targeted therapy; dabrafenib/trametinib (6), pembrolizumab (2), and entrectinib (1), mostly upon tumor progression (7). Conclusion In this highly selective cohort, a high percentage of targetable mutations was identified facilitating targeted therapies. Outsourcing of NGS testing was feasible; however, criteria for case selection are needed. In addition, local capacity-building in conducting the test, interpretation of the results, and access to "new drugs" continue to be a challenge in LMICs.
Collapse
Affiliation(s)
- Nisreen Amayiri
- Department of Pediatrics, King Hussein Cancer Center, Amman, Jordan
| | - Maysa Al-Hussaini
- Department of Pathology and Laboratory Medicine, King Hussein Cancer Center, Amman, Jordan
| | - Bayan Maraqa
- Department of Pathology and Laboratory Medicine, King Hussein Cancer Center, Amman, Jordan
| | - Shaza Alyazjeen
- Department of Molecular Laboratory, King Hussein Cancer Center, Amman, Jordan
| | - Qasem Alzoubi
- Department of Diagnostic Radiology, King Hussein Cancer Center, Amman, Jordan
| | - Awni Musharbash
- Department of Surgery, King Hussein Cancer Center, Amman, Jordan
| | - Ahmad Kh. Ibrahimi
- Department of Radiation Oncology, King Hussein Cancer Center, Amman, Jordan
| | - Nasim Sarhan
- Department of Radiation Oncology, King Hussein Cancer Center, Amman, Jordan
| | - Mouness Obeidat
- Department of Surgery, King Hussein Cancer Center, Amman, Jordan
| | - Cynthia Hawkins
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Eric Bouffet
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
34
|
Gatz SA, Harttrampf AC, Brard C, Bautista F, André N, Abbou S, Rubino J, Rondof W, Deloger M, Rübsam M, Marshall LV, Hübschmann D, Nebchi S, Aerts I, Thebaud E, De Carli E, Defachelles AS, Paoletti X, Godin R, Miah K, Mortimer PGS, Vassal G, Geoerger B. Phase I/II Study of the WEE1 Inhibitor Adavosertib (AZD1775) in Combination with Carboplatin in Children with Advanced Malignancies: Arm C of the AcSé-ESMART Trial. Clin Cancer Res 2024; 30:741-753. [PMID: 38051741 DOI: 10.1158/1078-0432.ccr-23-2959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/06/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023]
Abstract
PURPOSE AcSé-ESMART Arm C aimed to define the recommended dose and activity of the WEE1 inhibitor adavosertib in combination with carboplatin in children and young adults with molecularly enriched recurrent/refractory malignancies. PATIENTS AND METHODS Adavosertib was administered orally, twice every day on Days 1 to 3 and carboplatin intravenously on Day 1 of a 21-day cycle, starting at 100 mg/m2/dose and AUC 5, respectively. Patients were enriched for molecular alterations in cell cycle and/or homologous recombination (HR). RESULTS Twenty patients (median age: 14.0 years; range: 3.4-23.5) were included; 18 received 69 treatment cycles. Dose-limiting toxicities were prolonged grade 4 neutropenia and grade 3/4 thrombocytopenia requiring transfusions, leading to two de-escalations to adavosertib 75 mg/m2/dose and carboplatin AUC 4; no recommended phase II dose was defined. Main treatment-related toxicities were hematologic and gastrointestinal. Adavosertib exposure in children was equivalent to that in adults; both doses achieved the cell kill target. Overall response rate was 11% (95% confidence interval, 0.0-25.6) with partial responses in 2 patients with neuroblastoma. One patient with medulloblastoma experienced unconfirmed partial response and 5 patients had stable disease beyond four cycles. Seven of these eight patients with clinical benefit had alterations in HR, replication stress, and/or RAS pathway genes with or without TP53 alterations, whereas TP53 pathway alterations alone (8/10) or no relevant alterations (2/10) were present in the 10 patients without benefit. CONCLUSIONS Adavosertib-carboplatin combination exhibited significant hematologic toxicity. Activity signals and identified potential biomarkers suggest further studies with less hematotoxic DNA-damaging therapy in molecularly enriched pediatric cancers.
Collapse
Affiliation(s)
- Susanne A Gatz
- Institute of Cancer and Genomic Sciences, University of Birmingham; Women's and Children's NHS Foundation Trust, Birmingham, United Kingdom
| | - Anne C Harttrampf
- Gustave Roussy Cancer Campus, Department of Pediatric and Adolescent Oncology, Villejuif, France
- Gustave Roussy Cancer Campus, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Caroline Brard
- Gustave Roussy Cancer Campus, Biostatistics and Epidemiology Unit, INSERM U1018, CESP, Université Paris-Saclay, Université Paris-Sud, UVSQ, Villejuif, France
| | - Francisco Bautista
- Hospital Niño Jesús, Department of Pediatric Oncology, Hematology and Stem Cell Transplantation, Madrid, Spain
| | - Nicolas André
- Hôpital de la Timone, AP-HM, Department of Pediatric Oncology, Marseille, France
- UMR INSERM 1068, CNRS UMR 7258, Aix Marseille Université U105, Marseille, Cancer Research Center (CRCM), Marseille, France
| | - Samuel Abbou
- Gustave Roussy Cancer Campus, Department of Pediatric and Adolescent Oncology, Villejuif, France
| | - Jonathan Rubino
- Gustave Roussy Cancer Campus, Clinical Research Direction, Villejuif, France
| | - Windy Rondof
- Gustave Roussy Cancer Campus, INSERM U1015, Université Paris-Saclay, Villejuif, France
- Gustave Roussy Cancer Campus, Bioinformatics platform, Université Paris-Saclay, Villejuif, France
| | - Marc Deloger
- Gustave Roussy Cancer Campus, Bioinformatics platform, Université Paris-Saclay, Villejuif, France
| | - Marc Rübsam
- Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center
| | - Lynley V Marshall
- Royal Marsden Hospital & The Institute of Cancer Research, Paediatric and Adolescent Oncology Drug Development Unit, London, United Kingdom
| | - Daniel Hübschmann
- Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center
- Pattern Recognition and Digital Medicine Group, Heidelberg Institute for Stem cell Technology and Experimental Medicine (HI-STEM); German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Souad Nebchi
- Gustave Roussy Cancer Campus, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Isabelle Aerts
- Institut Curie, SIREDO Oncology Center (Care, Innovation and research for children and AYA with cancer), PSL Research University, Paris, France
| | - Estelle Thebaud
- Centre Hospitalier Universitaire, Department of Pediatric Oncology, Nantes, France
| | - Emilie De Carli
- Centre Hospitalier Universitaire, Department of Pediatric Oncology, Angers, France
| | | | - Xavier Paoletti
- Gustave Roussy Cancer Campus, Biostatistics and Epidemiology Unit, INSERM U1018, CESP, Université Paris-Saclay, Université Paris-Sud, UVSQ, Villejuif, France
| | - Robert Godin
- AstraZeneca Oncology External R&D, Waltham, Massachusetts
| | - Kowser Miah
- Clinical Pharmacology and Quantitative Pharmacology, AstraZeneca, Waltham, Massachusetts
| | | | - Gilles Vassal
- Gustave Roussy Cancer Campus, Clinical Research Direction, Villejuif, France
| | - Birgit Geoerger
- Gustave Roussy Cancer Campus, Department of Pediatric and Adolescent Oncology, Villejuif, France
- Gustave Roussy Cancer Campus, INSERM U1015, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
35
|
Capasso M, Brignole C, Lasorsa VA, Bensa V, Cantalupo S, Sebastiani E, Quattrone A, Ciampi E, Avitabile M, Sementa AR, Mazzocco K, Cafferata B, Gaggero G, Vellone VG, Cilli M, Calarco E, Giusto E, Perri P, Aveic S, Fruci D, Tondo A, Luksch R, Mura R, Rabusin M, De Leonardis F, Cellini M, Coccia P, Iolascon A, Corrias MV, Conte M, Garaventa A, Amoroso L, Ponzoni M, Pastorino F. From the identification of actionable molecular targets to the generation of faithful neuroblastoma patient-derived preclinical models. J Transl Med 2024; 22:151. [PMID: 38351008 PMCID: PMC10863144 DOI: 10.1186/s12967-024-04954-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/03/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Neuroblastoma (NB) represents the most frequent and aggressive form of extracranial solid tumor of infants. Although the overall survival of patients with NB has improved in the last years, more than 50% of high-risk patients still undergo a relapse. Thus, in the era of precision/personalized medicine, the need for high-risk NB patient-specific therapies is urgent. METHODS Within the PeRsonalizEd Medicine (PREME) program, patient-derived NB tumors and bone marrow (BM)-infiltrating NB cells, derived from either iliac crests or tumor bone lesions, underwent to histological and to flow cytometry immunophenotyping, respectively. BM samples containing a NB cells infiltration from 1 to 50 percent, underwent to a subsequent NB cells enrichment using immune-magnetic manipulation. Then, NB samples were used for the identification of actionable targets and for the generation of 3D/tumor-spheres and Patient-Derived Xenografts (PDX) and Cell PDX (CPDX) preclinical models. RESULTS Eighty-four percent of NB-patients showed potentially therapeutically targetable somatic alterations (including point mutations, copy number variations and mRNA over-expression). Sixty-six percent of samples showed alterations, graded as "very high priority", that are validated to be directly targetable by an approved drug or an investigational agent. A molecular targeted therapy was applied for four patients, while a genetic counseling was suggested to two patients having one pathogenic germline variant in known cancer predisposition genes. Out of eleven samples implanted in mice, five gave rise to (C)PDX, all preserved in a local PDX Bio-bank. Interestingly, comparing all molecular alterations and histological and immunophenotypic features among the original patient's tumors and PDX/CPDX up to second generation, a high grade of similarity was observed. Notably, also 3D models conserved immunophenotypic features and molecular alterations of the original tumors. CONCLUSIONS PREME confirms the possibility of identifying targetable genomic alterations in NB, indeed, a molecular targeted therapy was applied to four NB patients. PREME paves the way to the creation of clinically relevant repositories of faithful patient-derived (C)PDX and 3D models, on which testing precision, NB standard-of-care and experimental medicines.
Collapse
Affiliation(s)
- Mario Capasso
- Department of Medical Biotechnology, University of Naples Federico II, 80138, Naples, Italy
- CEINGE Advanced Biotecnology, 80138, Naples, Italy
| | - Chiara Brignole
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | | | - Veronica Bensa
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Sueva Cantalupo
- Department of Medical Biotechnology, University of Naples Federico II, 80138, Naples, Italy
- CEINGE Advanced Biotecnology, 80138, Naples, Italy
| | | | | | - Eleonora Ciampi
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Marianna Avitabile
- Department of Medical Biotechnology, University of Naples Federico II, 80138, Naples, Italy
- CEINGE Advanced Biotecnology, 80138, Naples, Italy
| | - Angela R Sementa
- Pathological Anatomy, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Katia Mazzocco
- Pathological Anatomy, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Barbara Cafferata
- Pathological Anatomy, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Gabriele Gaggero
- Pathological Anatomy, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Valerio G Vellone
- Pathological Anatomy, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Michele Cilli
- Animal Facility, IRCCS Policlinico San Martino, 16100, Genoa, Italy
| | - Enzo Calarco
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Elena Giusto
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Patrizia Perri
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Sanja Aveic
- Pediatric Research Institute Città Della Speranza, 35127, Padua, Italy
| | - Doriana Fruci
- Department of Emato-Oncology, Bambino Gesù Children's Hospital, 00146, -Rome, Italy
| | - Annalisa Tondo
- Department of Emato-Oncology, Anna Meyer Children's Hospital, 50139, Florence, Italy
| | - Roberto Luksch
- Emato-Oncology Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, 20133, Milan, Italy
| | - Rossella Mura
- Emato-Oncology Unit, Azienda Ospedaliera Brotzu, 09047, Cagliari, Italy
| | - Marco Rabusin
- Pediatric Department, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137, Trieste, Italy
| | | | - Monica Cellini
- Emato-Oncology Unit, University-Hospital Polyclinic of Modena, 41124, Modena, Italy
| | - Paola Coccia
- University-Hospital of Marche, Presidio Ospedaliero "G. Salesi", 60126, Ancona, Italy
| | - Achille Iolascon
- Department of Medical Biotechnology, University of Naples Federico II, 80138, Naples, Italy
- CEINGE Advanced Biotecnology, 80138, Naples, Italy
| | - Maria V Corrias
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Massimo Conte
- Clinical Oncology Unit, IRCCS Istituto Giannina Gaslini, 16147, -Genoa, Italy
| | - Alberto Garaventa
- Clinical Oncology Unit, IRCCS Istituto Giannina Gaslini, 16147, -Genoa, Italy
| | - Loredana Amoroso
- Clinical Oncology Unit, IRCCS Istituto Giannina Gaslini, 16147, -Genoa, Italy
| | - Mirco Ponzoni
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy.
| | - Fabio Pastorino
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| |
Collapse
|
36
|
Judd S, Revon‐Riviere G, Grover SA, Deyell RJ, Vanan MI, Lewis VA, Pecheux L, Zorzi AP, Goudie C, Santiago R, Tran TH, Abbott LS, Brossard J, Moorehead P, Alvi S, Portwine C, Denburg A, Whitlock JA, Cohen‐Gogo S, Morgenstern DA. Access to innovative therapies in pediatric oncology: Report of the nationwide experience in Canada. Cancer Med 2024; 13:e7033. [PMID: 38400668 PMCID: PMC10891445 DOI: 10.1002/cam4.7033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND The need for new therapies to improve survival and outcomes in pediatric oncology along with the lack of approval and accessible clinical trials has led to "out-of-trial" use of innovative therapies. We conducted a retrospective analysis of requests for innovative anticancer therapy in Canadian pediatric oncology tertiary centers for patients less than 30 years old between 2013 and 2020. METHODS Innovative therapies were defined as cancer-directed drugs used (a) off-label, (b) unlicensed drugs being used outside the context of a clinical trial, or (c) approved drugs with limited evidence in pediatrics. We excluded cytotoxic chemotherapy, cellular products, and cytokines. RESULTS We retrieved data on 352 innovative therapy drug requests. Underlying diagnosis was primary CNS tumor 31%; extracranial solid tumor 37%, leukemia/lymphoma 22%, LCH 2%, and plexiform neurofibroma 6%. RAS/MAP kinase pathway inhibitors were the most frequently requested innovative therapies in 28% of all requests followed by multi-targeted tyrosine kinase inhibitors (17%), inhibitors of the PIK3CA-mTOR-AKT pathway (8%), immune checkpoints inhibitors (8%), and antibody drug conjugates (8%). In 112 out of 352 requests, innovative therapies were used in combination with another anticancer agent. 48% of requests were motivated by the presence of an actionable molecular target. Compassionate access accounted for 52% of all requests while public insurance was used in 27%. Mechanisms of funding varied between provinces. CONCLUSION This real-world data collection illustrates an increasing use of "out-of-trial" innovative therapies in pediatric oncology. This new field of practice warrants further studies to understand the impact on patient trajectory and equity in access to innovative therapies.
Collapse
Affiliation(s)
- Sandra Judd
- Department of PharmacyHospital for Sick ChildrenTorontoOntarioCanada
| | - Gabriel Revon‐Riviere
- Division of Haematology/Oncology, Hospital for Sick Children, Department of PediatricsUniversity of TorontoTorontoOntarioCanada
| | | | - Rebecca J. Deyell
- Division of Pediatric Hematology Oncology BMTBC Children's Hospital and Research InstituteVancouverBritish ColumbiaCanada
| | - Magimairajan Issai Vanan
- Pediatric Neuro‐Oncology, Division of Pediatric Hematology‐Oncology, Cancer Care ManitobaUniversity of ManitobaWinnipegManitobaCanada
| | | | - Lucie Pecheux
- Stollery Children's HospitalUniversity of AlbertaEdmontonAlbertaCanada
| | - Alexandra P. Zorzi
- Department of Pediatrics, Children's Hospital London Health Sciences CentreWestern UniversityLondonOntarioCanada
| | - Catherine Goudie
- Department of Pediatrics, Division of Hematology‐Oncology, Montreal Children's HospitalMcGill University Health CentreQuébecCanada
| | - Raoul Santiago
- Department of Pediatrics, CHU de QuébecLaval UniversityQuébecCanada
| | - Thai Hoa Tran
- Division of Pediatric Hematology‐OncologyCharles‐Bruneau Cancer Center, CHU Sainte‐JustineMontrealQuébecCanada
| | - Lesleigh S. Abbott
- Division of Hematology/OncologyChildren's Hospital of Eastern OntarioOttawaOntarioCanada
| | - Josee Brossard
- Department of PediatricsCHU de Sherbrooke, Univesité de SherbrookeSherbrookeQuébecCanada
| | - Paul Moorehead
- Department of Pediatrics, Janeway Children's Health and Rehabilitation CentreMemorial University of NewfoundlandSt. John'sNewfoundland and LabradorCanada
| | - Saima Alvi
- Pediatric Hematology/Oncology, Jim Pattison Children's HospitalSaskatoonSaskatchewanCanada
| | - Carol Portwine
- McMaster Children's HospitalMcMaster UniversityHamiltonOntarioCanada
| | - Avram Denburg
- Division of Haematology/Oncology, Hospital for Sick Children, Department of PediatricsUniversity of TorontoTorontoOntarioCanada
| | - James A. Whitlock
- Division of Haematology/Oncology, Hospital for Sick Children, Department of PediatricsUniversity of TorontoTorontoOntarioCanada
| | - Sarah Cohen‐Gogo
- Division of Haematology/Oncology, Hospital for Sick Children, Department of PediatricsUniversity of TorontoTorontoOntarioCanada
| | - Daniel A. Morgenstern
- Division of Haematology/Oncology, Hospital for Sick Children, Department of PediatricsUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
37
|
Wallin S, Øra I, Prochazka G, Sandgren J, Björklund C, Ljungman G, Vogt H, Ek T, van Tilburg CM, Nilsson A. Implementing data on targeted therapy from the INFORM registry platform for children with relapsed cancer in Sweden. Front Oncol 2024; 14:1340099. [PMID: 38357207 PMCID: PMC10865092 DOI: 10.3389/fonc.2024.1340099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
Background Advances in treatment of childhood malignancies have improved overall cure rates to 80%. Nevertheless, cancer is still the most common cause of childhood mortality in Sweden. The prognosis is particularly poor for relapse of high-risk malignancies. In the international INFORM registry, tumor tissue from patients with relapsed, refractory, or progressive pediatric cancer as well as from very-high risk primary tumors is biologically characterized using next-generation sequencing to identify possible therapeutic targets. We analyzed data from Swedish children included in the INFORM registry concerning patient characteristics, survival, sequencing results and whether targeted treatment was administered to the children based on the molecular findings. Methods A registry-based descriptive analysis of 184 patients included in the INFORM registry in Sweden during 2016-2021. Results The most common diagnoses were soft tissue and bone sarcomas followed by high grade gliomas [including diffuse intrinsic pontine glioma (DIPG)]. Complete molecular analysis was successful for 203/212 samples originating from 184 patients. In 88% of the samples, at least one actionable target was identified. Highly prioritized targets, according to a preset scale, were identified in 48 (24%) samples from 40 patients and 24 of these patients received matched targeted treatment but only six children within a clinical trial. No statistically significant benefit in terms of overall survival or progression free survival was observed between children treated with matched targeted treatment compared to all others. Conclusion This international collaborative study demonstrate feasibility regarding sequencing of pediatric high-risk tumors providing molecular data regarding potential actionable targets to clinicians. For a few individuals the INFORM analysis was of utmost importance and should be regarded as a new standard of care with the potential to guide targeted therapy.
Collapse
Affiliation(s)
- Sofia Wallin
- Division of Pediatric Oncology, Department of Women and Children´s Health, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Øra
- Division of Pediatric Hematology-Oncology, Skåne University Hospital, & Clinical Sciences IKVL, Lund University, Lund, Sweden
| | - Gabriela Prochazka
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Johanna Sandgren
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Caroline Björklund
- Division of Pediatric Hematology-Oncology, Umeå University Hospital, Umeå, Sweden
| | - Gustaf Ljungman
- Department of Women and Children´s Health, Pediatric Hematology-Oncology Uppsala University, Uppsala, Sweden
| | - Hartmut Vogt
- Division of Pediatric Hematology-Oncology B153, Crown Princess Victoria Children’s Hospital, and Division of Children's and Women's Health, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Torben Ek
- University of Gothenburg and Children´s Cancer Center, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Cornelis M. van Tilburg
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Anna Nilsson
- Division of Pediatric Oncology, Department of Women and Children´s Health, Karolinska Institutet, Stockholm, Sweden
- Division of Pediatric Hematology-Oncology, Tema Barn, Astrid Lindgren Children’s Hospital, Stockholm, Sweden
| |
Collapse
|
38
|
Schober SJ, Thiede M, Gassmann H, von Ofen AJ, Knoch P, Eck J, Prexler C, Kordass-Wally C, Hauer J, Burdach S, Holm PS, Thiel U. TCR-transgenic T cells and YB-1-based oncolytic virotherapy improve survival in a preclinical Ewing sarcoma xenograft mouse model. Front Immunol 2024; 15:1330868. [PMID: 38318175 PMCID: PMC10839048 DOI: 10.3389/fimmu.2024.1330868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Background Ewing sarcoma (EwS) is an aggressive and highly metastatic bone and soft tissue tumor in pediatric patients and young adults. Cure rates are low when patients present with metastatic or relapsed disease. Therefore, innovative therapy approaches are urgently needed. Cellular- and oncolytic virus-based immunotherapies are on the rise for solid cancers. Methods Here, we assess the combination of EwS tumor-associated antigen CHM1319-specific TCR-transgenic CD8+ T cells and the YB-1-driven (i.e. E1A13S-deleted) oncolytic adenovirus XVir-N-31 in vitro and in a xenograft mouse model for antitumor activity and immunostimulatory properties. Results In vitro both approaches specifically kill EwS cell lines in a synergistic manner over controls. This effect was confirmed in vivo, with increased survival using the combination therapy. Further in vitro analyses of immunogenic cell death and antigen presentation confirmed immunostimulatory properties of virus-infected EwS tumor cells. As dendritic cell maturation was also increased by XVir-N-31, we observed superior proliferation of CHM1319-specific TCR-transgenic CD8+ T cells only in virus-tested conditions, emphasizing the superior immune-activating potential of XVir-N-31. Conclusion Our data prove synergistic antitumor effects in vitro and superior tumor control in a preclinical xenograft setting. Combination strategies of EwS-redirected T cells and YB-1-driven virotherapy are a highly promising immunotherapeutic approach for EwS and warrant further evaluation in a clinical setting.
Collapse
Affiliation(s)
- Sebastian J. Schober
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Melanie Thiede
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Hendrik Gassmann
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Anna Josefine von Ofen
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Pia Knoch
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Jennifer Eck
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Carolin Prexler
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Corazon Kordass-Wally
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Julia Hauer
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Stefan Burdach
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute of Pathology, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Per Sonne Holm
- Department of Urology, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Department of Oral and Maxillofacial Surgery, Medical University Innsbruck, Innsbruck, Austria
| | - Uwe Thiel
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| |
Collapse
|
39
|
Gil JV, Ribera J, Llop M. Editorial: Pediatric acute lymphoblastic leukemia: what's next? Front Pediatr 2024; 11:1358139. [PMID: 38269288 PMCID: PMC10806147 DOI: 10.3389/fped.2023.1358139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024] Open
Affiliation(s)
- J. V. Gil
- Grupo de Investigación en Hematología y Hemoterapia, Instituto de Investigación Sanitaria la Fe, Valencia, Spain
| | - J. Ribera
- Acute Lymphoblastic Leukaemia Group, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - M. Llop
- Unidad de Biología Molecular, Hospital Universitari I Politècnic la Fe, Valencia, Spain
| |
Collapse
|
40
|
Schöpf J, Uhrig S, Heilig CE, Lee KS, Walther T, Carazzato A, Dobberkau AM, Weichenhan D, Plass C, Hartmann M, Diwan GD, Carrero ZI, Ball CR, Hohl T, Kindler T, Rudolph-Hähnel P, Helm D, Schneider M, Nilsson A, Øra I, Imle R, Banito A, Russell RB, Jones BC, Lipka DB, Glimm H, Hübschmann D, Hartmann W, Fröhling S, Scholl C. Multi-omic and functional analysis for classification and treatment of sarcomas with FUS-TFCP2 or EWSR1-TFCP2 fusions. Nat Commun 2024; 15:51. [PMID: 38168093 PMCID: PMC10761971 DOI: 10.1038/s41467-023-44360-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Linking clinical multi-omics with mechanistic studies may improve the understanding of rare cancers. We leverage two precision oncology programs to investigate rhabdomyosarcoma with FUS/EWSR1-TFCP2 fusions, an orphan malignancy without effective therapies. All tumors exhibit outlier ALK expression, partly accompanied by intragenic deletions and aberrant splicing resulting in ALK variants that are oncogenic and sensitive to ALK inhibitors. Additionally, recurrent CKDN2A/MTAP co-deletions provide a rationale for PRMT5-targeted therapies. Functional studies show that FUS-TFCP2 blocks myogenic differentiation, induces transcription of ALK and truncated TERT, and inhibits DNA repair. Unlike other fusion-driven sarcomas, TFCP2-rearranged tumors exhibit genomic instability and signs of defective homologous recombination. DNA methylation profiling demonstrates a close relationship with undifferentiated sarcomas. In two patients, sarcoma was preceded by benign lesions carrying FUS-TFCP2, indicating stepwise sarcomagenesis. This study illustrates the potential of linking precision oncology with preclinical research to gain insight into the classification, pathogenesis, and therapeutic vulnerabilities of rare cancers.
Collapse
Affiliation(s)
- Julia Schöpf
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ), and National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Division of Translational Medical Oncology, DKFZ, and NCT Heidelberg, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Sebastian Uhrig
- Computational Oncology Group, Molecular Precision Oncology Program, NCT Heidelberg, and DKFZ, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Christoph E Heilig
- Division of Translational Medical Oncology, DKFZ, and NCT Heidelberg, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Kwang-Seok Lee
- Division of Translational Medical Oncology, DKFZ, and NCT Heidelberg, Heidelberg, Germany
| | - Tatjana Walther
- Division of Translational Medical Oncology, DKFZ, and NCT Heidelberg, Heidelberg, Germany
| | - Alexander Carazzato
- Division of Translational Medical Oncology, DKFZ, and NCT Heidelberg, Heidelberg, Germany
| | - Anna Maria Dobberkau
- Section of Translational Cancer Epigenomics, Division of Translational Medical Oncology, DKFZ, and NCT Heidelberg, Heidelberg, Germany
| | | | | | - Mark Hartmann
- Section of Translational Cancer Epigenomics, Division of Translational Medical Oncology, DKFZ, and NCT Heidelberg, Heidelberg, Germany
| | - Gaurav D Diwan
- Bioquant, Heidelberg University, Heidelberg, Germany
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Zunamys I Carrero
- Department for Translational Medical Oncology, NCT, NCT/UCC Dresden, a Partnership Between DKFZ, Heidelberg Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
| | - Claudia R Ball
- Department for Translational Medical Oncology, NCT, NCT/UCC Dresden, a Partnership Between DKFZ, Heidelberg Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD, Dresden, Germany
- Faculty of Biology, TUD Dresden University of Technology, Dresden, Germany
| | - Tobias Hohl
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ), and National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Thomas Kindler
- University Cancer Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center, Mainz, Germany
- German Cancer Consortium (DKTK), Mainz, Germany
| | - Patricia Rudolph-Hähnel
- University Cancer Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center, Mainz, Germany
- German Cancer Consortium (DKTK), Mainz, Germany
| | - Dominic Helm
- Proteomics Core Facility, DKFZ, Heidelberg, Germany
| | | | - Anna Nilsson
- Pediatric Oncology and Coagulation, Karolinska University Hospital, Stockholm, Sweden
| | - Ingrid Øra
- Pediatric Oncology and Hematology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Roland Imle
- Soft-Tissue Sarcoma Junior Research Group, DKFZ, Heidelberg, Germany
- Hopp Children's Cancer Center (KiTZ) and NCT Heidelberg, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ana Banito
- Soft-Tissue Sarcoma Junior Research Group, DKFZ, Heidelberg, Germany
- Hopp Children's Cancer Center (KiTZ) and NCT Heidelberg, Heidelberg, Germany
| | - Robert B Russell
- Bioquant, Heidelberg University, Heidelberg, Germany
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Barbara C Jones
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children's Cancer Center (KiTZ) and NCT Heidelberg, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Daniel B Lipka
- Section of Translational Cancer Epigenomics, Division of Translational Medical Oncology, DKFZ, and NCT Heidelberg, Heidelberg, Germany
| | - Hanno Glimm
- Department for Translational Medical Oncology, NCT, NCT/UCC Dresden, a Partnership Between DKFZ, Heidelberg Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD, Dresden, Germany
- Translational Functional Cancer Genomics, DKFZ, Heidelberg, Germany
| | - Daniel Hübschmann
- Computational Oncology Group, Molecular Precision Oncology Program, NCT Heidelberg, and DKFZ, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Pattern Recognition and Digital Medicine Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | - Wolfgang Hartmann
- Gerhard Domagk Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Stefan Fröhling
- Division of Translational Medical Oncology, DKFZ, and NCT Heidelberg, Heidelberg, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany.
| | - Claudia Scholl
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ), and National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
41
|
McCabe MG, Geoerger B, Chesler L, Hargrave D, Parsons DW, van Tilburg CM, Schleiermacher G, Hickman JA, George SL. Precision Medicine for Childhood Cancer: Current Limitations and Future Perspectives. JCO Precis Oncol 2024; 8:e2300117. [PMID: 38207228 DOI: 10.1200/po.23.00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/19/2023] [Accepted: 10/19/2023] [Indexed: 01/13/2024] Open
Abstract
Greater collaboration needed to realize potential of molecular profiling initiatives for pediatric cancers.
Collapse
Affiliation(s)
- Martin G McCabe
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Birgit Geoerger
- Gustave Roussy Cancer Campus, Department of Pediatric and Adolescent Oncology, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Louis Chesler
- Paediatric Oncology Experimental Medicine Centre, The Institute of Cancer Research, London, United Kingdom
- Children and Young People's Unit, The Royal Marsden Hospital, London, United Kingdom
| | - Darren Hargrave
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - D Williams Parsons
- Texas Children's Cancer and Hematology Center, Baylor College of Medicine, Houston, TX
| | - Cornelis M van Tilburg
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology & Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Gudrun Schleiermacher
- SiRIC RTOP (Recherche Translationelle en Oncologie Pédiatrique), Translational Research Department, Institut Curie Research Center, PSL Research University, Institut Curie, Parbe the only one citing a postcodeis, France
| | - John A Hickman
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Sally L George
- Paediatric Oncology Experimental Medicine Centre, The Institute of Cancer Research, London, United Kingdom
- Children and Young People's Unit, The Royal Marsden Hospital, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
42
|
Gastberger K, Fincke VE, Mucha M, Siebert R, Hasselblatt M, Frühwald MC. Current Molecular and Clinical Landscape of ATRT - The Link to Future Therapies. Cancer Manag Res 2023; 15:1369-1393. [PMID: 38089834 PMCID: PMC10712249 DOI: 10.2147/cmar.s379451] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/28/2023] [Indexed: 10/16/2024] Open
Abstract
ATRT is a highly aggressive and rare pediatric CNS tumor of very young children. Its genetic hallmark is bi-allelic inactivation of SMARCB1 encoding INI1. Rarely SMARCA4 encoding BRG1 is affected. Up to 30% are associated with constitutional heterozygous pathogenic variants in one of the two genes, giving rise to the Rhabdoid-Tumor-Predisposition-Syndromes (RTPS) 1 and 2. Characteristic DNA methylation profiles distinguish ATRT from other SMARCB1-deficient entities. Three distinct subtypes ATRT-MYC, -TYR, and -SHH are on record. ATRT-SHH may be further divided into the subgroups ATRT-SHH1A, -SHH1B, and -SHH2. The cure of ATRT remains challenging, notwithstanding an increasing understanding of molecular pathomechanisms and genetic background. The implementation of multimodal institutional treatment protocols has improved prognosis. Regardless of treatment approaches, clinical risk factors such as age, metastases, and DNA methylation subtype affect survival probability. We provide a critical appraisal of current conventional multimodal regimens and emerging targeted treatment approaches investigated in clinical trials and entity-specific registries. Intense treatment approaches featuring radiotherapy (RT) and high-dose chemotherapy (HDCT) face the difficulty of balancing tumor control and treatment-related toxicity. Current approaches focus on minimizing radiation fields by proton beam therapy or to withhold RT in HDCT-only approaches. Still, a 40-75% relapse rate upon first-line treatment reveals the need for novel treatment strategies in primary and even more in recurrent/refractory (r/r) disease. Among targeted treatments, immune checkpoint inhibitors and epigenetically active agents appear most promising. Success remains limited in single agent approaches. We hypothesize that mechanism-informed combination therapy will enhance response, as the low mutational burden of ATRT may contribute to acquiring resistance to single targeted agents. As DNA methylation group-specific gene expression profiles appear to influence response to distinct agents, the future treatment of ATRT should respect clinical and biological heterogeneity in risk group adjusted treatment protocols.
Collapse
Affiliation(s)
- Katharina Gastberger
- Pediatrics and Adolescent Medicine, Swabian Children’s Cancer Center, University Medical Center Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
| | - Victoria E Fincke
- Pediatrics and Adolescent Medicine, Swabian Children’s Cancer Center, University Medical Center Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
| | - Marlena Mucha
- Pediatrics and Adolescent Medicine, Swabian Children’s Cancer Center, University Medical Center Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm, Germany
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Michael C Frühwald
- Pediatrics and Adolescent Medicine, Swabian Children’s Cancer Center, University Medical Center Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
| |
Collapse
|
43
|
Wahida A, Buschhorn L. Liquid biopsies and those three little words: finding the perfect match for the MTB. MED GENET-BERLIN 2023; 35:269-273. [PMID: 38835735 PMCID: PMC11006335 DOI: 10.1515/medgen-2023-2064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Monitoring ctDNA by liquid biopsies seems to represent the perfect match for precision oncology and its cornerstone clinical framework: the molecular tumour board (MTB). Detecting and scrutinising the success of targeted therapies or tracking and, for that matter, addressing the therapy with the evolutive nature of a tumour are some of the main advancements one considers to be important for the MTB. One challenge is correlating the estimated allele frequency of each identified genetic alteration determined by analysing the ctDNA sequencing results and matching these with the range of suitable drugs, which may limit the simultaneous treatment of all tumour variations. This limitation arises because a new biopsy would typically be required to evaluate the response to treatment. As a result, evaluating the success of MTB recommendations relies on traditional staging methods, highlighting an existing diagnostic gap. Thus, optimising liquid biopsy technology could enhance the efficacy of MTB treatment recommendations and ensuing tailored therapies. Herein, we discuss the prospect of ctDNA analyses in the molecular tumour board.
Collapse
Affiliation(s)
- Adam Wahida
- Institute of Metabolism and Cell Death Ingolstädter Landstraße 1 85764 Neuherberg Germany
| | - Lars Buschhorn
- National Center for Tumor Diseases (NCT) Heidelberg Division of Gynaecological Oncology Im Neuenheimer Feld 440 69120 Heidelberg Germany
| |
Collapse
|
44
|
Lorentzian AC, Rever J, Ergin EK, Guo M, Akella NM, Rolf N, James Lim C, Reid GSD, Maxwell CA, Lange PF. Targetable lesions and proteomes predict therapy sensitivity through disease evolution in pediatric acute lymphoblastic leukemia. Nat Commun 2023; 14:7161. [PMID: 37989729 PMCID: PMC10663560 DOI: 10.1038/s41467-023-42701-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 10/19/2023] [Indexed: 11/23/2023] Open
Abstract
Childhood acute lymphoblastic leukemia (ALL) genomes show that relapses often arise from subclonal outgrowths. However, the impact of clonal evolution on the actionable proteome and response to targeted therapy is not known. Here, we present a comprehensive retrospective analysis of paired ALL diagnosis and relapsed specimen. Targeted next generation sequencing and proteome analysis indicate persistence of actionable genome variants and stable proteomes through disease progression. Paired viably-frozen biopsies show high correlation of drug response to variant-targeted therapies but in vitro selectivity is low. Proteome analysis prioritizes PARP1 as a pan-ALL target candidate needed for survival following cellular stress; diagnostic and relapsed ALL samples demonstrate robust sensitivity to treatment with two PARP1/2 inhibitors. Together, these findings support initiating prospective precision oncology approaches at ALL diagnosis and emphasize the need to incorporate proteome analysis to prospectively determine tumor sensitivities, which are likely to be retained at disease relapse.
Collapse
Affiliation(s)
- Amanda C Lorentzian
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- Michael Cuccione Childhood Cancer Research Program at the BC Children's Hospital Research Institute, Vancouver, Canada
| | - Jenna Rever
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- Michael Cuccione Childhood Cancer Research Program at the BC Children's Hospital Research Institute, Vancouver, Canada
| | - Enes K Ergin
- Michael Cuccione Childhood Cancer Research Program at the BC Children's Hospital Research Institute, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Meiyun Guo
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- Michael Cuccione Childhood Cancer Research Program at the BC Children's Hospital Research Institute, Vancouver, Canada
| | - Neha M Akella
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- Michael Cuccione Childhood Cancer Research Program at the BC Children's Hospital Research Institute, Vancouver, Canada
| | - Nina Rolf
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- Michael Cuccione Childhood Cancer Research Program at the BC Children's Hospital Research Institute, Vancouver, Canada
| | - C James Lim
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- Michael Cuccione Childhood Cancer Research Program at the BC Children's Hospital Research Institute, Vancouver, Canada
| | - Gregor S D Reid
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- Michael Cuccione Childhood Cancer Research Program at the BC Children's Hospital Research Institute, Vancouver, Canada
| | - Christopher A Maxwell
- Department of Pediatrics, University of British Columbia, Vancouver, Canada.
- Michael Cuccione Childhood Cancer Research Program at the BC Children's Hospital Research Institute, Vancouver, Canada.
| | - Philipp F Lange
- Michael Cuccione Childhood Cancer Research Program at the BC Children's Hospital Research Institute, Vancouver, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
45
|
Paolino J, Dimitrov B, Winger BA, Sandoval-Perez A, Rangarajan AV, Ocasio-Martinez N, Tsai HK, Li Y, Robichaud AL, Khalid D, Hatton C, Gillani R, Polonen P, Dilig A, Gotti G, Kavanagh J, Adhav AA, Gow S, Tsai J, Li YD, Ebert BL, Van Allen EM, Bledsoe J, Kim AS, Tasian SK, Cooper SL, Cooper TM, Hijiya N, Sulis ML, Shukla NN, Magee JA, Mullighan CG, Burke MJ, Luskin MR, Mar BG, Jacobson MP, Harris MH, Stegmaier K, Place AE, Pikman Y. Integration of Genomic Sequencing Drives Therapeutic Targeting of PDGFRA in T-Cell Acute Lymphoblastic Leukemia/Lymphoblastic Lymphoma. Clin Cancer Res 2023; 29:4613-4626. [PMID: 37725576 PMCID: PMC10872648 DOI: 10.1158/1078-0432.ccr-22-2562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 05/22/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE Patients with relapsed or refractory T-cell acute lymphoblastic leukemia (T-ALL) or lymphoblastic lymphoma (T-LBL) have limited therapeutic options. Clinical use of genomic profiling provides an opportunity to identify targetable alterations to inform therapy. EXPERIMENTAL DESIGN We describe a cohort of 14 pediatric patients with relapsed or refractory T-ALL enrolled on the Leukemia Precision-based Therapy (LEAP) Consortium trial (NCT02670525) and a patient with T-LBL, discovering alterations in platelet-derived growth factor receptor-α (PDGFRA) in 3 of these patients. We identified a novel mutation in PDGFRA, p.D842N, and used an integrated structural modeling and molecular biology approach to characterize mutations at D842 to guide therapeutic targeting. We conducted a preclinical study of avapritinib in a mouse patient-derived xenograft (PDX) model of FIP1L1-PDGFRA and PDGFRA p.D842N leukemia. RESULTS Two patients with T-ALL in the LEAP cohort (14%) had targetable genomic alterations affecting PDGFRA, a FIP1-like 1 protein/PDGFRA (FIP1L1-PDGFRA) fusion and a novel mutation in PDGFRA, p.D842N. The D842N mutation resulted in PDGFRA activation and sensitivity to tested PDGFRA inhibitors. In a T-ALL PDX model, avapritinib treatment led to decreased leukemia burden, significantly prolonged survival, and even cured a subset of mice. Avapritinib treatment was well tolerated and yielded clinical benefit in a patient with refractory T-ALL. CONCLUSIONS Refractory T-ALL has not been fully characterized. Alterations in PDGFRA or other targetable kinases may inform therapy for patients with refractory T-ALL who otherwise have limited treatment options. Clinical genomic profiling, in real time, is needed for fully informed therapeutic decision making.
Collapse
Affiliation(s)
- Jonathan Paolino
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA
| | - Boris Dimitrov
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Beth Apsel Winger
- Department of Pediatrics, Division of Hematology/Oncology, Benioff Children’s Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Angelica Sandoval-Perez
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Amith Vikram Rangarajan
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | | | | | - Yuting Li
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | | - Delan Khalid
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Charlie Hatton
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Riaz Gillani
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA
| | - Petri Polonen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | | | - Giacomo Gotti
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Julia Kavanagh
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Asmani A. Adhav
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Sean Gow
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jonathan Tsai
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Yen Der Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Benjamin L. Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | | - Jacob Bledsoe
- Department of Pathology, Boston Children’s Hospital, Boston, MA
| | - Annette S. Kim
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Sarah K. Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, and Department of Pediatrics and Abramson Cancer Center at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Stacy L. Cooper
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Todd M. Cooper
- Seattle Children's Hospital, Cancer and Blood Disorders Center, Seattle, WA
| | - Nobuko Hijiya
- Division of Pediatric Hematology/Oncology/Stem Cell Transplantation, Columbia University Irving Medical Center, New York, NY
| | - Maria Luisa Sulis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Neerav N. Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jeffrey A. Magee
- Division of Pediatric Hematology/Oncology, Washington University/St. Louis Children's Hospital, St. Louis, MO
| | | | - Michael J. Burke
- Medical College of Wisconsin, Children’s Hospital of Wisconsin, Milwaukee, WI
| | - Marlise R. Luskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | | - Matthew P. Jacobson
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | | | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA
| | - Andrew E. Place
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA
| | - Yana Pikman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA
| |
Collapse
|
46
|
Hardin EC, Schmid S, Sommerkamp A, Bodden C, Heipertz AE, Sievers P, Wittmann A, Milde T, Pfister SM, von Deimling A, Horn S, Herz NA, Simon M, Perera AA, Azizi A, Cruz O, Curry S, Van Damme A, Garami M, Hargrave D, Kattamis A, Kotnik BF, Lähteenmäki P, Scheinemann K, Schouten-van Meeteren AYN, Sehested A, Viscardi E, Wormdal OM, Zapotocky M, Ziegler DS, Koch A, Hernáiz Driever P, Witt O, Capper D, Sahm F, Jones DTW, van Tilburg CM. LOGGIC Core BioClinical Data Bank: Added clinical value of RNA-Seq in an international molecular diagnostic registry for pediatric low-grade glioma patients. Neuro Oncol 2023; 25:2087-2097. [PMID: 37075810 PMCID: PMC10628936 DOI: 10.1093/neuonc/noad078] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND The international, multicenter registry LOGGIC Core BioClinical Data Bank aims to enhance the understanding of tumor biology in pediatric low-grade glioma (pLGG) and provide clinical and molecular data to support treatment decisions and interventional trial participation. Hence, the question arises whether implementation of RNA sequencing (RNA-Seq) using fresh frozen (FrFr) tumor tissue in addition to gene panel and DNA methylation analysis improves diagnostic accuracy and provides additional clinical benefit. METHODS Analysis of patients aged 0 to 21 years, enrolled in Germany between April 2019 and February 2021, and for whom FrFr tissue was available. Central reference histopathology, immunohistochemistry, 850k DNA methylation analysis, gene panel sequencing, and RNA-Seq were performed. RESULTS FrFr tissue was available in 178/379 enrolled cases. RNA-Seq was performed on 125 of these samples. We confirmed KIAA1549::BRAF-fusion (n = 71), BRAF V600E-mutation (n = 12), and alterations in FGFR1 (n = 14) as the most frequent alterations, among other common molecular drivers (n = 12). N = 16 cases (13%) presented rare gene fusions (eg, TPM3::NTRK1, EWSR1::VGLL1, SH3PXD2A::HTRA1, PDGFB::LRP1, GOPC::ROS1). In n = 27 cases (22%), RNA-Seq detected a driver alteration not otherwise identified (22/27 actionable). The rate of driver alteration detection was hereby increased from 75% to 97%. Furthermore, FGFR1 internal tandem duplications (n = 6) were only detected by RNA-Seq using current bioinformatics pipelines, leading to a change in analysis protocols. CONCLUSIONS The addition of RNA-Seq to current diagnostic methods improves diagnostic accuracy, making precision oncology treatments (MEKi/RAFi/ERKi/NTRKi/FGFRi/ROSi) more accessible. We propose to include RNA-Seq as part of routine diagnostics for all pLGG patients, especially when no common pLGG alteration was identified.
Collapse
Affiliation(s)
- Emily C Hardin
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK)
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Medical Faculty, University of Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Simone Schmid
- Department of Neuropathology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alexander Sommerkamp
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Paediatrics and Adolescent Medicine, The University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Carina Bodden
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK)
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Anna-Elisa Heipertz
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK)
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Medical Faculty, University of Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Philipp Sievers
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andrea Wittmann
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Till Milde
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK)
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas von Deimling
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Saint Luc University Hospital, Brussels, Belgium
| | - Svea Horn
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, HIT-LOGGIC German Registry for children and adolescents with low-grade glioma, Berlin, Germany
| | - Nina A Herz
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, HIT-LOGGIC German Registry for children and adolescents with low-grade glioma, Berlin, Germany
| | - Michèle Simon
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, HIT-LOGGIC German Registry for children and adolescents with low-grade glioma, Berlin, Germany
- Department of Pediatric Oncology/Hematology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ashwyn A Perera
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Heidelberg Medical Faculty, University of Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Amedeo Azizi
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Ofelia Cruz
- Neuro-Oncology Unit, Pediatric Cancer Center, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Sarah Curry
- Department of Haematology and Oncology, Children’s Health Ireland at Crumlin, Dublin, Ireland
| | - An Van Damme
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Saint Luc University Hospital, Brussels, Belgium
| | - Miklos Garami
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Darren Hargrave
- Great Ormond Street Hospital for Children NHS Trust London, London, UK
| | - Antonis Kattamis
- Department of Neuropathology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- First Department of Paediatrics, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Barbara Faganel Kotnik
- Department of Haematology and Oncology, University Children’s Hospital, University Medical Centre Ljubljana (UMC), Ljubljana, Slovenia
| | - Päivi Lähteenmäki
- Turku University and University Hospital, Turku, Finland
- Swedish Childhood Cancer Registry, Karolinska Institutet, Stockholm, Sweden
| | - Katrin Scheinemann
- Division of Pediatric Oncology – Hematology, Department of Pediatrics, Kantonsspital Aarau, Aarau, Switzerland
- Department of Health Sciences and Medicine, University of Lucerne, Lucerne, Switzerland
- Department of Paediatrics, McMaster Children’s Hospital and McMaster University, Hamilton, Canada
| | | | - Astrid Sehested
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Paediatrics and Adolescent Medicine, The University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | - Ole Mikal Wormdal
- Section of Pediatric Oncology, UNN University Hospital of Northern Norway, Tromsø, Norway
| | - Michal Zapotocky
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - David S Ziegler
- Kids Cancer Centre, Sydney Children’s Hospital, High St, Randwick, NSW, Australia
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Arend Koch
- Department of Neuropathology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- First Department of Paediatrics, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Pablo Hernáiz Driever
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, HIT-LOGGIC German Registry for children and adolescents with low-grade glioma, Berlin, Germany
- Department of Pediatric Oncology/Hematology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Olaf Witt
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK)
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - David Capper
- Department of Neuropathology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Sahm
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - David T W Jones
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cornelis M van Tilburg
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK)
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| |
Collapse
|
47
|
Barnbrock AE, Luckowitsch M, Schmidt S, Buus-Gehrig C, Koscher L, Becker M, Vokuhl C, Klingebiel T, Lehrnbecher T, Bochennek K. Progression and Relapse of Pediatric Soft Tissue Sarcoma: Individualized Approach of Treatment - Experience from a Major Pediatric Cancer Center in Europe. KLINISCHE PADIATRIE 2023; 235:360-365. [PMID: 37494132 DOI: 10.1055/a-2103-2781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
BACKGROUND The outcome of children with refractory or relapsed soft tissue sarcoma (STS) is extremely poor. Whereas larger clinical trials evaluated specific treatment modalities, real-life data on individual multimodal therapeutic strategies, given alone or in combination, are scarce. PATIENTS AND METHODS We retrospectively analyzed the clinical course of 18 pediatric patients with progression of or relapsed STS treated between 2008 and 2018 in our institution. RESULTS A total of 18 patients (median age 12.4 years) suffered from progression or relapse of alveolar (n=7), embryonal (n=5), undifferentiated (n=2) rhabdomyosarcoma or desmoplastic small round cell tumor (n=4). 14 patents had an initial stage IV disease. All but one patient died. Median survival was 12.5 months. Shortest survival was seen in patients with systemic progression of the disease, longest in patients with local relapse. Patients with an Oberlin score<2 at the time of relapse had a significant longer time of survival than those with a score≥2. No significant advantage of a specific therapeutic modality was observed. DISCUSSION We critically analyzed the clinical course in the real-life setting, in which various treatment options were applied to an individual patient according to the best of available data. We observed that some patients died within a short period of time despite multiple treatment modalities, which underlines the need for better prognostic parameters. CONCLUSION In addition to well characterized clinical factors such as local or systemic relapse, the Oberlin score could be helpful in counselling patients and their families for choosing the best strategy of care.
Collapse
Affiliation(s)
- Anke Elisabeth Barnbrock
- Pediatric Oncology, Hospital of the Goethe University Frankfurt Centre for Paediatrics and Adolescent Medicine, Frankfurt am Main, Germany
| | - Marie Luckowitsch
- Pediatric Oncology, Hospital of the Goethe University Frankfurt Centre for Paediatrics and Adolescent Medicine, Frankfurt am Main, Germany
| | - Stanislaw Schmidt
- Pediatric Oncology, Hospital of the Goethe University Frankfurt Centre for Paediatrics and Adolescent Medicine, Frankfurt am Main, Germany
| | - Constanze Buus-Gehrig
- Pediatric Oncology, Hospital of the Goethe University Frankfurt Centre for Paediatrics and Adolescent Medicine, Frankfurt am Main, Germany
| | - Leila Koscher
- Pediatric Oncology, Hospital of the Goethe University Frankfurt Centre for Paediatrics and Adolescent Medicine, Frankfurt am Main, Germany
| | - Martina Becker
- Pediatric Oncology, Hospital of the Goethe University Frankfurt Centre for Paediatrics and Adolescent Medicine, Frankfurt am Main, Germany
| | - Christian Vokuhl
- Department of Pathology, Section Pediatric Pathology, University Bonn, Germany
| | - Thomas Klingebiel
- Pediatric Oncology, Hospital of the Goethe University Frankfurt Centre for Paediatrics and Adolescent Medicine, Frankfurt am Main, Germany
| | - Thomas Lehrnbecher
- Pediatric Oncology, Hospital of the Goethe University Frankfurt Centre for Paediatrics and Adolescent Medicine, Frankfurt am Main, Germany
| | - Konrad Bochennek
- Pediatric Oncology, Hospital of the Goethe University Frankfurt Centre for Paediatrics and Adolescent Medicine, Frankfurt am Main, Germany
| |
Collapse
|
48
|
Wurm AA, Brilloff S, Kolovich S, Schäfer S, Rahimian E, Kufrin V, Bill M, Carrero ZI, Drukewitz S, Krüger A, Hüther M, Uhrig S, Oster S, Westphal D, Meier F, Pfütze K, Hübschmann D, Horak P, Kreutzfeldt S, Richter D, Schröck E, Baretton G, Heining C, Möhrmann L, Fröhling S, Ball CR, Glimm H. Signaling-induced systematic repression of miRNAs uncovers cancer vulnerabilities and targeted therapy sensitivity. Cell Rep Med 2023; 4:101200. [PMID: 37734378 PMCID: PMC10591033 DOI: 10.1016/j.xcrm.2023.101200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/21/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023]
Abstract
Targeted therapies are effective in treating cancer, but success depends on identifying cancer vulnerabilities. In our study, we utilize small RNA sequencing to examine the impact of pathway activation on microRNA (miRNA) expression patterns. Interestingly, we discover that miRNAs capable of inhibiting key members of activated pathways are frequently diminished. Building on this observation, we develop an approach that integrates a low-miRNA-expression signature to identify druggable target genes in cancer. We train and validate our approach in colorectal cancer cells and extend it to diverse cancer models using patient-derived in vitro and in vivo systems. Finally, we demonstrate its additional value to support genomic and transcriptomic-based drug prediction strategies in a pan-cancer patient cohort from the National Center for Tumor Diseases (NCT)/German Cancer Consortium (DKTK) Molecularly Aided Stratification for Tumor Eradication (MASTER) precision oncology trial. In conclusion, our strategy can predict cancer vulnerabilities with high sensitivity and accuracy and might be suitable for future therapy recommendations in a variety of cancer subtypes.
Collapse
Affiliation(s)
- Alexander A Wurm
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the Technische Universität Dresden, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany.
| | - Silke Brilloff
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the Technische Universität Dresden, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Sofia Kolovich
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the Technische Universität Dresden, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Silvia Schäfer
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the Technische Universität Dresden, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Elahe Rahimian
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the Technische Universität Dresden, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Vida Kufrin
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the Technische Universität Dresden, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Marius Bill
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the Technische Universität Dresden, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany; Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Zunamys I Carrero
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the Technische Universität Dresden, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany
| | - Stephan Drukewitz
- German Cancer Consortium (DKTK), Dresden, Germany; Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the Technische Universität Dresden, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Institute of Human Genetics, University of Leipzig, Leipzig, Germany
| | - Alexander Krüger
- German Cancer Consortium (DKTK), Dresden, Germany; Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the Technische Universität Dresden, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Melanie Hüther
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the Technische Universität Dresden, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Sebastian Uhrig
- Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
| | - Sandra Oster
- German Cancer Consortium (DKTK), Dresden, Germany; Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the Technische Universität Dresden, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Dana Westphal
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Friedegund Meier
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Skin Cancer Center at the University Cancer Centre Dresden and National Center for Tumor Diseases, Dresden, Germany
| | - Katrin Pfütze
- German Cancer Consortium (DKTK), Heidelberg, Germany; Sample Processing Laboratory, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
| | - Daniel Hübschmann
- Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Heidelberg, Germany
| | - Peter Horak
- German Cancer Consortium (DKTK), Heidelberg, Germany; Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
| | - Simon Kreutzfeldt
- German Cancer Consortium (DKTK), Heidelberg, Germany; Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
| | - Daniela Richter
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the Technische Universität Dresden, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany
| | - Evelin Schröck
- German Cancer Consortium (DKTK), Dresden, Germany; Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the Technische Universität Dresden, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Institute for Clinical Genetics, University Hospital Carl Gustav Carus at Technische Universität Dresden, Dresden, Germany; ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Dresden, Germany
| | - Gustavo Baretton
- German Cancer Consortium (DKTK), Dresden, Germany; Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the Technische Universität Dresden, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Christoph Heining
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the Technische Universität Dresden, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany
| | - Lino Möhrmann
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the Technische Universität Dresden, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany
| | - Stefan Fröhling
- German Cancer Consortium (DKTK), Heidelberg, Germany; Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
| | - Claudia R Ball
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the Technische Universität Dresden, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany; Technische Universität Dresden, Faculty of Biology, Dresden, Germany
| | - Hanno Glimm
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the Technische Universität Dresden, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany; Translational Functional Cancer Genomics, National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
49
|
Cockle JV, Corley EA, Zebian B, Hettige S, Vaidya SJ, Angelini P, Stone J, Leitch RJ, Albanese A, Mandeville HC, Carceller F, Marshall LV. Novel therapeutic approaches for pediatric diencephalic tumors: improving functional outcomes. Front Oncol 2023; 13:1178553. [PMID: 37886179 PMCID: PMC10598386 DOI: 10.3389/fonc.2023.1178553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/06/2023] [Indexed: 10/28/2023] Open
Abstract
Pediatric diencephalic tumors represent a histopathologically and molecularly diverse group of neoplasms arising in the central part of the brain and involving eloquent structures, including the hypothalamic-pituitary axis (HPA), optic pathway, thalamus, and pineal gland. Presenting symptoms can include significant neurological, endocrine, or visual manifestations which may be exacerbated by injudicious intervention. Upfront multidisciplinary assessment and coordinated management is crucial from the outset to ensure best short- and long-term functional outcomes. In this review we discuss the clinical and pathological features of the neoplastic entities arising in this location, and their management. We emphasize a clear move towards 'function preserving' diagnostic and therapeutic approaches with novel toxicity-sparing strategies, including targeted therapies.
Collapse
Affiliation(s)
- Julia V. Cockle
- Department of Neuro-oncology, Children and Young People’s Unit, The Royal Marsden National Health Service (NHS) Foundation Trust, London, United Kingdom
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Elizabeth A. Corley
- Pediatric and Adolescent Oncology Drug Development Team, Children and Young People’s Unit, The Royal Marsden National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Bassel Zebian
- Department of Neurosurgery, Kings College Hospital National Health Service (NHS) Trust, London, United Kingdom
| | - Samantha Hettige
- Atkinson Morley Neurosurgery Centre, St George’s University Hospital National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Sucheta J. Vaidya
- Department of Neuro-oncology, Children and Young People’s Unit, The Royal Marsden National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Paola Angelini
- Department of Neuro-oncology, Children and Young People’s Unit, The Royal Marsden National Health Service (NHS) Foundation Trust, London, United Kingdom
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Joanna Stone
- Department of Neuro-oncology, Children and Young People’s Unit, The Royal Marsden National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - R Jane Leitch
- Department of Ophthalmology, Epsom and St Hellier University Hospitals Trust, Carshalton, United Kingdom
| | - Assunta Albanese
- Department of Neuro-oncology, Children and Young People’s Unit, The Royal Marsden National Health Service (NHS) Foundation Trust, London, United Kingdom
- Department of Pediatric Endocrinology, The Royal Marsden National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Henry C. Mandeville
- Department of Neuro-oncology, Children and Young People’s Unit, The Royal Marsden National Health Service (NHS) Foundation Trust, London, United Kingdom
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- Department of Radiotherapy, The Royal Marsden National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Fernando Carceller
- Department of Neuro-oncology, Children and Young People’s Unit, The Royal Marsden National Health Service (NHS) Foundation Trust, London, United Kingdom
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- Pediatric and Adolescent Oncology Drug Development Team, Children and Young People’s Unit, The Royal Marsden National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Lynley V. Marshall
- Department of Neuro-oncology, Children and Young People’s Unit, The Royal Marsden National Health Service (NHS) Foundation Trust, London, United Kingdom
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- Pediatric and Adolescent Oncology Drug Development Team, Children and Young People’s Unit, The Royal Marsden National Health Service (NHS) Foundation Trust, London, United Kingdom
| |
Collapse
|
50
|
Sahm F, Brandner S, Bertero L, Capper D, French PJ, Figarella-Branger D, Giangaspero F, Haberler C, Hegi ME, Kristensen BW, Kurian KM, Preusser M, Tops BBJ, van den Bent M, Wick W, Reifenberger G, Wesseling P. Molecular diagnostic tools for the World Health Organization (WHO) 2021 classification of gliomas, glioneuronal and neuronal tumors; an EANO guideline. Neuro Oncol 2023; 25:1731-1749. [PMID: 37279174 PMCID: PMC10547522 DOI: 10.1093/neuonc/noad100] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Indexed: 06/08/2023] Open
Abstract
In the 5th edition of the WHO CNS tumor classification (CNS5, 2021), multiple molecular characteristics became essential diagnostic criteria for many additional CNS tumor types. For those tumors, an integrated, "histomolecular" diagnosis is required. A variety of approaches exists for determining the status of the underlying molecular markers. The present guideline focuses on the methods that can be used for assessment of the currently most informative diagnostic and prognostic molecular markers for the diagnosis of gliomas, glioneuronal and neuronal tumors. The main characteristics of the molecular methods are systematically discussed, followed by recommendations and information on available evidence levels for diagnostic measures. The recommendations cover DNA and RNA next-generation-sequencing, methylome profiling, and select assays for single/limited target analyses, including immunohistochemistry. Additionally, because of its importance as a predictive marker in IDH-wildtype glioblastomas, tools for the analysis of MGMT promoter methylation status are covered. A structured overview of the different assays with their characteristics, especially their advantages and limitations, is provided, and requirements for input material and reporting of results are clarified. General aspects of molecular diagnostic testing regarding clinical relevance, accessibility, cost, implementation, regulatory, and ethical aspects are discussed as well. Finally, we provide an outlook on new developments in the landscape of molecular testing technologies in neuro-oncology.
Collapse
Affiliation(s)
- Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- CCU Neuropathology, German Concortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology and Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - David Capper
- Department of Neuropathology, Charité, Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pim J French
- Department of Neurology, Brain Tumor Center at Erasmus MC Cancer Center, 3015 GD Rotterdam, The Netherlands
| | - Dominique Figarella-Branger
- Aix-Marseille University, APHM, CNRS, INP, Institute Neurophysiopathol, CHU Timone, Service d’Anatomie Pathologique et de Neuropathologie, Marseille, France
| | - Felice Giangaspero
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, University Sapienza of Rome, Rome, Italy
| | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Austria
| | - Monika E Hegi
- Neuroscience Research Center and Neurosurgery, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Bjarne W Kristensen
- Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, Denmark
- Department of Pathology, The Bartholin Institute, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Austria
| | - Bastiaan B J Tops
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Martin van den Bent
- The Brain Tumor Center at Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Wolfgang Wick
- Department of Neurology and Neurooncology Program, National Center for Tumor Diseases, Heidelberg University Hospital
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Guido Reifenberger
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, and University Hospital Düsseldorf, and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| | - Pieter Wesseling
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands (P.W.)
| |
Collapse
|