1
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Li R, Linscott J, Catto JWF, Daneshmand S, Faltas BM, Kamat AM, Meeks JJ, Necchi A, Pradere B, Ross JS, van der Heijden MS, van Rhijn BWG, Loriot Y. FGFR Inhibition in Urothelial Carcinoma. Eur Urol 2024:S0302-2838(24)02605-8. [PMID: 39353825 DOI: 10.1016/j.eururo.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/26/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND AND OBJECTIVE The 2024 US Food and Drug Administration approval of erdafitinib for the treatment of metastatic urothelial carcinoma (mUC) with FGFR3 alterations ushered in the era of targeted therapy for bladder cancer. In this review, we summarize the effects of FGFR pathway alterations in oncogenesis, clinical data supporting FGFR inhibitors in the management of bladder cancer, and the challenges that remain. METHODS Original articles relevant to FGFR inhibitors in urothelial cancer between 1995 and 2024 were systematically identified in the PubMed and MEDLINE databases using the search terms "FGFR" and "bladder cancer". An international expert panel with extensive experience in FGFR inhibitor treatment was convened to synthesize a collaborative narrative review. KEY FINDINGS AND LIMITATIONS Somatic FGFR3 alterations are found in up to 70% of low-grade non-muscle-invasive bladder cancers; these activate downstream signaling cascades and culminate in cellular proliferation. Beyond a link to lower-grade/lower-stage tumors, there is little consistency regarding whether these alterations confer prognostic risks for cancer recurrence or progression. FGFR3-altered tumors have been linked to a non-inflamed tumor microenvironment, but paradoxically do not seem to impact the response to systemic immunotherapy. Several pan-FGFR inhibitors have been investigated in mUC. With the introduction of novel intravesical drug delivery systems, FGFR inhibitors are poised to transform the therapeutic landscape for early-stage UC. CONCLUSIONS AND CLINICAL IMPLICATIONS With deepening understanding of the biology of bladder cancer, novel diagnostics, and improved drug delivery methods, we posit that FGFR inhibition will lead the way in advancing precision treatment of bladder cancer.
Collapse
Affiliation(s)
- Roger Li
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA; Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL, USA.
| | - Joshua Linscott
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - James W F Catto
- Department of Urology, University of Sheffield, Sheffield, UK
| | - Siamak Daneshmand
- Department of Urology, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Bishoy M Faltas
- Department of Hematology and Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Ashish M Kamat
- Department of Urology, MD Anderson Cancer Center, Houston, TX, USA
| | - Joshua J Meeks
- Department of Urology and Biochemistry, Northwestern University, Chicago, IL, USA
| | - Andrea Necchi
- Department of Medical Oncology, IRCCS Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Benjamin Pradere
- Department of Urology, UROSUD, La Croix du Sud Hospital, Quint Fonsegrives, France
| | - Jeffrey S Ross
- Department of Pathology, State University of New York Upstate Medical University, Syracuse, NY, USA; Office of the CEO, Foundation Medicine, Boston, MA, USA
| | | | - Bas W G van Rhijn
- Department of Surgical Oncology (Urology), Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Yohann Loriot
- Département de Médecine Oncologique, Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
3
|
Sweis RF, Gajate P, Morales-Barrera R, Lee JL, Necchi A, de Braud F, Penel N, Grünwald V, Maruzzo M, Meran J, Ishida TC, Bao W, Zhou Y, Ellinghaus P, Rosenberg JE. Rogaratinib Plus Atezolizumab in Cisplatin-Ineligible Patients With FGFR RNA-Overexpressing Urothelial Cancer: The FORT-2 Phase 1b Nonrandomized Clinical Trial. JAMA Oncol 2024:2823971. [PMID: 39298147 PMCID: PMC11413753 DOI: 10.1001/jamaoncol.2024.3900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/14/2024] [Indexed: 09/25/2024]
Abstract
Importance The oral pan-fibroblast growth factor receptor inhibitor rogaratinib previously demonstrated encouraging safety and efficacy in a phase 1 study of patients with urothelial cancer (UC) overexpressing FGFR messenger RNA (mRNA). Objective To evaluate the safety, pharmacokinetics, and preliminary efficacy of rogaratinib in combination with the programmed cell death 1 ligand 1 (PD-L1) inhibitor atezolizumab in cisplatin-ineligible patients with FGFR mRNA-positive, locally advanced/metastatic UC. Design, Setting, and Participants The FORT-2 nonrandomized clinical trial was an open-label, single-arm, multicenter study conducted between May 15, 2018, and July 16, 2021, in 30 centers across Asia, Europe, and North America. Eligible patients had locally advanced/metastatic UC with FGFR1/3 mRNA overexpression and were ineligible for cisplatin-based chemotherapy. The data analysis was completed from July 2022 to September 2022. Interventions Patients received rogaratinib 600 mg or rogaratinib 800 mg twice daily in combination with intravenous atezolizumab 1200 mg every 21 days. Main Outcomes and Measures Primary end points included safety, tolerability, and the recommended phase 2 dose (RP2D) of rogaratinib in combination with atezolizumab. Results Among 153 patients screened, 73 (48%) had tumors with FGFR1/3 mRNA overexpression, and 37 patients were enrolled and treated (median [range] age, 75.0 [47.0-85.0] years; 32 [87%] male). The most common treatment-emergent adverse events (TEAEs) included diarrhea in 23 patients (62%), hyperphosphatemia in 19 (51%), and fatigue in 15 (41%). Grade 3 or higher TEAEs were reported in 27 patients (73%), and 4 grade 5 TEAEs were reported, though unrelated to treatment. The RP2D was rogaratinib 600 mg in combination with atezolizumab 1200 mg. At the RP2D, the overall response rate was 53.8% in the rogaratinib 600 mg group, including 4 patients (15%) with complete responses; 12 responders (86%) did not have an FGFR3 gene alteration, and 11 (79%) had low PD-L1 expression. Conclusions and Relevance In this phase 1b nonrandomized clinical trial, rogaratinib plus atezolizumab demonstrated a manageable safety profile, with no unexpected safety signals. Efficacy for this combination at the RP2D was observed in tumors with low PD-L1 and was not dependent on FGFR3 gene alterations, suggesting broad potential benefit for patients with locally advanced/metastatic UC and FGFR mRNA overexpression. Trial Registration ClinicalTrials.gov Identifier: NCT03473756.
Collapse
Affiliation(s)
- Randy F. Sweis
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Pablo Gajate
- Medical Oncology Department, Ramón y Cajal University Hospital, Madrid, Spain
| | - Rafael Morales-Barrera
- Department of Medical Oncology, Vall d’Hebron Institute of Oncology, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jae-Lyun Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Andrea Necchi
- Vita-Salute San Raffaele University, Milan, Italy
- Department of Medical Oncology, IRCCS San Raffaele Hospital, Milan, Italy
| | | | - Nicolas Penel
- Department of Medical Oncology, Centre Oscar Lambret, University of Lille, Lille, France
| | - Viktor Grünwald
- Departments of Urology and Medical Oncology, Universitätsklinikum Essen, Essen, Germany
| | - Marco Maruzzo
- Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Johannes Meran
- Department of Internal Medicine, Krankenhaus der Barmherzigen Brüder, Vienna, Austria
| | | | - Weichao Bao
- Bayer HealthCare Pharmaceuticals, Whippany, New Jersey
| | - Yinghui Zhou
- Bayer HealthCare Pharmaceuticals, Cambridge, Massachusetts
| | - Peter Ellinghaus
- Bayer AG, Wuppertal, Germany
- Now with Merck KGaA, Darmstadt, Germany
| | - Jonathan E. Rosenberg
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
4
|
Roma L, Ercan C, Conticelli F, Akyürek N, Savic Prince S, Mertz KD, Diebold J, Lardinois D, Piscuoglio S, Ng CK, Bubendorf L. Tracing Tumor Heterogeneity of Pleomorphic Carcinoma of the Lung. J Thorac Oncol 2024; 19:1284-1296. [PMID: 38723776 DOI: 10.1016/j.jtho.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
INTRODUCTION Pulmonary pleomorphic carcinoma (PPC) is an aggressive and highly heterogeneous NSCLC whose underlying biology is still poorly understood. METHODS A total of 42 tumor areas from 20 patients with PPC were microdissected, including 39 primary tumors and three metastases, and the histologically distinct components were subjected to whole exome sequencing separately. We further performed in silico analysis of microdissected bulk RNA sequencing and methylation data of 28 samples from 14 patients with PPC. We validated our findings using immunohistochemistry. RESULTS The epithelial and the sarcomatoid components of PPCs shared a large number of genomic alterations. Most mutations in cancer driver genes were clonal and truncal between the two components of PPCs suggesting a common ancestor. The high number of alterations in the RTK-RAS pathway suggests that it plays an important role in the evolution of PPC. The metastases morphologically and genetically resembled the epithelial or the sarcomatoid components of the tumor. The transcriptomic and epigenetic profiles of the sarcomatoid components of PPCs with matched squamous-like or adenocarcinoma-like components differed from each other, and they shared more similarities to their matched epithelial components. NCAM1/CD56 was preferentially expressed in the sarcomatoid component of squamous-like PPCs, whereas CDH1/E-Cadherin expression was down-regulated in the sarcomatoid component of most PPCs. CONCLUSION Lung adenocarcinoma-like PPCs are mainly driven by RTK-RAS signaling, whereas epithelial-mesenchymal transition programs as highlighted by increased NCAM1 and decreased CDH1 expression govern the epithelial-sarcomatoid transition between the clonally related tumor components. Several alterations in PPCs pinpoint therapeutic opportunities.
Collapse
Affiliation(s)
- Luca Roma
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Caner Ercan
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Floriana Conticelli
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland; Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Nalan Akyürek
- Department of Pathology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Spasenija Savic Prince
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Kirsten D Mertz
- Institute for Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Joachim Diebold
- Institute of Pathology, Cantonal Hospital Lucerne, Lucerne, Switzerland
| | - Didier Lardinois
- Division of Thoracic Surgery, University Hospital Basel, Basel, Switzerland
| | - Salvatore Piscuoglio
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland; IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Charlotte Ky Ng
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland; SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Lukas Bubendorf
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
5
|
Fan Z, Liu Y, Wang X, Xu Y, Huang R, Shi W, Qu Y, Ruan J, Zhou C, Zhao X, Liu L. APOL6 predicts immunotherapy efficacy of bladder cancer by ferroptosis. BMC Cancer 2024; 24:1046. [PMID: 39187773 PMCID: PMC11346016 DOI: 10.1186/s12885-024-12820-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are rapidly evolving in the management of bladder cancer (BLCA). Nevertheless, effective biomarkers for predicting immunotherapeutic outcomes in BLCA are still insufficient. Ferroptosis, a form of immunogenic cell death, has been found to enhance patient sensitivity to ICIs. However, the underlying mechanisms of ferroptosis in promoting immunotherapy efficacy in BLCA remain obscure. METHODS Our analysis of The Cancer Genome Atlas (TCGA) mRNA data using single sample Gene Set Enrichment Analysis (ssGSEA) revealed two immunologically distinct subtypes. Based on these subtypes and various other public cohorts, we identified Apolipoprotein L6 (APOL6) as a biomarker predicting the efficacy of ICIs and explored its immunological correlation and predictive value for treatment. Furthermore, the role of APOL6 in promoting ferroptosis and its mechanism in regulating this process were experimentally validated. RESULTS The results indicate that APOL6 has significant immunological relevance and is indicative of immunologically hot tumors in BLCA and many other cancers. APOL6, interacting with acyl-coenzyme A synthetase long-chain family member 4 (ACSL4), mediates immunotherapy efficacy by ferroptosis. Additionally, APOL6 is regulated by signal transducer and activator of transcription 1 (STAT1). CONCLUSIONS To conclude, our findings indicate APOL6 has potential as a predictive biomarker for immunotherapy treatment success estimation and reveal the STAT1/APOL6/GPX4 axis as a critical regulatory mechanism in BLCA.
Collapse
Affiliation(s)
- Zhiwei Fan
- Department of Pathology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226006, China
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yiting Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226006, China
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xuehai Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Yuting Xu
- Department of Pathology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226006, China
| | - Ruiyao Huang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Weijian Shi
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Yi Qu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Jialing Ruan
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Chu Zhou
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China.
| | - Lei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226006, China.
| |
Collapse
|
6
|
St-Laurent MP, Black PC. Re: FGFR Inhibition Augments Anti-PD-1 Efficacy in Murine FGFR3-mutant Bladder Cancer by Abrogating Immunosuppression. Eur Urol 2024; 86:184-185. [PMID: 38614823 DOI: 10.1016/j.eururo.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/28/2024] [Indexed: 04/15/2024]
Affiliation(s)
| | - Peter C Black
- Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
7
|
Chen C, Zhang Y, Lin Y, Shen C, Zhang Z, Wu Z, Qie Y, Zhao G, Hu H. The prognostic significance and immune characteristics of bone morphogenetic proteins (BMPs) family: A pan-cancer multi-omics analysis. Technol Health Care 2024:THC232004. [PMID: 39031404 DOI: 10.3233/thc-232004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
BACKGROUND Bone morphogenetic proteins (BMPs) are a group of cancer-related proteins vital for development and progression of certain cancer types. Nevertheless, function of BMP family in pan-cancer was not detailedly researched. OBJECTIVE Investigating expression pattern and prognostic value of the BMPs family (BMP1-8A and BMP8B) expression across multiple cancer types. METHODS Our research integrated multi-omics data for exploring potential associations between BMPs expression and prognosis, clinicopathological characteristics, copy number or somatic mutations, immune characteristics, tumor microenvironment (TME), tumor mutation burden (TMB), microsatellite instability (MSI), immune checkpoint genes and drug sensitivity in The Cancer Genome Atlas (TCGA) tumors. Furthermore, association of BMPs expression and immunotherapy effectiveness was investigated in some confirmatory cohorts (GSE111636, GSE78220, GSE67501, GSE176307, IMvigor210 and mRNA sequencing data from currently undergoing TRUCE01 clinical research included), and biological function and potential signaling pathways of BMPs in bladder cancer (BCa) was explored via Gene Set Enrichment Analysis (GSEA). Eventually, immune infiltration analysis was done via BMPs expression, copy number or somatic mutations in BCa, as well as validation of the expression levels by reverse transcription-quantitative PCR and western blot, and in vitro functional experiments of BMP8A. RESULTS Discoveries displayed BMPs expression was related to prognosis, clinicopathological characteristics, mutations, TME, TMB, MSI and immune checkpoint genes of TCGA tumors. Anticancer drug sensitivity analysis displayed BMPs were associated with various drug sensitivities. What's more, it was discovered that expression level of certain BMP family members related to objective response to immunotherapy. By GSEA, we discovered multiple immune-associated functions and pathways were enriched. Immune infiltration analysis on BCa also displayed significant associations among BMPs copy number variations, mutation status and infiltration level of diverse immune cells. Furthermore, differential expression validation and in vitro phenotypic experiment indicated that BMP8A significantly promoted BCa cell proliferation, migration and invasion. CONCLUSIONS Current results confirmed significance of both BMPs expression and genomic alteration in the prognosis and treatment of diverse cancer types, and suggested that BMPs may be vital for BCa and can possibly be utilized as biomarkers for immunotherapy.
Collapse
Affiliation(s)
- Changsheng Chen
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, Tianjin Haihe Hospital, Tianjin, China
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yu Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, The Eco-City Hospital of Tianjin Fifth Central Hospital, Tianjin, China
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yuda Lin
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chong Shen
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhe Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhouliang Wu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yunkai Qie
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Gangjian Zhao
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hailong Hu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
8
|
Peng X, Liu C, Zhang L, Chen Y, Mao L, Gao S, Shi X, Zuo L. IL4I1: a novel molecular biomarker represents an inflamed tumor microenvironment and precisely predicts the molecular subtype and immunotherapy response of bladder cancer. Front Pharmacol 2024; 15:1365683. [PMID: 38873416 PMCID: PMC11169701 DOI: 10.3389/fphar.2024.1365683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/09/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction: IL4I1, also known as Interleukin-4-induced gene 1, is an enzyme that can modulate the immune system by acting as a L-amino acid oxidase. Nevertheless, a precise understanding of the correlation of IL4I1 with immunological features and immunotherapy efficacy in bladder cancer (BLCA) remains incomplete. Methods: We analyzed RNA sequencing data from the Cancer Genome Atlas (TCGA) to investigate the immune function and prognostic importance of IL4I1 across different cancer types. We further examined the TCGA-BLCA cohort for correlations between IL4I1 and various immunological characteristics of tumor microenvironment (TME), such as cancer immune cycle, immune cell infiltration, immune checkpoint expression and T cell inflamed score. Validation was conducted using two independent cohort, GSE48075 and E-MTAB-4321. Finally, RNA sequencing data from the IMvigor210 cohort and immunohistochemistry assays were employed to validate the predictive value of IL4I1 for the TME and immunotherapy efficacy. Results: In our findings, a positive correlation was observed between IL4I1 expression and immunomodulators expression, immune cell infiltration, the cancer immune cycle, and T cell inflamed score in BLCA, suggesting a significant link to the inflamed TME. In addition, studies have shown that IL4I1 elevated levels of individuals tend to be more performance for basal subtype and exhibit enhanced response rates to diverse treatment modalities, specifically immunotherapy. Clinical data from the IMvigor 210 cohort confirmed a higher rate of response to immunotherapy and better survival benefits in patients with high IL4I1 expression. Discussion: To summarize, our research showed that elevated IL4I1 levels are indicative of an inflamed TME, the basal subtype, and a more favorable response to various treatment methods, especially immune checkpoint blockade therapy in BLCA.
Collapse
Affiliation(s)
- Xiangrong Peng
- Department of Urology, ChangZhou No.2 people’s Hospital, Nanjing Medical University, Changzhou, Jiangsu, China
- Laboratory of Urology, ChangZhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Chuan Liu
- Department of Urology, ChangZhou No.2 people’s Hospital, Nanjing Medical University, Changzhou, Jiangsu, China
- Laboratory of Urology, ChangZhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Li Zhang
- Department of Urology, ChangZhou No.2 people’s Hospital, Nanjing Medical University, Changzhou, Jiangsu, China
- Laboratory of Urology, ChangZhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yin Chen
- Department of Urology, ChangZhou No.2 people’s Hospital, Nanjing Medical University, Changzhou, Jiangsu, China
- Laboratory of Urology, ChangZhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Lixin Mao
- Department of Urology, ChangZhou No.2 people’s Hospital, Nanjing Medical University, Changzhou, Jiangsu, China
- Laboratory of Urology, ChangZhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Shenglin Gao
- Department of Urology, ChangZhou No.2 people’s Hospital, Nanjing Medical University, Changzhou, Jiangsu, China
- Laboratory of Urology, ChangZhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
- Department of Urology, Gonghe County Hospital of Traditional Chinese Medicine, Hainan Tibetan Autonomous Prefecture, Qinghai, China
| | - Xiaokai Shi
- Department of Urology, ChangZhou No.2 people’s Hospital, Nanjing Medical University, Changzhou, Jiangsu, China
- Laboratory of Urology, ChangZhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Li Zuo
- Department of Urology, ChangZhou No.2 people’s Hospital, Nanjing Medical University, Changzhou, Jiangsu, China
- Laboratory of Urology, ChangZhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
9
|
Meagher M, Krause H, Elliott A, Farrell A, Antonarakis ES, Bastos B, Heath EI, Jamieson C, Stewart TF, Bagrodia A, Nabhan C, Oberley M, McKay RR, Salmasi A. Characterization and impact of non-canonical WNT signaling on outcomes of urothelial carcinoma. Cancer Med 2024; 13:e7148. [PMID: 38558536 PMCID: PMC10983807 DOI: 10.1002/cam4.7148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Non-canonical WNT family (WNT5A pathway) signaling via WNT5A through ROR1 and its partner, ROR2, or Frizzled2 (FZD2) is linked to processes driving tumorigenesis and therapy resistance. We utilized a large dataset of urothelial carcinoma (UC) tumors to characterize non-canonical WNT signaling through WNT5A, ROR1, ROR2, or FZD2 expression. METHODS NextGen Sequencing of DNA (592 genes or WES)/RNA (WTS) was performed for 4125 UC tumors submitted to Caris Life Sciences. High and low expression of WNT5A, ROR1, ROR2, and FZD2 was defined as ≥ top and RESULTS WNT5A pathway gene expression varied significantly between primary versus metastatic sites: WNT5A (25.2 vs. 16.8 TPM), FZD2 (3.2 vs. 4.05), ROR1 (1.7 vs. 2.1), and ROR2 (2.4 vs. 2.6) p < 0.05 for all. Comparison of high- and low-expression subgroups revealed variation in the prevalence of TP53, FGFR3, and RB1 pathogenic mutations, as well as increasing T cell-inflamed scores as expression of the target gene increased. High gene expression for ROR2 (HR 1.31, 95% CI 1.15-1.50, p < 0.001) and FZD2 (HR 1.16, 95% CI 1.02-1.32, p = 0.024) was associated with worse OS. CONCLUSION Distinct genomic and immune landscapes for the four investigated WNT5A pathway components were observed in patients with UC. External validation studies are needed.
Collapse
Affiliation(s)
- Margaret Meagher
- Department of UrologyUC San Diego School of MedicineLa JollaCaliforniaUSA
| | | | | | | | | | - Bruno Bastos
- Miami Cancer InstituteMiamiFloridaUSA
- Karmanos Cancer Institute, Department of OncologyWayne State University School of MedicineDetroitMichiganUSA
| | - Elisabeth I. Heath
- Department of MedicineUC San Diego School of MedicineLa JollaCaliforniaUSA
| | - Christina Jamieson
- Department of UrologyUC San Diego School of MedicineLa JollaCaliforniaUSA
| | - Tyler F. Stewart
- Department of UrologyUC San Diego School of MedicineLa JollaCaliforniaUSA
| | - Aditya Bagrodia
- Department of UrologyUC San Diego School of MedicineLa JollaCaliforniaUSA
| | | | | | - Rana R. McKay
- Department of UrologyUC San Diego School of MedicineLa JollaCaliforniaUSA
- Barbara Ann Karmanos Cancer InstituteDetroitUSA
| | - Amirali Salmasi
- Department of UrologyUC San Diego School of MedicineLa JollaCaliforniaUSA
| |
Collapse
|
10
|
Bergman DR, Wang Y, Trujillo E, Fernald AA, Li L, Pearson AT, Sweis RF, Jackson TL. Dysregulated FGFR3 signaling alters the immune landscape in bladder cancer and presents therapeutic possibilities in an agent-based model. Front Immunol 2024; 15:1358019. [PMID: 38515743 PMCID: PMC10954792 DOI: 10.3389/fimmu.2024.1358019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Bladder cancer is an increasingly prevalent global disease that continues to cause morbidity and mortality despite recent advances in treatment. Immune checkpoint inhibitors (ICI) and fibroblast growth factor receptor (FGFR)-targeted therapeutics have had modest success in bladder cancer when used as monotherapy. Emerging data suggests that the combination of these two therapies could lead to improved clinical outcomes, but the optimal strategy for combining these agents remains uncertain. Mathematical models, specifically agent-based models (ABMs), have shown recent successes in uncovering the multiscale dynamics that shape the trajectory of cancer. They have enabled the optimization of treatment methods and the identification of novel therapeutic strategies. To assess the combined effects of anti-PD-1 and anti-FGFR3 small molecule inhibitors (SMI) on tumor growth and the immune response, we built an ABM that captures key facets of tumor heterogeneity and CD8+ T cell phenotypes, their spatial interactions, and their response to therapeutic pressures. Our model quantifies how tumor antigenicity and FGFR3 activating mutations impact disease trajectory and response to anti-PD-1 antibodies and anti-FGFR3 SMI. We find that even a small population of weakly antigenic tumor cells bearing an FGFR3 mutation can render the tumor resistant to combination therapy. However, highly antigenic tumors can overcome therapeutic resistance mediated by FGFR3 mutation. The optimal therapy depends on the strength of the FGFR3 signaling pathway. Under certain conditions, ICI alone is optimal; in others, ICI followed by anti-FGFR3 therapy is best. These results indicate the need to quantify FGFR3 signaling and the fitness advantage conferred on bladder cancer cells harboring this mutation. This ABM approach may enable rationally designed treatment plans to improve clinical outcomes.
Collapse
Affiliation(s)
- Daniel R. Bergman
- Department of Mathematics, University of Michigan, Ann Arbor, MI, United States
| | - Yixuan Wang
- Department of Mathematics, University of Michigan, Ann Arbor, MI, United States
| | - Erica Trujillo
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, IL, United States
| | - Anthony A. Fernald
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, IL, United States
| | - Lie Li
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, IL, United States
| | - Alexander T. Pearson
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, IL, United States
| | - Randy F. Sweis
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, IL, United States
| | | |
Collapse
|
11
|
Zhang Y, Xiao B, Liu Y, Wu S, Xiang Q, Xiao Y, Zhao J, Yuan R, Xie K, Li L. Roles of PPAR activation in cancer therapeutic resistance: Implications for combination therapy and drug development. Eur J Pharmacol 2024; 964:176304. [PMID: 38142851 DOI: 10.1016/j.ejphar.2023.176304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/09/2023] [Accepted: 12/21/2023] [Indexed: 12/26/2023]
Abstract
Therapeutic resistance is a major obstacle to successful treatment or effective containment of cancer. Peroxisome proliferator-activated receptors (PPARs) play an essential role in regulating energy homeostasis and determining cell fate. Despite of the pleiotropic roles of PPARs in cancer, numerous studies have suggested their intricate relationship with therapeutic resistance in cancer. In this review, we provided an overview of the roles of excessively activated PPARs in promoting resistance to modern anti-cancer treatments, including chemotherapy, radiotherapy, targeted therapy, and immunotherapy. The mechanisms through which activated PPARs contribute to therapeutic resistance in most cases include metabolic reprogramming, anti-oxidant defense, anti-apoptosis signaling, proliferation-promoting pathways, and induction of an immunosuppressive tumor microenvironment. In addition, we discussed the mechanisms through which activated PPARs lead to multidrug resistance in cancer, including drug efflux, epithelial-to-mesenchymal transition, and acquisition and maintenance of the cancer stem cell phenotype. Preliminary studies investigating the effect of combination therapies with PPAR antagonists have suggested the potential of these antagonists in reversing resistance and facilitating sustained cancer management. These findings will provide a valuable reference for further research on and clinical translation of PPAR-targeting treatment strategies.
Collapse
Affiliation(s)
- Yanxia Zhang
- School of Medicine, The South China University of Technology, Guangzhou, 510006, China; Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Bin Xiao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Yunduo Liu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Shunhong Wu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Qin Xiang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Yuhan Xiao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Junxiu Zhao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Ruanfei Yuan
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Keping Xie
- School of Medicine, The South China University of Technology, Guangzhou, 510006, China.
| | - Linhai Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
| |
Collapse
|
12
|
Okato A, Utsumi T, Ranieri M, Zheng X, Zhou M, Pereira LD, Chen T, Kita Y, Wu D, Hyun H, Lee H, Gdowski AS, Raupp JD, Clark-Garvey S, Manocha U, Chafitz A, Sherman F, Stephens J, Rose TL, Milowsky MI, Wobker SE, Serody JS, Damrauer JS, Wong KK, Kim WY. FGFR inhibition augments anti-PD-1 efficacy in murine FGFR3-mutant bladder cancer by abrogating immunosuppression. J Clin Invest 2024; 134:e169241. [PMID: 38226620 PMCID: PMC10786699 DOI: 10.1172/jci169241] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 11/14/2023] [Indexed: 01/17/2024] Open
Abstract
The combination of targeted therapy with immune checkpoint inhibition (ICI) is an area of intense interest. We studied the interaction of fibroblast growth factor receptor (FGFR) inhibition with ICI in urothelial carcinoma (UC) of the bladder, in which FGFR3 is altered in 50% of cases. Using an FGFR3-driven, Trp53-mutant genetically engineered murine model (UPFL), we demonstrate that UPFL tumors recapitulate the histology and molecular subtype of their FGFR3-altered human counterparts. Additionally, UPFL1 allografts exhibit hyperprogression to ICI associated with an expansion of T regulatory cells (Tregs). Erdafitinib blocked Treg proliferation in vitro, while in vivo ICI-induced Treg expansion was fully abrogated by FGFR inhibition. Combined erdafitinib and ICI resulted in high therapeutic efficacy. In aggregate, our work establishes that, in mice, co-alteration of FGFR3 and Trp53 results in high-grade, non-muscle-invasive UC and presents a previously underappreciated role for FGFR inhibition in blocking ICI-induced Treg expansion.
Collapse
Affiliation(s)
- Atsushi Okato
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Takanobu Utsumi
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Michela Ranieri
- Perlmutter Cancer Center, New York University, New York, New York, USA
| | - Xingnan Zheng
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Mi Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Luiza D. Pereira
- Perlmutter Cancer Center, New York University, New York, New York, USA
| | - Ting Chen
- Perlmutter Cancer Center, New York University, New York, New York, USA
| | - Yuki Kita
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Di Wu
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Hyesun Hyun
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Hyojin Lee
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Andrew S. Gdowski
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - John D. Raupp
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sean Clark-Garvey
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ujjawal Manocha
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Alison Chafitz
- Perlmutter Cancer Center, New York University, New York, New York, USA
| | - Fiona Sherman
- Perlmutter Cancer Center, New York University, New York, New York, USA
| | - Janaye Stephens
- Perlmutter Cancer Center, New York University, New York, New York, USA
| | - Tracy L. Rose
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Medicine
| | - Matthew I. Milowsky
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Medicine
| | - Sara E. Wobker
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Pathology and Laboratory Medicine
| | - Jonathan S. Serody
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Medicine
- Department of Pathology and Laboratory Medicine
- Department of Microbiology and Immunology
| | - Jeffrey S. Damrauer
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Medicine
| | - Kwok-Kin Wong
- Perlmutter Cancer Center, New York University, New York, New York, USA
| | - William Y. Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Medicine
- Department of Genetics, and
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
13
|
Shan KS, Dalal S, Thaw Dar NN, McLish O, Salzberg M, Pico BA. Molecular Targeting of the Fibroblast Growth Factor Receptor Pathway across Various Cancers. Int J Mol Sci 2024; 25:849. [PMID: 38255923 PMCID: PMC10815772 DOI: 10.3390/ijms25020849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Fibroblast growth factor receptors (FGFRs) are a family of receptor tyrosine kinases that are involved in the regulation of cell proliferation, survival, and development. FGFR alterations including amplifications, fusions, rearrangements, and mutations can result in the downstream activation of tyrosine kinases, leading to tumor development. Targeting these FGFR alterations has shown to be effective in treating cholangiocarcinoma, urothelial carcinoma, and myeloid/lymphoid neoplasms, and there are currently four FGFR inhibitors approved by the Food and Drug Administration (FDA). There have been developments in multiple agents targeting the FGFR pathway, including selective FGFR inhibitors, ligand traps, monoclonal antibodies, and antibody-drug conjugates. However, most of these agents have variable and low responses, with some intolerable toxicities and acquired resistances. This review will summarize previous clinical experiences and current developments in agents targeting the FGFR pathway, and will also discuss future directions for FGFR-targeting agents.
Collapse
Affiliation(s)
- Khine S. Shan
- Memorial Health Care, Division of Hematology and Oncology, Pembroke Pines, FL 33028, USA; (S.D.); (N.N.T.D.); (O.M.); (M.S.)
| | | | | | | | | | | |
Collapse
|
14
|
Ogbuji V, Paster IC, Recio-Boiles A, Carew JS, Nawrocki ST, Chipollini J. Current Landscape of Immune Checkpoint Inhibitors for Metastatic Urothelial Carcinoma: Is There a Role for Additional T-Cell Blockade? Cancers (Basel) 2023; 16:131. [PMID: 38201559 PMCID: PMC10778285 DOI: 10.3390/cancers16010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/30/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Urothelial carcinoma (UC) is the most common form of bladder cancer (BC) and is the variant with the most immunogenic response. This makes urothelial carcinoma an ideal candidate for immunotherapy with immune checkpoint inhibitors. Key immune checkpoint proteins PD-1 and CTLA-4 are frequently expressed on T-cells in urothelial carcinoma. The blockade of this immune checkpoint can lead to the reactivation of lymphocytes and augment the anti-tumor immune response. The only immune checkpoint inhibitors that are FDA-approved for metastatic urothelial carcinoma target the programmed death-1 receptor and its ligand (PD-1/PD-L1) axis. However, the overall response rate and progression-free survival rates of these agents are limited in this patient population. Therefore, there is a need to find further immune-bolstering treatment combinations that may positively impact survival for patients with advanced UC. In this review, the current immune checkpoint inhibition treatment landscape is explored with an emphasis on combination therapy in the form of PD-1/PD-L1 with CTLA-4 blockade. The investigation of the current literature on immune checkpoint inhibition found that preclinical data show a decrease in tumor volumes and size when PD-1/PD-L1 is blocked, and similar results were observed with CTLA-4 blockade. However, there are limited investigations evaluating the combination of CTLA-4 and PD-1/PD-L1 blockade. We anticipate this review to provide a foundation for a deeper experimental investigation into combination immune checkpoint inhibition therapy in metastatic urothelial carcinoma.
Collapse
Affiliation(s)
- Vanessa Ogbuji
- College of Medicine, University of Arizona, Tucson, AZ 85724, USA; (V.O.); (I.C.P.); (S.T.N.)
| | - Irasema C. Paster
- College of Medicine, University of Arizona, Tucson, AZ 85724, USA; (V.O.); (I.C.P.); (S.T.N.)
| | - Alejandro Recio-Boiles
- Department of Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724, USA; (A.R.-B.); (J.S.C.)
| | - Jennifer S. Carew
- Department of Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724, USA; (A.R.-B.); (J.S.C.)
| | - Steffan T. Nawrocki
- College of Medicine, University of Arizona, Tucson, AZ 85724, USA; (V.O.); (I.C.P.); (S.T.N.)
- Department of Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724, USA; (A.R.-B.); (J.S.C.)
| | - Juan Chipollini
- College of Medicine, University of Arizona, Tucson, AZ 85724, USA; (V.O.); (I.C.P.); (S.T.N.)
| |
Collapse
|
15
|
Biswas A, Sahoo S, Riedlinger GM, Ghodoussipour S, Jolly MK, De S. Transcriptional state dynamics lead to heterogeneity and adaptive tumor evolution in urothelial bladder carcinoma. Commun Biol 2023; 6:1292. [PMID: 38129585 PMCID: PMC10739805 DOI: 10.1038/s42003-023-05668-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Intra-tumor heterogeneity contributes to treatment failure and poor survival in urothelial bladder carcinoma (UBC). Analyzing transcriptome from a UBC cohort, we report that intra-tumor transcriptomic heterogeneity indicates co-existence of tumor cells in epithelial and mesenchymal-like transcriptional states and bi-directional transition between them occurs within and between tumor subclones. We model spontaneous and reversible transition between these partially heritable states in cell lines and characterize their population dynamics. SMAD3, KLF4 and PPARG emerge as key regulatory markers of the transcriptional dynamics. Nutrient limitation, as in the core of large tumors, and radiation treatment perturb the dynamics, initially selecting for a transiently resistant phenotype and then reconstituting heterogeneity and growth potential, driving adaptive evolution. Dominance of transcriptional states with low PPARG expression indicates an aggressive phenotype in UBC patients. We propose that phenotypic plasticity and dynamic, non-genetic intra-tumor heterogeneity modulate both the trajectory of disease progression and adaptive treatment response in UBC.
Collapse
Affiliation(s)
- Antara Biswas
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ, USA.
| | | | - Gregory M Riedlinger
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ, USA
| | - Saum Ghodoussipour
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ, USA
| | | | - Subhajyoti De
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
16
|
Kamran SC, Zhou Y, Otani K, Drumm M, Otani Y, Wu S, Wu CL, Feldman AS, Wszolek M, Lee RJ, Saylor PJ, Lennerz J, Van Allen E, Willers H, Hong TS, Liu Y, Davicioni E, Gibb EA, Shipley WU, Mouw KW, Efstathiou JA, Miyamoto DT. Genomic Tumor Correlates of Clinical Outcomes Following Organ-Sparing Chemoradiation Therapy for Bladder Cancer. Clin Cancer Res 2023; 29:5116-5127. [PMID: 37870965 PMCID: PMC10722135 DOI: 10.1158/1078-0432.ccr-23-0792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/20/2023] [Accepted: 09/27/2023] [Indexed: 10/25/2023]
Abstract
PURPOSE There is an urgent need for biomarkers of radiation response in organ-sparing therapies. Bladder preservation with trimodality therapy (TMT), consisting of transurethral tumor resection followed by chemoradiation, is an alternative to radical cystectomy for muscle-invasive bladder cancer (MIBC), but molecular determinants of response are poorly understood. EXPERIMENTAL DESIGN We characterized genomic and transcriptomic features correlated with long-term response in a single institution cohort of patients with MIBC homogeneously treated with TMT. Pretreatment tumors from 76 patients with MIBC underwent whole-exome sequencing; 67 underwent matched transcriptomic profiling. Molecular features were correlated with clinical outcomes including modified bladder-intact event-free survival (mBI-EFS), a composite endpoint that reflects long-term cancer control with bladder preservation. RESULTS With a median follow-up of 74.6 months in alive patients, 37 patients had favorable long-term response to TMT while 39 had unfavorable long-term response. Tumor mutational burden was not associated with outcomes after TMT. DNA damage response gene alterations were associated with improved locoregional control and mBI-EFS. Of these alterations, somatic ERCC2 mutations stood out as significantly associated with favorable long-term outcomes; patients with ERCC2 mutations had significantly improved mBI-EFS [HR, 0.15; 95% confidence interval (CI), 0.06-0.37; P = 0.030] and improved BI-EFS, an endpoint that includes all-cause mortality (HR, 0.33; 95% CI, 0.15-0.68; P = 0.044). ERCC2 mutant bladder cancer cell lines were significantly more sensitive to concurrent cisplatin and radiation treatment in vitro than isogenic ERCC2 wild-type cells. CONCLUSIONS Our data identify ERCC2 mutation as a candidate biomarker associated with sensitivity and long-term response to chemoradiation in MIBC. These findings warrant validation in independent cohorts.
Collapse
Affiliation(s)
- Sophia C. Kamran
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Yuzhen Zhou
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Keisuke Otani
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Michael Drumm
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Yukako Otani
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Shulin Wu
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Chin-Lee Wu
- Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Adam S. Feldman
- Harvard Medical School, Boston, Massachusetts
- Department of Urology, Massachusetts General Hospital, Boston, Massachusetts
| | - Matthew Wszolek
- Harvard Medical School, Boston, Massachusetts
- Department of Urology, Massachusetts General Hospital, Boston, Massachusetts
| | - Richard J. Lee
- Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Philip J. Saylor
- Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Jochen Lennerz
- Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Eliezer Van Allen
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Department of Medicine, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Theodore S. Hong
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Yang Liu
- Veracyte, San Francisco, California
| | | | | | - William U. Shipley
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Kent W. Mouw
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jason A. Efstathiou
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - David T. Miyamoto
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts
| |
Collapse
|
17
|
Shi X, Peng X, Chen Y, Shi Z, Yue C, Zuo L, Zhang L, Gao S. Overexpression of MTHFD2 represents an inflamed tumor microenvironment and precisely predicts the molecular subtype and immunotherapy response of bladder cancer. Front Immunol 2023; 14:1326509. [PMID: 38130721 PMCID: PMC10733511 DOI: 10.3389/fimmu.2023.1326509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), whose aberrant expression is common in cancers, has recently been identified as a potential regulator of immune response. However, its immune-related role in bladder cancer (BLCA) and its association with immunotherapy efficacy remain unclear. Methods RNA sequencing data from The Cancer Genome Atlas (TCGA) was applied to analyze the immunological roles and prognostic value of MTHFD2 in pan-cancers. The association of MTHFD2 with several immunological features of tumor microenvironment (TME), including cancer-immunity cycle, immune cells infiltration, immune checkpoints expression, and T cell inflamed score was analyzed in TCGA-BLCA cohort. The predictors of cancer treatments effectiveness, including the expression and mutation of certain genes, molecular subtypes, and several signatures were evaluated as well. These results were validated by another independent cohort (GSE48075). Finally, the predictive value of MTHFD2 for TME and immunotherapy efficacy were validated using immunohistochemistry assay and RNA sequencing data from IMvigor210 cohort, respectively. Results MTHFD2 was found to be positively associated with several immunological features of an inflamed tumor microenvironment (TME) in various cancers and could predict BLCA patients' prognosis. In BLCA, high expression of MTHFD2 was observed to be positively related with the cancer-immunity cycle, the infiltration of several immune cells, and the expression of immunoregulators and T-cell inflamed scores, indicating a positive correlation with the inflamed TME. Moreover, patients with high MTHFD2 expression were more likely to be basal-like subtypes and respond to BLCA treatments, including immunotherapy, chemotherapy, and target therapy. The clinical data of the IMvigor210 cohort confirmed the higher response rates and better survival benefits of immunotherapy in high-MTHFD2-expression patients. Conclusion Collectively, high MTHFD2 predicts an inflamed TME, a basal-like subtype, and a better response to various therapeutic strategies, especially the ICB therapy, in bladder cancer.
Collapse
Affiliation(s)
- Xiaokai Shi
- Department of Urology, ChangZhou No.2 People’s Hospital, Nanjing Medical University, ChangZhou, Jiangsu, China
- Laboratory of Urology, ChangZhou Medical Center, Nanjing Medical University, ChangZhou, Jiangsu, China
| | - Xiangrong Peng
- Department of Urology, ChangZhou No.2 People’s Hospital, Nanjing Medical University, ChangZhou, Jiangsu, China
- Laboratory of Urology, ChangZhou Medical Center, Nanjing Medical University, ChangZhou, Jiangsu, China
| | - Yin Chen
- Department of Urology, ChangZhou No.2 People’s Hospital, Nanjing Medical University, ChangZhou, Jiangsu, China
- Laboratory of Urology, ChangZhou Medical Center, Nanjing Medical University, ChangZhou, Jiangsu, China
| | - Zebin Shi
- Department of Urology, ChangZhou No.2 People’s Hospital, Nanjing Medical University, ChangZhou, Jiangsu, China
- Laboratory of Urology, ChangZhou Medical Center, Nanjing Medical University, ChangZhou, Jiangsu, China
| | - Chuang Yue
- Department of Urology, ChangZhou No.2 People’s Hospital, Nanjing Medical University, ChangZhou, Jiangsu, China
- Laboratory of Urology, ChangZhou Medical Center, Nanjing Medical University, ChangZhou, Jiangsu, China
| | - Li Zuo
- Department of Urology, ChangZhou No.2 People’s Hospital, Nanjing Medical University, ChangZhou, Jiangsu, China
- Laboratory of Urology, ChangZhou Medical Center, Nanjing Medical University, ChangZhou, Jiangsu, China
| | - Lifeng Zhang
- Department of Urology, ChangZhou No.2 People’s Hospital, Nanjing Medical University, ChangZhou, Jiangsu, China
- Laboratory of Urology, ChangZhou Medical Center, Nanjing Medical University, ChangZhou, Jiangsu, China
| | - Shenglin Gao
- Department of Urology, ChangZhou No.2 People’s Hospital, Nanjing Medical University, ChangZhou, Jiangsu, China
- Laboratory of Urology, ChangZhou Medical Center, Nanjing Medical University, ChangZhou, Jiangsu, China
| |
Collapse
|
18
|
Komura K, Hirosuna K, Tokushige S, Tsujino T, Nishimura K, Ishida M, Hayashi T, Ura A, Ohno T, Yamazaki S, Nakamori K, Kinoshita S, Maenosono R, Ajiro M, Yoshikawa Y, Takai T, Tsutsumi T, Taniguchi K, Tanaka T, Takahara K, Konuma T, Inamoto T, Hirose Y, Ono F, Shiraishi Y, Yoshimi A, Azuma H. The Impact of FGFR3 Alterations on the Tumor Microenvironment and the Efficacy of Immune Checkpoint Inhibitors in Bladder Cancer. Mol Cancer 2023; 22:185. [PMID: 37980528 PMCID: PMC10657138 DOI: 10.1186/s12943-023-01897-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/06/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND Currently, only limited knowledge is available regarding the phenotypic association between fibroblast growth factor receptor 3 (FGFR3) alterations and the tumor microenvironment (TME) in bladder cancer (BLCA). METHODS A multi-omics analysis on 389 BLCA and 35 adjacent normal tissues from a cohort of OMPU-NCC Consortium Japan was retrospectively performed by integrating the whole-exome and RNA-sequence dataset and clinicopathological record. A median follow-up duration of all BLCA cohort was 31 months. RESULTS FGFR3 alterations (aFGFR3), including recurrent mutations and fusions, accounted for 44% of non-muscle invasive bladder cancer (NMIBC) and 15% of muscle-invasive bladder cancer (MIBC). Within MIBC, the consensus subtypes LumP was significantly more prevalent in aFGFR3, whereas the Ba/Sq subtype exhibited similarity between intact FGFR3 (iFGFR3) and aFGFR3 cases. We revealed that basal markers were significantly increased in MIBC/aFGFR3 compared to MIBC/iFGFR3. Transcriptome analysis highlighted TIM3 as the most upregulated immune-related gene in iFGFR3, with differential immune cell compositions observed between iFGFR3 and aFGFR3. Using EcoTyper, TME heterogeneity was discerned even within aFGFR cases, suggesting potential variations in the response to checkpoint inhibitors (CPIs). Among 72 patients treated with CPIs, the objective response rate (ORR) was comparable between iFGFR3 and aFGFR3 (20% vs 31%; p = 0.467). Strikingly, a significantly higher ORR was noted in LumP/aFGFR3 compared to LumP/iFGFR3 (50% vs 5%; p = 0.022). This trend was validated using data from the IMvigor210 trial. Additionally, several immune-related genes, including IDO1, CCL24, IL1RL1, LGALS4, and NCAM (CD56) were upregulated in LumP/iFGFR3 compared to LumP/aFGFR3 cases. CONCLUSIONS Differential pathways influenced by aFGFR3 were observed between NMIBC and MIBC, highlighting the upregulation of both luminal and basal markers in MIBC/aFGFR3. Heterogeneous TME was identified within MIBC/aFGFR3, leading to differential outcomes for CPIs. Specifically, a favorable ORR in LumP/aFGFR3 and a poor ORR in LumP/iFGFR3 were observed. We propose TIM3 as a potential target for iFGFR3 (ORR: 20%) and several immune checkpoint genes, including IDO1 and CCL24, for LumP/iFGFR3 (ORR: 5%), indicating promising avenues for precision immunotherapy for BLCA.
Collapse
Affiliation(s)
- Kazumasa Komura
- Department of Urology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, 569-8686, Japan.
- Division of Translational Research, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, 569-8686, Japan.
| | - Kensuke Hirosuna
- Division of Translational Research, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, 569-8686, Japan
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho Kitaku, Okayama City, Okayama, 700-8558, Japan
| | - Satoshi Tokushige
- Department of Urology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Takuya Tsujino
- Department of Urology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Kazuki Nishimura
- Department of Urology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, 569-8686, Japan
- Division of Cancer RNA Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Mitsuaki Ishida
- Department of Pathology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Ayako Ura
- Department of Human Pathology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Takaya Ohno
- Department of Urology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Shogo Yamazaki
- Department of Urology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Keita Nakamori
- Department of Urology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Shoko Kinoshita
- Department of Urology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Ryoichi Maenosono
- Department of Urology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, 569-8686, Japan
- Division of Cancer RNA Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Masahiko Ajiro
- Division of Cancer RNA Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Yuki Yoshikawa
- Department of Urology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Tomoaki Takai
- Department of Urology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Takeshi Tsutsumi
- Department of Urology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Kohei Taniguchi
- Division of Translational Research, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Tomohito Tanaka
- Division of Translational Research, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Kiyoshi Takahara
- Department of Urology, Fujita-Health University School of Medicine, Toyoake City, 1-98 Dengakugakubo, KutsukakeAichi, 470-1192, Japan
| | - Tsuyoshi Konuma
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-Cho, Tsurumiku-Ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Teruo Inamoto
- Department of Urology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Yoshinobu Hirose
- Department of Pathology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Fumihito Ono
- Division of Translational Research, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Akihide Yoshimi
- Division of Cancer RNA Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
| | - Haruhito Azuma
- Department of Urology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, 569-8686, Japan
| |
Collapse
|
19
|
Guercio BJ, Sarfaty M, Teo MY, Ratna N, Duzgol C, Funt SA, Lee CH, Aggen DH, Regazzi AM, Chen Z, Lattanzi M, Al-Ahmadie HA, Brannon AR, Shah R, Chu C, Lenis AT, Pietzak E, Bochner BH, Berger MF, Solit DB, Rosenberg JE, Bajorin DF, Iyer G. Clinical and Genomic Landscape of FGFR3-Altered Urothelial Carcinoma and Treatment Outcomes with Erdafitinib: A Real-World Experience. Clin Cancer Res 2023; 29:4586-4595. [PMID: 37682528 PMCID: PMC11233068 DOI: 10.1158/1078-0432.ccr-23-1283] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/02/2023] [Accepted: 09/06/2023] [Indexed: 09/09/2023]
Abstract
PURPOSE Erdafitinib is the only FDA-approved targeted therapy for FGFR2/3-altered metastatic urothelial cancer. We characterized the genetic landscape of FGFR-altered urothelial carcinoma and real-world clinical outcomes with erdafitinib, including on-treatment genomic evolution. EXPERIMENTAL DESIGN Prospectively collected clinical data were integrated with institutional genomic data to define the landscape of FGFR2/3-altered urothelial carcinoma. To identify mechanisms of erdafitinib resistance, a subset of patients underwent prospective cell-free (cf) DNA assessment. RESULTS FGFR3 alterations predictive of erdafitinib sensitivity were identified in 39% (199/504) of patients with non-muscle invasive, 14% (75/526) with muscle-invasive, 43% (81/187) with localized upper tract, and 26% (59/228) with metastatic specimens. One patient had a potentially sensitizing FGFR2 fusion. Among 27 FGFR3-altered cases with a primary tumor and metachronous metastasis, 7 paired specimens (26%) displayed discordant FGFR3 status. Erdafitinib achieved a response rate of 40% but median progression-free and overall survival of only 2.8 and 6.6 months, respectively (n = 32). Dose reductions (38%, 12/32) and interruptions (50%, 16/32) were common. Putative resistance mutations detected in cfDNA involved TP53 (n = 5), AKT1 (n = 1), and second-site FGFR3 mutations (n = 2). CONCLUSIONS FGFR3 mutations are common in urothelial carcinoma, whereas FGFR2 alterations are rare. Discordance of FGFR3 mutational status between primary and metastatic tumors occurs frequently and raises concern over sequencing archival primary tumors to guide patient selection for erdafitinib therapy. Erdafitinib responses were typically brief and dosing was limited by toxicity. FGFR3, AKT1, and TP53 mutations detected in cfDNA represent putative mechanisms of acquired erdafitinib resistance.
Collapse
Affiliation(s)
- Brendan J Guercio
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Michal Sarfaty
- Institute of Oncology, Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Min Yuen Teo
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - Neha Ratna
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Cihan Duzgol
- Commonwealth Radiology Associates, Andover, Massachusetts
| | - Samuel A Funt
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - Chung-Han Lee
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - David H Aggen
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - Ashley M Regazzi
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ziyu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Hikmat A Al-Ahmadie
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - A Rose Brannon
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ronak Shah
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Carissa Chu
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew T Lenis
- Department of Urology, Columbia University Irving Medical Center, New York, New York
| | - Eugene Pietzak
- Weill Cornell Medical College, New York, New York
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bernard H Bochner
- Weill Cornell Medical College, New York, New York
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael F Berger
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David B Solit
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jonathan E Rosenberg
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - Dean F Bajorin
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - Gopa Iyer
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| |
Collapse
|
20
|
Yu A, Hu J, Fu L, Huang G, Deng D, Zhang M, Wang Y, Shu G, Jing L, Li H, Chen X, Yang T, Wei J, Chen Z, Zu X, Luo J. Bladder cancer intrinsic LRFN2 drives anticancer immunotherapy resistance by attenuating CD8 + T cell infiltration and functional transition. J Immunother Cancer 2023; 11:e007230. [PMID: 37802603 PMCID: PMC10565151 DOI: 10.1136/jitc-2023-007230] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitor (ICI) therapy improves the survival of patients with advanced bladder cancer (BLCA); however, its overall effectiveness is limited, and many patients still develop immunotherapy resistance. The leucine-rich repeat and fibronectin type-III domain-containing protein (LRFN) family has previously been implicated in regulating brain dysfunction; however, the mechanisms underlying the effect of LRFN2 on the tumor microenvironment (TME) and immunotherapy remain unclear. METHODS Here we combined bulk RNA sequencing, single-cell RNA sequencing, ProcartaPlex multiple immunoassays, functional experiments, and TissueFAXS panoramic tissue quantification assays to demonstrate that LRFN2 shapes a non-inflammatory TME in BLCA. RESULTS First, comprehensive multiomics analysis identified LRFN2 as a novel immunosuppressive target specific to BLCA. We found that tumor-intrinsic LRFN2 inhibited the recruitment and functional transition of CD8+ T cells by reducing the secretion of pro-inflammatory cytokines and chemokines, and this mechanism was verified in vitro and in vivo. LRFN2 restrained antitumor immunity by inhibiting the infiltration, proliferation, and differentiation of CD8+ T cells in vitro. Furthermore, a spatial exclusivity relationship was observed between LRFN2+ tumor cells and CD8+ T cells and cell markers programmed cell death-1 (PD-1) and T cell factor 1 (TCF-1). Preclinically, LRFN2 knockdown significantly enhanced the efficacy of ICI therapy. Clinically, LRFN2 can predict immunotherapy responses in real-world and public immunotherapy cohorts. Our results reveal a new role for LRFN2 in tumor immune evasion by regulating chemokine secretion and inhibiting CD8+ T-cell recruitment and functional transition. CONCLUSIONS Thus, LRFN2 represents a new target that can be combined with ICIs to provide a potential treatment option for BLCA.
Collapse
Affiliation(s)
- Anze Yu
- Department of Urology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Jiao Hu
- Department of Urology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Liangmin Fu
- Department of Urology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Gaowei Huang
- Department of Urology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Dingshan Deng
- Department of Urology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Mingxiao Zhang
- Department of Urology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Yinghan Wang
- Department of Urology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Guannan Shu
- Department of Urology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Lanyu Jing
- Department of Breast Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Huihuang Li
- Department of Urology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Xu Chen
- Department of Urology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Taowei Yang
- Department of Urology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Jinhuan Wei
- Department of Urology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Zhenhua Chen
- Department of Urology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Junhang Luo
- Department of Urology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Chu C, Pietzak E. Immune mechanisms and molecular therapeutic strategies to enhance immunotherapy in non-muscle invasive bladder cancer: Invited review for special issue "Seminar: Treatment Advances and Molecular Biology Insights in Urothelial Carcinoma". Urol Oncol 2023; 41:398-409. [PMID: 35811207 PMCID: PMC10167944 DOI: 10.1016/j.urolonc.2022.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 03/12/2022] [Accepted: 05/07/2022] [Indexed: 11/26/2022]
Abstract
Intravesical immunotherapy with Bacillus Calmette-Guérin (BCG) has been the standard of care for patients with high-risk non non-muscle invasive bladder cancer (NMIBC) for over four decades. Despite its success as a cancer immunotherapy, disease recurrence and progression remain common. Current efforts are focused on developing effective and well-tolerated alternatives to BCG and salvage bladder preservation therapies after BCG has failed. The focus of this review is to synthesize our current understanding of the molecular biology and tumor immune microenvironment of NMIBC to provide rationale for existing and emerging therapeutic targets. We highlight recent and ongoing clinical trials and define the current treatment landscape, challenges, and future directions of salvage treatment. Combination regimens that are rationally designed will be needed to make meaningful therapeutic advancements. Investigations into the molecular underpinnings of NMIBC are leading to the emergence of predictive molecular biomarkers that provide greater insight into the clinical heterogeneity of NMIBC and enable us to identify drivers of treatment resistance and new therapeutic targets.
Collapse
Affiliation(s)
- Carissa Chu
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Eugene Pietzak
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Urology, Weill Cornell Medical College, New York, NY.
| |
Collapse
|
22
|
Song Y, Peng Y, Qin C, Wang Y, Yang W, Du Y, Xu T. Fibroblast growth factor receptor 3 mutation attenuates response to immune checkpoint blockade in metastatic urothelial carcinoma by driving immunosuppressive microenvironment. J Immunother Cancer 2023; 11:e006643. [PMID: 37777251 PMCID: PMC10546120 DOI: 10.1136/jitc-2022-006643] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) therapy holds promise in metastatic urothelial carcinoma (UC). Fibroblast growth factor receptor 3 (FGFR3) mutation drives T-cell-depleted microenvironment in UC, which led to the hypothesis that FGFR3 mutation might attenuate response to ICB in patients with metastatic UC. The study aims to compare prognosis and response between patients with FGFR3-mutated and FGFR3-wildtype metastatic UC after ICB therapy, and decode the potential molecular mechanisms. METHODS Based on the single-arm, multicenter, phase 2 trial, IMvigor210, we conducted a propensity score matched (PSM) analysis. After a 1:1 ratio PSM method, 39 patients with FGFR3-mutated and 39 FGFR3-wildtype metastatic UC treated with atezolizumab were enrolled. A meta-analysis through systematical database retrieval was conducted for validation. In addition, we performed single-cell RNA sequencing on three FGFR3-mutated and three FGFR3-wildtype UC tumors and analyzed 58,069 single cells. RESULTS The PSM analysis indicated FGFR3-mutated patients had worse overall survival (OS) in comparison to FGFR3-wildtype patients (HR=2.11, 95% CI=(1.16 to 3.85), p=0.015) receiving atezolizumab. The median OS was 9.2 months (FGFR3-mutated) versus 21.0 months (FGFR3-wildtype). FGFR3-mutated patients had lower disease control rate than FGFR3-wildtype patients (41.0% vs 66.7%, p=0.023). The meta-analysis involving 938 patients with metastatic UC confirmed FGFR3 mutation was associated with worse OS after ICB (HR=1.28, 95% CI=(1.04 to 1.59), p=0.02). Single-cell RNA transcriptome analysis identified FGFR3-mutated UC carried a stronger immunosuppressive microenvironment compared with FGFR3-wildtype UC. FGFR3-mutated UC exhibited less immune infiltration, and lower T-cell cytotoxicity. Higher TREM2+ macrophage abundance in FGFR3-mutated UC can undermine and suppress the T cells, potentially contributing to the formation of an immunosuppressive microenvironment. Lower inflammatory-cancer-associated fibroblasts in FGFR3-mutated UC recruited less chemokines in antitumor immunity but expressed growth factors to promote FGFR3-mutated malignant cell development. FGFR3-mutated UC carried abundance of malignant cells characterized by high hypoxia/metabolism and low interferon response phenotype. CONCLUSIONS FGFR3 mutation can attenuate prognosis and response to ICB in patients with metastatic UC. FGFR3-mutated UC carries a stronger immunosuppressive microenvironment in comparison with FGFR3-wildtype UC. Inhibition of FGFR3 might activate the immune microenvironment, and the combination of FGFR inhibitor targeted therapy and ICB might be a promising therapeutic regimen in metastatic UC, providing important implications for UC clinical management.
Collapse
Affiliation(s)
- Yuxuan Song
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Yun Peng
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Caipeng Qin
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Yulong Wang
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Wenbo Yang
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Yiqing Du
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Tao Xu
- Department of Urology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
23
|
Neureiter D, Ellinghaus P, Ocker M. FGFR inhibitor resistance in cholangiocarcinoma: current understanding and future directions. Expert Opin Pharmacother 2023; 24:1833-1837. [PMID: 37710362 DOI: 10.1080/14656566.2023.2259802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/16/2023]
Affiliation(s)
- Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University/University Hospital Salzburg (SALK), Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Peter Ellinghaus
- Global Clinical Development Oncology, Merck Healthcare KGaA, Darmstadt, Germany
| | - Matthias Ocker
- Medical Department, Division of Hematology, Oncology, and Cancer Immunology Campus Charité Mitte, Charité University Medicine Berlin, Berlin, Germany
- EO Translational Insights Consulting GmbH, Berlin, Germany
- Tacalyx GmbH, Berlin, Germany
| |
Collapse
|
24
|
Kovács SA, Fekete JT, Győrffy B. Predictive biomarkers of immunotherapy response with pharmacological applications in solid tumors. Acta Pharmacol Sin 2023; 44:1879-1889. [PMID: 37055532 PMCID: PMC10462766 DOI: 10.1038/s41401-023-01079-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/14/2023] [Indexed: 04/15/2023] Open
Abstract
Immune-checkpoint inhibitors show promising effects in the treatment of multiple tumor types. Biomarkers are biological indicators used to select patients for a systemic anticancer treatment, but there are only a few clinically useful biomarkers such as PD-L1 expression and tumor mutational burden, which can be used to predict immunotherapy response. In this study, we established a database consisting of both gene expression and clinical data to identify biomarkers of response to anti-PD-1, anti-PD-L1, and anti-CTLA-4 immunotherapies. A GEO screening was executed to identify datasets with simultaneously available clinical response and transcriptomic data regardless of cancer type. The screening was restricted to the studies involving administration of anti-PD-1 (nivolumab, pembrolizumab), anti-PD-L1 (atezolizumab, durvalumab) or anti-CTLA-4 (ipilimumab) agents. Receiver operating characteristic (ROC) analysis and Mann-Whitney test were executed across all genes to identify features related to therapy response. The database consisted of 1434 tumor tissue samples from 19 datasets with esophageal, gastric, head and neck, lung, and urothelial cancers, plus melanoma. The strongest druggable gene candidates linked to anti-PD-1 resistance were SPIN1 (AUC = 0.682, P = 9.1E-12), SRC (AUC = 0.667, P = 5.9E-10), SETD7 (AUC = 0.663, P = 1.0E-09), FGFR3 (AUC = 0.657, P = 3.7E-09), YAP1 (AUC = 0.655, P = 6.0E-09), TEAD3 (AUC = 0.649, P = 4.1E-08) and BCL2 (AUC = 0.634, P = 9.7E-08). In the anti-CTLA-4 treatment cohort, BLCAP (AUC = 0.735, P = 2.1E-06) was the most promising gene candidate. No therapeutically relevant target was found to be predictive in the anti-PD-L1 cohort. In the anti-PD-1 group, we were able to confirm the significant correlation with survival for the mismatch-repair genes MLH1 and MSH6. A web platform for further analysis and validation of new biomarker candidates was set up and available at https://www.rocplot.com/immune . In summary, a database and a web platform were established to investigate biomarkers of immunotherapy response in a large cohort of solid tumor samples. Our results could help to identify new patient cohorts eligible for immunotherapy.
Collapse
Affiliation(s)
- Szonja Anna Kovács
- Department of Bioinformatics, Semmelweis University, Tűzoltó utca 7-9, 1094, Budapest, Hungary
- Doctoral School of Pathological Sciences, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
- National Laboratory for Drug Research and Development, Magyar tudósok körútja 2 1117, Budapest, Hungary
| | - János Tibor Fekete
- National Laboratory for Drug Research and Development, Magyar tudósok körútja 2 1117, Budapest, Hungary
- Research Centre for Natural Sciences, Oncology Biomarker Research Group, Institute of Enzymology, Eötvös Loránd Research Network, Magyar Tudósok körútja 2, 1117, Budapest, Hungary
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Tűzoltó utca 7-9, 1094, Budapest, Hungary.
- Department of Pediatrics, Semmelweis University, Tűzoltó utca 7-9, 1094, Budapest, Hungary.
| |
Collapse
|
25
|
Patwardhan MV, Mahendran R. The Bladder Tumor Microenvironment Components That Modulate the Tumor and Impact Therapy. Int J Mol Sci 2023; 24:12311. [PMID: 37569686 PMCID: PMC10419109 DOI: 10.3390/ijms241512311] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
The tumor microenvironment (TME) is complex and involves many different cell types that seemingly work together in helping cancer cells evade immune monitoring and survive therapy. The advent of single-cell sequencing has greatly increased our knowledge of the cell types present in the tumor microenvironment and their role in the developing cancer. This, coupled with clinical data showing that cancer development and the response to therapy may be influenced by drugs that indirectly influence the tumor environment, highlights the need to better understand how the cells present in the TME work together. This review looks at the different cell types (cancer cells, cancer stem cells, endothelial cells, pericytes, adipose cells, cancer-associated fibroblasts, and neuronal cells) in the bladder tumor microenvironment. Their impact on immune activation and on shaping the microenvironment are discussed as well as the effects of hypertensive drugs and anesthetics on bladder cancer.
Collapse
Affiliation(s)
| | - Ratha Mahendran
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| |
Collapse
|
26
|
Xu PH, Chen S, Wang Y, Jin S, Wang J, Ye D, Zhu X, Shen Y. FGFR3 mutation characterization identifies prognostic and immune-related gene signatures in bladder cancer. Comput Biol Med 2023; 162:106976. [PMID: 37301098 DOI: 10.1016/j.compbiomed.2023.106976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/31/2023] [Accepted: 04/22/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Immunotherapy and FGFR3-targeted therapy play an important role in the management of locally advanced and metastatic bladder cancer (BLCA). Previous studies indicated that FGFR3 mutation (mFGFR3) may be involved in the alterations of immune infiltration, which may affect the priority or combination of these two treatment regimes. However, the specific impact of mFGFR3 on the immunity and how FGFR3 regulates the immune response in BLCA to affect prognosis remain unclear. In this study, we aimed to elucidate the immune landscape associated with mFGFR3 status in BLCA, screen immune-related gene signatures with prognostic value, and construct and validate a prognostic model. METHODS ESTIMATE and TIMER were used to assess the immune infiltration within tumors in the TCGA BLCA cohort based on transcriptome data. Further, the mFGFR3 status and mRNA expression profiles were analyzed to identify immune-related genes that were differentially expressed between patients with BLCA with wild-type FGFR3 or mFGFR3 in the TCGA training cohort. An FGFR3-related immune prognostic score (FIPS) model was established in the TCGA training cohort. Furthermore, we validated the prognostic value of FIPS with microarray data in the GEO database and tissue microarray from our center. Multiple fluorescence immunohistochemical analysis was performed to confirm the relationship between FIPS and immune infiltration. RESULTS mFGFR3 resulted in differential immunity in BLCA. In total, 359 immune-related biological processes were enriched in the wild-type FGFR3 group, whereas none were enriched in the mFGFR3 group. FIPS could effectively distinguish high-risk patients with poor prognosis from low-risk patients. The high-risk group was characterized by a higher abundance of neutrophils; macrophages; and follicular helper, CD4, and CD8 T-cells than the low-risk group. In addition, the high-risk group exhibited higher expression of PD-L1, PD-1, CTLA-4, LAG-3, and TIM-3 than the low-risk group, indicating an immune-infiltrated but functionally suppressed immune microenvironment. Furthermore, patients in the high-risk group exhibited a lower mutation rate of FGFR3 than those in the low-risk group. CONCLUSIONS FIPS effectively predicted survival in BLCA. Patients with different FIPS exhibited diverse immune infiltration and mFGFR3 status. FIPS might be a promising tool for selecting targeted therapy and immunotherapy for patients with BLCA.
Collapse
Affiliation(s)
- Pei-Hang Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Siyuan Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yanhao Wang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shengming Jin
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Wang
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in Southern China, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Xiaodong Zhu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Yijun Shen
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
27
|
Zou W, Green DR. Beggars banquet: Metabolism in the tumor immune microenvironment and cancer therapy. Cell Metab 2023; 35:1101-1113. [PMID: 37390822 PMCID: PMC10527949 DOI: 10.1016/j.cmet.2023.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 07/02/2023]
Abstract
Metabolic programming in the tumor microenvironment (TME) alters tumor immunity and immunotherapeutic response in tumor-bearing mice and patients with cancer. Here, we review immune-related functions of core metabolic pathways, key metabolites, and crucial nutrient transporters in the TME, discuss their metabolic, signaling, and epigenetic impact on tumor immunity and immunotherapy, and explore how these insights can be applied to the development of more effective modalities to potentiate the function of T cells and sensitize tumor cell receptivity to immune attack, thereby overcoming therapeutic resistance.
Collapse
Affiliation(s)
- Weiping Zou
- Departments of Surgery and Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Graduate Programs in Immunology and Cancer Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
28
|
Rakaee M, Andersen S, Giannikou K, Paulsen EE, Kilvaer TK, Busund LTR, Berg T, Richardsen E, Lombardi AP, Adib E, Pedersen MI, Tafavvoghi M, Wahl SGF, Petersen RH, Bondgaard AL, Yde CW, Baudet C, Licht P, Lund-Iversen M, Grønberg BH, Fjellbirkeland L, Helland Å, Pøhl M, Kwiatkowski DJ, Donnem T. Machine learning-based immune phenotypes correlate with STK11/KEAP1 co-mutations and prognosis in resectable NSCLC: a sub-study of the TNM-I trial. Ann Oncol 2023; 34:578-588. [PMID: 37100205 DOI: 10.1016/j.annonc.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND We aim to implement an immune cell score model in routine clinical practice for resected non-small-cell lung cancer (NSCLC) patients (NCT03299478). Molecular and genomic features associated with immune phenotypes in NSCLC have not been explored in detail. PATIENTS AND METHODS We developed a machine learning (ML)-based model to classify tumors into one of three categories: inflamed, altered, and desert, based on the spatial distribution of CD8+ T cells in two prospective (n = 453; TNM-I trial) and retrospective (n = 481) stage I-IIIA NSCLC surgical cohorts. NanoString assays and targeted gene panel sequencing were used to evaluate the association of gene expression and mutations with immune phenotypes. RESULTS Among the total of 934 patients, 24.4% of tumors were classified as inflamed, 51.3% as altered, and 24.3% as desert. There were significant associations between ML-derived immune phenotypes and adaptive immunity gene expression signatures. We identified a strong association of the nuclear factor-κB pathway and CD8+ T-cell exclusion through a positive enrichment in the desert phenotype. KEAP1 [odds ratio (OR) 0.27, Q = 0.02] and STK11 (OR 0.39, Q = 0.04) were significantly co-mutated in non-inflamed lung adenocarcinoma (LUAD) compared to the inflamed phenotype. In the retrospective cohort, the inflamed phenotype was an independent prognostic factor for prolonged disease-specific survival and time to recurrence (hazard ratio 0.61, P = 0.01 and 0.65, P = 0.02, respectively). CONCLUSIONS ML-based immune phenotyping by spatial distribution of T cells in resected NSCLC is able to identify patients at greater risk of disease recurrence after surgical resection. LUADs with concurrent KEAP1 and STK11 mutations are enriched for altered and desert immune phenotypes.
Collapse
Affiliation(s)
- M Rakaee
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Department of Clinical Pathology, University Hospital of North Norway, Tromso; Department of Clinical Medicine, UiT The Arctic University of Norway, Tromso.
| | - S Andersen
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromso; Department of Oncology, University Hospital of North Norway, Tromso, Norway
| | - K Giannikou
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Division of Hematology and Oncology, Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, USA
| | - E-E Paulsen
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromso; Department of Pulmonology, University Hospital of North Norway, Tromso
| | - T K Kilvaer
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromso; Department of Oncology, University Hospital of North Norway, Tromso, Norway
| | - L-T R Busund
- Department of Clinical Pathology, University Hospital of North Norway, Tromso; Department of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway
| | - T Berg
- Department of Clinical Pathology, University Hospital of North Norway, Tromso; Department of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway
| | - E Richardsen
- Department of Clinical Pathology, University Hospital of North Norway, Tromso; Department of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway
| | - A P Lombardi
- Department of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway
| | - E Adib
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - M I Pedersen
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromso
| | - M Tafavvoghi
- Department of Community Medicine, UiT The Arctic University of Norway, Tromso
| | - S G F Wahl
- Department of Oncology, St. Olav's Hospital, Trondheim University Hospital, Trondheim; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - R H Petersen
- Department of Cardiothoracic Surgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen; Department of Clinical Medicine, University of Copenhagen, Copenhagen
| | - A L Bondgaard
- Department of Pathology, Copenhagen University Hospital, Rigshospitalet, Copenhagen
| | - C W Yde
- Center for Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen
| | - C Baudet
- Center for Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen
| | - P Licht
- Department of Cardiothoracic Surgery, Odense University Hospital, Odense, Denmark
| | - M Lund-Iversen
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo
| | - B H Grønberg
- Department of Oncology, St. Olav's Hospital, Trondheim University Hospital, Trondheim; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - L Fjellbirkeland
- Department of Respiratory Medicine, Oslo University Hospital, University of Oslo, Oslo
| | - Å Helland
- Department of Cancer Genetics, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo; Department of Oncology, Oslo University Hospital, Oslo; Department of Clinical Medicine, University of Oslo, Oslo, Norway
| | - M Pøhl
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - D J Kwiatkowski
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - T Donnem
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromso; Department of Oncology, University Hospital of North Norway, Tromso, Norway
| |
Collapse
|
29
|
Bou Zerdan M, Bratslavsky G, Jacob J, Ross J, Huang R, Basnet A. Urothelial Bladder Cancer: Genomic Alterations in Fibroblast Growth Factor Receptor. Mol Diagn Ther 2023; 27:475-485. [PMID: 37195586 DOI: 10.1007/s40291-023-00647-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND OBJECTIVE Genomic alterations in fibroblast growth factor receptor (FGFR) genes have been linked to a reduced response to immune checkpoint inhibitors. Some of the immune microenvironment of urothelial bladder cancer (UBC) could be distorted because of the inhibition of interferon signaling pathways. We present a landscape of FGFR genomic alterations in distorted UBC to evaluate the immunogenomic mechanisms of resistance and response. METHODS There were 4035 UBCs that underwent hybrid, capture-based comprehensive genomic profiling. Tumor mutational burden was determined in up to 1.1 Mbp of sequenced DNA and microsatellite instability was determined in 114 loci. Programmed death ligand expression in tumor cells was assessed by immunohistochemistry (Dako 22C3). RESULTS The FGFR tyrosine kinases were altered in 894 (22%) UBCs. The highest frequency of alterations was in FGFR genomic alterations with FGFR3 at 17.4% followed by FGFR1 at 3.7% and FGFR2 at 1.1%. No FGFR4 genomic alterations were identified. The age and sex distribution were similar in all groups. Urothelial bladder cancers that featured FGFR3 genomic alterations were associated with lower driver genomic alterations/tumors. 14.7% of the FGFR3 genomic alterations were FGFR3 fusions. Other findings included a significantly higher frequency of ERBB2 amplification in FGFR1/2-altered UBCs compared with FGFR3-altered UBCs. Urothelial bladder cancers with FGFR3 genomic alterations also had the highest frequency of the activating mTOR pathway. FGFR3-altered UBCs also featured significantly higher frequencies of biomarkers associated with a lack of response to immune checkpoint inhibitors including a lower tumor mutational burden, lower programmed death-ligand 1 expression, and higher frequencies of genomic alterations in MDM2. Also linked to IO drug resistance, CDKN2A/B loss and MTAP loss were observed at a higher frequency in FGFR3-driven UBC. CONCLUSIONS An increased frequency of genomic alterations is observed in UBC FGFR. These have been linked to immune checkpoint inhibitor resistance. Clinical trials are needed to evaluate UBC FGFR-based biomarkers prognostic of an immune checkpoint inhibitor response. Only then can we successfully incorporate novel therapeutic strategies into the evolving landscape of UBC treatment.
Collapse
Affiliation(s)
- Maroun Bou Zerdan
- Department of Internal Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | | | - Joseph Jacob
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Jeffrey Ross
- Foundation Medicine, Inc., Morrisville, NC, USA
- Department of Pathology, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
| | | | - Alina Basnet
- Department of Hematology and Oncology, State University of New York, Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210-2375, USA.
| |
Collapse
|
30
|
Samnani S, Sachedina F, Gupta M, Guo E, Navani V. Mechanisms and clinical implications in renal carcinoma resistance: narrative review of immune checkpoint inhibitors. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:416-429. [PMID: 37457122 PMCID: PMC10344724 DOI: 10.20517/cdr.2023.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/25/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common histological subtype of renal cell carcinoma. The prognosis for patients with ccRCC has improved over recent years with the use of combination therapies with an anti-programmed death-1 (PD-1) backbone. This has enhanced the quality of life and life expectancy of patients with this disease. Unfortunately, not all patients benefit; eventually, most patients will develop resistance to therapy and progress. Recent molecular, biochemical, and immunological research has extensively researched anti-angiogenic and immune-based treatment resistance mechanisms. This analysis offers an overview of the principles underpinning the resistance pathways related to immune checkpoint inhibitors (ICIs). Additionally, novel approaches to overcome resistance that may be considered for the trial context are discussed.
Collapse
Affiliation(s)
- Sunil Samnani
- Department of Internal Medicine, The University of Calgary, Calgary T2N 1N4, Canada
| | - Faraz Sachedina
- Department of Internal Medicine, The University of Calgary, Calgary T2N 1N4, Canada
| | - Mehul Gupta
- Cumming School of Medicine, University of Calgary, Calgary T2N 4N1, Canada
| | - Edward Guo
- Cumming School of Medicine, University of Calgary, Calgary T2N 4N1, Canada
| | - Vishal Navani
- Department of Medical Oncology, Tom Baker Cancer Centre, Calgary T2N 4N2, Canada
| |
Collapse
|
31
|
Deng Z, Tang N, Xiong W, Lei X, Zhang T, Yang N. Inflammation-related research within the field of bladder cancer: a bibliometric analysis. Front Oncol 2023; 13:1126897. [PMID: 37350946 PMCID: PMC10282760 DOI: 10.3389/fonc.2023.1126897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/16/2023] [Indexed: 06/24/2023] Open
Abstract
Background In recent years, the link between inflammation and bladder cancer(BC) has received much attention. However, there were no relevant bibliometric studies to analyze the inflammation-related research within this field of BC. Methods We selected Web of Science Core Collection (WOSCC) as the data source to obtain articles and reviews on inflammation-related research within te field of BC from WOSCC's inception to October 10, 2022. The collected data were meticulously and manually screened, after which we used VOSviewer, CiteSpace, Biblioshiny and an online analysis platform (https://bibliometric.com/) to perform bibliometric analysis on the data and visualize the results. Results A total of 4301 papers related to inflammation-related research within this field of BC were included in this study.The number of publications has steadily increased over the last decades (R²=0.9021). The top contributing country was the United States, O'Donnell, Michael A was the most published authors, the leading contributing institution was the University of Texas, and the leading contributing journal was JOURNAL OF UROLOGY. The keywords co-occurrence analysis indicated that "immunotherapy," "inflammation-related biomarkers," and "tumor microenvironment" were the hot spots and frontiers of research in this field. Conclusion This study clarifies the contribution of countries, institutions, authors, and journals in inflammation-related research within this field of BC through a bibliometric approach and identifies research hotspots and frontiers in the field. Notably, these findings can help researchers to understand more clearly the relationship between inflammation and BC.
Collapse
Affiliation(s)
- Zhixuan Deng
- Department of Urology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ning Tang
- Department of Orthopaedics, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wanyan Xiong
- Department of Respiratory Medicine, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xu Lei
- Department of Urology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Tengfei Zhang
- Department of Urology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | | |
Collapse
|
32
|
Combes AJ, Samad B, Krummel MF. Defining and using immune archetypes to classify and treat cancer. Nat Rev Cancer 2023:10.1038/s41568-023-00578-2. [PMID: 37277485 DOI: 10.1038/s41568-023-00578-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 06/07/2023]
Abstract
Tumours are surrounded by a host immune system that can suppress or promote tumour growth. The tumour microenvironment (TME) has often been framed as a singular entity, suggesting a single type of immune state that is defective and in need of therapeutic intervention. By contrast, the past few years have highlighted a plurality of immune states that can surround tumours. In this Perspective, we suggest that different TMEs have 'archetypal' qualities across all cancers - characteristic and repeating collections of cells and gene-expression profiles at the level of the bulk tumour. We discuss many studies that together support a view that tumours typically draw from a finite number (around 12) of 'dominant' immune archetypes. In considering the likely evolutionary origin and roles of these archetypes, their associated TMEs can be predicted to have specific vulnerabilities that can be leveraged as targets for cancer treatment with expected and addressable adverse effects for patients.
Collapse
Affiliation(s)
- Alexis J Combes
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
- Bakar ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA.
- UCSF Immunoprofiler Initiative, University of California San Francisco, San Francisco, CA, USA.
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA.
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Bushra Samad
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- Bakar ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- UCSF Immunoprofiler Initiative, University of California San Francisco, San Francisco, CA, USA
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA
| | - Matthew F Krummel
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
- Bakar ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA.
- UCSF Immunoprofiler Initiative, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
33
|
Spain L, Coulton A, Lobon I, Rowan A, Schnidrig D, Shepherd ST, Shum B, Byrne F, Goicoechea M, Piperni E, Au L, Edmonds K, Carlyle E, Hunter N, Renn A, Messiou C, Hughes P, Nobbs J, Foijer F, van den Bos H, Wardenaar R, Spierings DC, Spencer C, Schmitt AM, Tippu Z, Lingard K, Grostate L, Peat K, Kelly K, Sarker S, Vaughan S, Mangwende M, Terry L, Kelly D, Biano J, Murra A, Korteweg J, Lewis C, O'Flaherty M, Cattin AL, Emmerich M, Gerard CL, Pallikonda HA, Lynch J, Mason R, Rogiers A, Xu H, Huebner A, McGranahan N, Al Bakir M, Murai J, Naceur-Lombardelli C, Borg E, Mitchison M, Moore DA, Falzon M, Proctor I, Stamp GW, Nye EL, Young K, Furness AJ, Pickering L, Stewart R, Mahadeva U, Green A, Larkin J, Litchfield K, Swanton C, Jamal-Hanjani M, Turajlic S. Late-Stage Metastatic Melanoma Emerges through a Diversity of Evolutionary Pathways. Cancer Discov 2023; 13:1364-1385. [PMID: 36977461 PMCID: PMC10236155 DOI: 10.1158/2159-8290.cd-22-1427] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/06/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Understanding the evolutionary pathways to metastasis and resistance to immune-checkpoint inhibitors (ICI) in melanoma is critical for improving outcomes. Here, we present the most comprehensive intrapatient metastatic melanoma dataset assembled to date as part of the Posthumous Evaluation of Advanced Cancer Environment (PEACE) research autopsy program, including 222 exome sequencing, 493 panel-sequenced, 161 RNA sequencing, and 22 single-cell whole-genome sequencing samples from 14 ICI-treated patients. We observed frequent whole-genome doubling and widespread loss of heterozygosity, often involving antigen-presentation machinery. We found KIT extrachromosomal DNA may have contributed to the lack of response to KIT inhibitors of a KIT-driven melanoma. At the lesion-level, MYC amplifications were enriched in ICI nonresponders. Single-cell sequencing revealed polyclonal seeding of metastases originating from clones with different ploidy in one patient. Finally, we observed that brain metastases that diverged early in molecular evolution emerge late in disease. Overall, our study illustrates the diverse evolutionary landscape of advanced melanoma. SIGNIFICANCE Despite treatment advances, melanoma remains a deadly disease at stage IV. Through research autopsy and dense sampling of metastases combined with extensive multiomic profiling, our study elucidates the many mechanisms that melanomas use to evade treatment and the immune system, whether through mutations, widespread copy-number alterations, or extrachromosomal DNA. See related commentary by Shain, p. 1294. This article is highlighted in the In This Issue feature, p. 1275.
Collapse
Affiliation(s)
- Lavinia Spain
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Alexander Coulton
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- Tumour Immunogenomics and Immunosurveillance (TIGI) Lab, UCL Cancer Institute, London, United Kingdom
| | - Irene Lobon
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Andrew Rowan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Desiree Schnidrig
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Scott T.C. Shepherd
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Benjamin Shum
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Fiona Byrne
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Maria Goicoechea
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Elisa Piperni
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Lewis Au
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
| | - Kim Edmonds
- The Royal Marsden Hospital, London, United Kingdom
| | | | - Nikki Hunter
- The Royal Marsden Hospital, London, United Kingdom
| | | | - Christina Messiou
- The Royal Marsden Hospital, London, United Kingdom
- The Institute of Cancer Research, Kensington and Chelsea, United Kingdom
| | - Peta Hughes
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Jaime Nobbs
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Hilda van den Bos
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Rene Wardenaar
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Diana C.J. Spierings
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Charlotte Spencer
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | - Zayd Tippu
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | | | - Kema Peat
- The Royal Marsden Hospital, London, United Kingdom
| | | | - Sarah Sarker
- The Royal Marsden Hospital, London, United Kingdom
| | | | | | - Lauren Terry
- The Royal Marsden Hospital, London, United Kingdom
| | - Denise Kelly
- The Royal Marsden Hospital, London, United Kingdom
| | | | - Aida Murra
- The Royal Marsden Hospital, London, United Kingdom
| | | | | | | | - Anne-Laure Cattin
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Max Emmerich
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- St. John's Institute of Dermatology, Guy's and St Thomas’ Hospital NHS Foundation Trust, London, United Kingdom
| | - Camille L. Gerard
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- Precision Oncology Center, Oncology Department, Lausanne University Hospital, Lausanne, Switzerland
| | | | - Joanna Lynch
- The Royal Marsden Hospital, London, United Kingdom
| | - Robert Mason
- Gold Coast University Hospital, Queensland, Australia
| | - Aljosja Rogiers
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Hang Xu
- The Francis Crick Institute, London, United Kingdom
| | - Ariana Huebner
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, United Kingdom
| | - Nicholas McGranahan
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, United Kingdom
| | - Maise Al Bakir
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, United Kingdom
| | - Jun Murai
- Tumour Immunogenomics and Immunosurveillance (TIGI) Lab, UCL Cancer Institute, London, United Kingdom
- Drug Discovery Technology Laboratories, Ono Pharmaceutical Co., Ltd. Osaka, Japan
| | | | - Elaine Borg
- University College London Hospital, London, United Kingdom
| | | | - David A. Moore
- Guy's and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Mary Falzon
- University College London Hospital, London, United Kingdom
| | - Ian Proctor
- University College London Hospital, London, United Kingdom
| | | | - Emma L. Nye
- The Francis Crick Institute, London, United Kingdom
| | - Kate Young
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Andrew J.S. Furness
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
- The Institute of Cancer Research, Kensington and Chelsea, United Kingdom
| | | | - Ruby Stewart
- Guy's and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Ula Mahadeva
- Guy's and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Anna Green
- Guy's and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - James Larkin
- Guy's and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Kevin Litchfield
- Tumour Immunogenomics and Immunosurveillance (TIGI) Lab, UCL Cancer Institute, London, United Kingdom
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, United Kingdom
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, United Kingdom
- Department of Medical Oncology, University College London Hospitals, London, United Kingdom
| | | | - Samra Turajlic
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
34
|
Ruan R, Li L, Li X, Huang C, Zhang Z, Zhong H, Zeng S, Shi Q, Xia Y, Zeng Q, Wen Q, Chen J, Dai X, Xiong J, Xiang X, Lei W, Deng J. Unleashing the potential of combining FGFR inhibitor and immune checkpoint blockade for FGF/FGFR signaling in tumor microenvironment. Mol Cancer 2023; 22:60. [PMID: 36966334 PMCID: PMC10039534 DOI: 10.1186/s12943-023-01761-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/14/2023] [Indexed: 03/27/2023] Open
Abstract
BACKGROUND Fibroblast growth factors (FGFs) and their receptors (FGFRs) play a crucial role in cell fate and angiogenesis, with dysregulation of the signaling axis driving tumorigenesis. Therefore, many studies have targeted FGF/FGFR signaling for cancer therapy and several FGFR inhibitors have promising results in different tumors but treatment efficiency may still be improved. The clinical use of immune checkpoint blockade (ICB) has resulted in sustained remission for patients. MAIN: Although there is limited data linking FGFR inhibitors and immunotherapy, preclinical research suggest that FGF/FGFR signaling is involved in regulating the tumor microenvironment (TME) including immune cells, vasculogenesis, and epithelial-mesenchymal transition (EMT). This raises the possibility that ICB in combination with FGFR-tyrosine kinase inhibitors (FGFR-TKIs) may be feasible for treatment option for patients with dysregulated FGF/FGFR signaling. CONCLUSION Here, we review the role of FGF/FGFR signaling in TME regulation and the potential mechanisms of FGFR-TKI in combination with ICB. In addition, we review clinical data surrounding ICB alone or in combination with FGFR-TKI for the treatment of FGFR-dysregulated tumors, highlighting that FGFR inhibitors may sensitize the response to ICB by impacting various stages of the "cancer-immune cycle".
Collapse
Affiliation(s)
- Ruiwen Ruan
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Li Li
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Xuan Li
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Chunye Huang
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Zhanmin Zhang
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Hongguang Zhong
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Shaocheng Zeng
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Qianqian Shi
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Yang Xia
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Qinru Zeng
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Qin Wen
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Jingyi Chen
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Xiaofeng Dai
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Jianping Xiong
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Xiaojun Xiang
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China.
| | - Wan Lei
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China.
| | - Jun Deng
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
35
|
Caramelo B, Zagorac S, Corral S, Marqués M, Real FX. Cancer-associated Fibroblasts in Bladder Cancer: Origin, Biology, and Therapeutic Opportunities. Eur Urol Oncol 2023:S2588-9311(23)00043-3. [PMID: 36890105 DOI: 10.1016/j.euo.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/28/2022] [Accepted: 02/08/2023] [Indexed: 03/08/2023]
Abstract
CONTEXT Bladder cancer (BLCA) is a highly prevalent tumour and a health problem worldwide, especially among men. Recent work has highlighted the relevance of the tumour microenvironment (TME) in cancer biology with translational implications. Cancer-associated fibroblasts (CAFs) are a prominent, heterogeneous population of cells in the TME. CAFs have been associated with tumour development, progression, and poor prognosis in several neoplasms. However, their role in BLCA has not yet been exploited deeply. OBJECTIVE To review the role of CAFs in BLCA biology and provide an understanding of CAF origin, subtypes, markers, and phenotypic and functional characteristics to improve patient management. EVIDENCE ACQUISITION A PubMed search was performed to review manuscripts published using the terms "cancer associated fibroblast" and "bladder cancer" or "urothelial cancer". All abstracts were reviewed, and the full content of all relevant manuscripts was analysed. In addition, selected manuscripts on CAFs in other tumours were considered. EVIDENCE SYNTHESIS CAFs have been studied less extensively in BLCA than in other tumours. Thanks to new techniques, such as single-cell RNA-seq and spatial transcriptomics, it is now possible to accurately map and molecularly define the phenotype of fibroblasts in normal bladder and BLCA. Bulk transcriptomic analyses have revealed the existence of subtypes among both non-muscle-invasive and muscle-invasive BLCA; these subtypes display distinct features regarding their CAF content. We provide a higher-resolution map of the phenotypic diversity of CAFs in these tumour subtypes. Preclinical studies and recent promising clinical trials leverage on this knowledge through the combined targeting of CAFs or their effectors and the immune microenvironment. CONCLUSIONS Current knowledge of BLCA CAFs and the TME is being increasingly applied to improve BLCA therapy. There is a need to acquire a deeper understanding of CAF biology in BLCA. PATIENT SUMMARY Tumour cells are surrounded by nontumoural cells that contribute to the determination of the behaviour of cancers. Among them are cancer-associated fibroblasts. The "neighbourhoods" established through these cellular interactions can now be studied with much greater resolution. Understanding these features of tumours will contribute to the designing of more effective therapies, especially in relationship to bladder cancer immunotherapy.
Collapse
Affiliation(s)
- Belén Caramelo
- Instituto de Investigación Marqués de Valdecilla, IDIVAL, Santander, Spain; Hospital Sierrallana, Torrelavega, Spain
| | - Sladjana Zagorac
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Sonia Corral
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Miriam Marqués
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain; CIBERONC, Madrid, Spain.
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain; CIBERONC, Madrid, Spain; Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
36
|
Nielsen TJ, Varga MG, Cronister CT, Ring BZ, Seitz RS, Ross DT, Schweitzer BL, McGregor K. The 27-gene IO score is associated with efficacy of PD-1/L1 inhibitors independent of FGFR expression in a real-world metastatic urothelial carcinoma cohort. Cancer Immunol Immunother 2023:10.1007/s00262-023-03401-x. [PMID: 36806983 DOI: 10.1007/s00262-023-03401-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023]
Abstract
Multiple targeted therapeutics have been approved by the FDA for mUC, including immune checkpoint inhibitors (ICIs) and more recently targeted agents for both FGFR and Nectin-4. FGFR3-aberrant and Nectin-4 expressing cells have been associated with an immunosuppressed phenotype. Given that less than half of all patients respond to these agents as monotherapies and less than 20% are eligible to receive salvage therapy, effective personalized treatment plans are critical. Typical biomarkers for ICIs such as PD-L1 and TMB have not been definitive in mUC, yet a biomarker-driven optimization of first-line therapy and subsequent sequencing have the potential to achieve higher and more durable response rates. The IO score is a 27-gene tumor immune microenvironment (TIME) classifier that has been associated with the clinical benefits of ICIs in multiple cancer types, including mUC. This study demonstrates that the IO score was associated with both progression-free survival (PFS) and overall survival (OS) in a real-world cohort of mUC patients treated with ICIs. Furthermore, the IO score was independent of and provided information incremental to TMB. Interestingly, the IO score predicted benefit in patients with high FGFR expression, despite conflicting data regarding response rates among the FGFR aberrant population. Taken together, these results demonstrate that the IO score assessment of the TIME is associated with a clinical benefit from ICI therapy and that this novel biomarker may inform therapeutic sequencing decisions in mUC, potentially improving outcomes for this notoriously difficult-to-treat disease.
Collapse
Affiliation(s)
| | | | | | - Brian Z Ring
- Oncocyte Corporation, 15 Cushing, Irvine, CA, 92618, USA
| | - Robert S Seitz
- Oncocyte Corporation, 15 Cushing, Irvine, CA, 92618, USA
| | - Douglas T Ross
- Oncocyte Corporation, 15 Cushing, Irvine, CA, 92618, USA
| | | | | |
Collapse
|
37
|
Li G, Choi JE, Kryczek I, Sun Y, Liao P, Li S, Wei S, Grove S, Vatan L, Nelson R, Schaefer G, Allen SG, Sankar K, Fecher LA, Mendiratta-Lala M, Frankel TL, Qin A, Waninger JJ, Tezel A, Alva A, Lao CD, Ramnath N, Cieslik M, Harms PW, Green MD, Chinnaiyan AM, Zou W. Intersection of immune and oncometabolic pathways drives cancer hyperprogression during immunotherapy. Cancer Cell 2023; 41:304-322.e7. [PMID: 36638784 PMCID: PMC10286807 DOI: 10.1016/j.ccell.2022.12.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/07/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023]
Abstract
Immune checkpoint blockade (ICB) can produce durable responses against cancer. We and others have found that a subset of patients experiences paradoxical rapid cancer progression during immunotherapy. It is poorly understood how tumors can accelerate their progression during ICB. In some preclinical models, ICB causes hyperprogressive disease (HPD). While immune exclusion drives resistance to ICB, counterintuitively, patients with HPD and complete response (CR) following ICB manifest comparable levels of tumor-infiltrating CD8+ T cells and interferon γ (IFNγ) gene signature. Interestingly, patients with HPD but not CR exhibit elevated tumoral fibroblast growth factor 2 (FGF2) and β-catenin signaling. In animal models, T cell-derived IFNγ promotes tumor FGF2 signaling, thereby suppressing PKM2 activity and decreasing NAD+, resulting in reduction of SIRT1-mediated β-catenin deacetylation and enhanced β-catenin acetylation, consequently reprograming tumor stemness. Targeting the IFNγ-PKM2-β-catenin axis prevents HPD in preclinical models. Thus, the crosstalk of core immunogenic, metabolic, and oncogenic pathways via the IFNγ-PKM2-β-catenin cascade underlies ICB-associated HPD.
Collapse
Affiliation(s)
- Gaopeng Li
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Jae Eun Choi
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Ilona Kryczek
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Yilun Sun
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA; Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Peng Liao
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Shasha Li
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Shuang Wei
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Sara Grove
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Linda Vatan
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Reagan Nelson
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Grace Schaefer
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Steven G Allen
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Kamya Sankar
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Leslie A Fecher
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Angel Qin
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jessica J Waninger
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Alangoya Tezel
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Ajjai Alva
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Christopher D Lao
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Nithya Ramnath
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Marcin Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Paul W Harms
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Michael D Green
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA; Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA; Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA; Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA; Graduate Program in Cancer Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - Weiping Zou
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA; Graduate Program in Cancer Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
38
|
Tang Q, Zuo W, Wan C, Xiong S, Xu C, Yuan C, Sun Q, Zhou L, Li X. Comprehensive genomic profiling of upper tract urothelial carcinoma and urothelial carcinoma of the bladder identifies distinct molecular characterizations with potential implications for targeted therapy & immunotherapy. Front Immunol 2023; 13:1097730. [PMID: 36818471 PMCID: PMC9936149 DOI: 10.3389/fimmu.2022.1097730] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/19/2022] [Indexed: 02/05/2023] Open
Abstract
Backgrounds Despite the genomic landscape of urothelial carcinomas (UC) patients, especially those with UC of bladder (UCB), has been comprehensively delineated and associated with pathogenetic mechanisms and treatment preferences, the genomic characterization of upper tract UC (UTUC) has yet to be fully elucidated. Materials and methods A total of 131 Chinese UTUC (74 renal pelvis & 57 ureter) and 118 UCB patients were enrolled in the present study, and targeted next-generation sequencing (NGS) of 618 cancer-associated genes were conducted to exhibit the profile of somatic and germline alterations. The COSMIC database, including 30 mutational signatures, were utilized to evaluate the mutational spectrums. Moreover, TCGA-UCB, MSKCC-UCB, and MSKCC-UTUC datasets were retrieved for preforming genomic alterations (GAs) comparison analysis between Western and Chinese UC patients. Results In our cohort, 93.98% and 56.63% of UC patients were identified with oncogenic and actionable somatic alterations, respectively. Meanwhile, 11.24% of Chinese UC patients (of 14.50% and 7.63% of UTUC and UCB cases, respectively) were identified to harbor a total of 32 pathogenic/likely-pathogenic germline variants in 22 genes, with DNA damage repair (DDR)-associated BRCA1 (1.20%) and CHEK2 (1.20%) being the most prevalent. Chinese UTUC and UCB patients possessed distinct somatic genomic characteristics, especially with significantly different prevalence in KMT2D/C/A, GNAQ, ERCC2, RB1, and PPM1D. In addition, we also found notable differences in the prevalence of ELF3, TP53, PMS2, and FAT4 between renal pelvis and ureter carcinomas. Moreover, 22.90% and 33.90% of UTUC and UCB patients, respectively, had at least one deleterious/likely deleterious alteration in DDR related genes/pathways. Subsequently, mutational signature analysis revealed that UC patients with mutational signature 22, irrespective of UTUC or UCB, consistently had the markedly higher level of tumor mutational burden (TMB), which was proved to be positively correlated with the objective complete/partial response rate in the IMvigor210 cohort. By comparison, Chinese and Western UTUC patients also differed regrading GAs in oncogenic-related genes/pathways, especially in TP53, RTK/RAS, and PI3K pathways; besides, more alterations in WNT pathway but less TP53, RTK/RAS, HIPPO, and PI3K pathways were identified in Chinese UCB. Discussions The in-depth analysis of genomic mutational landscapes revealed distinct pathogenetic mechanisms between Chinese UTUC and UCB, and specific genomic characterizations could identify high risk population of UTUC/UCB and provided information regarding the selection of alternative therapeutic regimens.
Collapse
Affiliation(s)
- Qi Tang
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Wei Zuo
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Chong Wan
- Precision Medicine Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang, China
| | - Shengwei Xiong
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Chunru Xu
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Changwei Yuan
- Department of Urology, Peking University First Hospital, Beijing, China
| | | | - Liqun Zhou
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Xuesong Li
- Department of Urology, Peking University First Hospital, Beijing, China
| |
Collapse
|
39
|
Jung M, Rose M, Knuechel R, Loeffler C, Muti H, Kather JN, Gaisa NT. Characterisation of tumour-immune phenotypes and PD-L1 positivity in squamous bladder cancer. BMC Cancer 2023; 23:113. [PMID: 36726072 PMCID: PMC9890720 DOI: 10.1186/s12885-023-10576-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
AIMS Immune checkpoint inhibitor (ICI) therapy has become a viable treatment strategy in bladder cancer. However, treatment responses vary, and improved biomarkers are needed. Crucially, the characteristics of immune cells remain understudied especially in squamous differentiated bladder cancer (sq-BLCA). Here, we quantitatively analysed the tumour-immune phenotypes of sq-BLCA and correlated them with PD-L1 expression and FGFR3 mutation status. METHODS Tissue microarrays (TMA) of n = 68 non-schistosomiasis associated pure squamous cell carcinoma (SCC) and n = 46 mixed urothelial carcinoma with squamous differentiation (MIX) were subjected to immunohistochemistry for CD3, CD4, CD8, CD56, CD68, CD79A, CD163, Ki67, perforin and chloroacetate esterase staining. Quantitative image evaluation was performed via digital image analysis. RESULTS Immune infiltration was generally higher in stroma than in tumour regions. B-cells (CD79A) were almost exclusively found in stromal areas (sTILs), T-lymphocytes and macrophages were also present in tumour cell areas (iTILs), while natural killer cells (CD56) were nearly missing in any area. Tumour-immune phenotype distribution differed depending on the immune cell subset, however, hot tumour-immune phenotypes (high density of immune cells in tumour areas) were frequently found for CD8 + T-cells (33%), especially perforin + lymphocytes (52.2%), and CD68 + macrophages (37.6%). Perforin + CD8 lymphocytes predicted improved overall survival in sq-BLCA while high PD-L1 expression (CPS ≥ 10) was significantly associated with higher CD3 + , CD8 + and CD163 + immune cell density and high Ki67 (density) of tumour cells. Furthermore, PD-L1 expression was positively associated with CD3 + /CD4 + , CD3 + /CD8 + and CD68 + /CD163 + hot tumour-immune phenotypes. FGFR3 mutation status was inversely associated with CD8 + , perforin + and CD79A + lymphocyte density. CONCLUSIONS Computer-based image analysis is an efficient tool to analyse immune topographies in squamous bladder cancer. Hot tumour-immune phenotypes with strong PD-L1 expression might pose a promising subgroup for clinically successful ICI therapy in squamous bladder cancer and warrant further investigation.
Collapse
Affiliation(s)
- Max Jung
- grid.412301.50000 0000 8653 1507Institute of Pathology, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany ,Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Michael Rose
- grid.412301.50000 0000 8653 1507Institute of Pathology, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany ,Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Ruth Knuechel
- grid.412301.50000 0000 8653 1507Institute of Pathology, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany ,Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Chiara Loeffler
- grid.412301.50000 0000 8653 1507Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany ,grid.4488.00000 0001 2111 7257Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Hannah Muti
- grid.412301.50000 0000 8653 1507Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany ,grid.4488.00000 0001 2111 7257Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Jakob Nikolas Kather
- grid.412301.50000 0000 8653 1507Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany ,grid.4488.00000 0001 2111 7257Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Nadine T. Gaisa
- grid.412301.50000 0000 8653 1507Institute of Pathology, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany ,Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | | |
Collapse
|
40
|
Shen C, Yan Y, Yang S, Wang Z, Wu Z, Li Z, Zhang Z, Lin Y, Li P, Hu H. Construction and validation of a bladder cancer risk model based on autophagy-related genes. Funct Integr Genomics 2023; 23:46. [PMID: 36689018 DOI: 10.1007/s10142-022-00957-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 01/24/2023]
Abstract
Autophagy has an important association with tumorigenesis, progression, and prognosis. However, the mechanism of autophagy-regulated genes on the risk prognosis of bladder cancer (BC) patients has not been fully elucidated yet. In this study, we created a prognostic model of BC risk based on autophagy-related genes, which further illustrates the value of genes associated with autophagy in the treatment of BC. We first downloaded human autophagy-associated genes and BC datasets from Human Autophagy Database and The Cancer Genome Atlas (TCGA) database, and finally obtained differential prognosis-associated genes for autophagy by univariate regression analysis and differential analysis of cancer versus normal tissues. Subsequently, we downloaded two datasets from Gene Expression Omnibus (GEO), GSE31684 and GSE15307, to expand the total number of samples. Based on these genes, we distinguished the molecular subtypes (C1, C2) and gene classes (A, B) of BC by consistent clustering analysis. Using the genes merged from TCGA and the two GEO datasets, we conducted least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analysis to obtain risk genes and construct autophagy-related risk prediction models. The accuracy of this risk prediction model was assessed by receiver operating characteristic (ROC) and calibration curves, and then nomograms were constructed to predict the survival of bladder cancer patients at 1, 3, and 5 years, respectively. According to the median value of the risk score, we divided BC samples into the high- and low-risk groups. Kaplan-Meier (K-M) survival analysis was performed to compare survival differences between subgroups. Then, we used single sample gene set enrichment analysis (ssGSEA) for immune cell infiltration abundance, immune checkpoint genes, immunotherapy response, gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis, and tumor mutation burden (TMB) analysis for different subgroups. We also applied quantitative real-time polymerase chain reaction (PCR) and immunohistochemistry (IHC) techniques to verify the expression of these six genes in the model. Finally, we chose the IMvigor210 dataset for external validation. Six risk genes associated with autophagy (SPOCD1, FKBP10, NAT8B, LDLR, STMN3, and ANXA2) were finally screened by LASSO regression algorithm and multivariate Cox regression analysis. ROC and calibration curves showed that the model established was accurate and reliable. Univariate and multivariate regression analyses were used to verify that the risk model was an independent predictor. K-M survival analysis indicated that patients in the high-risk group had significantly worse overall survival than those in the low-risk group. Analysis by algorithms such as correlation analysis, gene set variation analysis (GSVA), and ssGSEA showed that differences in immune microenvironment, enrichment of multiple biologically active pathways, TMB, immune checkpoint genes, and human leukocyte antigens (HLAs) were observed in the different risk groups. Then, we constructed nomograms that predicted the 1-, 3-, and 5-year survival rates of different BC patients. In addition, we screened nine sensitive chemotherapeutic drugs using the correlation between the obtained expression status of risk genes and drug sensitivity results. Finally, the external dataset IMvigor210 verified that the model is reliable and efficient. We established an autophagy-related risk prognostic model that is accurate and reliable, which lays the foundation for future personalized treatment of bladder cancer.
Collapse
Affiliation(s)
- Chong Shen
- Department of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Jianshan Street, Hexi, Tianjin, 300211, People's Republic of China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Yan Yan
- Department of Vascular Surgery, University Hospital Aachen, Pauwelsstr 30, 52074, Aachen, Germany
| | - Shaobo Yang
- Department of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Jianshan Street, Hexi, Tianjin, 300211, People's Republic of China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Zejin Wang
- Department of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Jianshan Street, Hexi, Tianjin, 300211, People's Republic of China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Zhouliang Wu
- Department of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Jianshan Street, Hexi, Tianjin, 300211, People's Republic of China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Zhi Li
- Department of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Jianshan Street, Hexi, Tianjin, 300211, People's Republic of China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Zhe Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Jianshan Street, Hexi, Tianjin, 300211, People's Republic of China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Yuda Lin
- Department of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Jianshan Street, Hexi, Tianjin, 300211, People's Republic of China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Peng Li
- Department of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Jianshan Street, Hexi, Tianjin, 300211, People's Republic of China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Hailong Hu
- Department of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Jianshan Street, Hexi, Tianjin, 300211, People's Republic of China. .,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China.
| |
Collapse
|
41
|
Muto S, Enta A, Maruya Y, Inomata S, Yamaguchi H, Mine H, Takagi H, Ozaki Y, Watanabe M, Inoue T, Yamaura T, Fukuhara M, Okabe N, Matsumura Y, Hasegawa T, Osugi J, Hoshino M, Higuchi M, Shio Y, Hamada K, Suzuki H. Wnt/β-Catenin Signaling and Resistance to Immune Checkpoint Inhibitors: From Non-Small-Cell Lung Cancer to Other Cancers. Biomedicines 2023; 11:biomedicines11010190. [PMID: 36672698 PMCID: PMC9855612 DOI: 10.3390/biomedicines11010190] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. The standard of care for advanced non-small-cell lung cancer (NSCLC) without driver-gene mutations is a combination of an anti-PD-1/PD-L1 antibody and chemotherapy, or an anti-PD-1/PD-L1 antibody and an anti-CTLA-4 antibody with or without chemotherapy. Although there were fewer cases of disease progression in the early stages of combination treatment than with anti-PD-1/PD-L1 antibodies alone, only approximately half of the patients had a long-term response. Therefore, it is necessary to elucidate the mechanisms of resistance to immune checkpoint inhibitors. Recent reports of such mechanisms include reduced cancer-cell immunogenicity, loss of major histocompatibility complex, dysfunctional tumor-intrinsic interferon-γ signaling, and oncogenic signaling leading to immunoediting. Among these, the Wnt/β-catenin pathway is a notable potential mechanism of immune escape and resistance to immune checkpoint inhibitors. In this review, we will summarize findings on these resistance mechanisms in NSCLC and other cancers, focusing on Wnt/β-catenin signaling. First, we will review the molecular biology of Wnt/β-catenin signaling, then discuss how it can induce immunoediting and resistance to immune checkpoint inhibitors. We will also describe other various mechanisms of immune-checkpoint-inhibitor resistance. Finally, we will propose therapeutic approaches to overcome these mechanisms.
Collapse
Affiliation(s)
- Satoshi Muto
- Correspondence: ; Tel.: +81-24-547-1252; Fax: +81-24-548-2735
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Martins-Lima C, Chianese U, Benedetti R, Altucci L, Jerónimo C, Correia MP. Tumor microenvironment and epithelial-mesenchymal transition in bladder cancer: Cytokines in the game? Front Mol Biosci 2023; 9:1070383. [PMID: 36699696 PMCID: PMC9868260 DOI: 10.3389/fmolb.2022.1070383] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/22/2022] [Indexed: 01/11/2023] Open
Abstract
Bladder cancer (BlCa) is a highly immunogenic cancer. Bacillus Calmette-Guérin (BCG) is the standard treatment for non-muscle invasive bladder cancer (NMIBC) patients and, recently, second-line immunotherapies have arisen to treat metastatic BlCa patients. Understanding the interactions between tumor cells, immune cells and soluble factors in bladder tumor microenvironment (TME) is crucial. Cytokines and chemokines released in the TME have a dual role, since they can exhibit both a pro-inflammatory and anti-inflammatory potential, driving infiltration and inflammation, and also promoting evasion of immune system and pro-tumoral effects. In BlCa disease, 70-80% are non-muscle invasive bladder cancer, while 20-30% are muscle-invasive bladder cancer (MIBC) at the time of diagnosis. However, during the follow up, about half of treated NMIBC patients recur once or more, with 5-25% progressing to muscle-invasive bladder cancer, which represents a significant concern to the clinic. Epithelial-mesenchymal transition (EMT) is one biological process associated with tumor progression. Specific cytokines present in bladder TME have been related with signaling pathways activation and EMT-related molecules regulation. In this review, we summarized the immune landscape in BlCa TME, along with the most relevant cytokines and their putative role in driving EMT processes, tumor progression, invasion, migration and metastasis formation.
Collapse
Affiliation(s)
- Cláudia Martins-Lima
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) and Porto Comprehensive Cancer Center (Porto.CCC) Raquel Seruca, Porto, Portugal,Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Ugo Chianese
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy,BIOGEM, Molecular Biology and Genetics Research Institute, Avellino, Italy,IEOS, Institute of Endocrinology and Oncology, Naples, Italy
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) and Porto Comprehensive Cancer Center (Porto.CCC) Raquel Seruca, Porto, Portugal,Department of Pathology and Molecular Immunology at School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal,*Correspondence: Carmen Jerónimo, , ; Margareta P. Correia,
| | - Margareta P. Correia
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) and Porto Comprehensive Cancer Center (Porto.CCC) Raquel Seruca, Porto, Portugal,Department of Pathology and Molecular Immunology at School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal,*Correspondence: Carmen Jerónimo, , ; Margareta P. Correia,
| |
Collapse
|
43
|
Tumor immunology. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
44
|
Shi MJ, Fontugne J, Moreno-Vega A, Meng XY, Groeneveld C, Dufour F, Kamoun A, Viborg Lindskrog S, Cabel L, Krucker C, Rapinat A, Dunois-Larde C, Lepage ML, Chapeaublanc E, Levrel O, Dixon V, Lebret T, Almeida A, De Reynies A, Rochel N, Dyrskjøt L, Allory Y, Radvanyi F, Bernard-Pierrot I. FGFR3 Mutational Activation Can Induce Luminal-like Papillary Bladder Tumor Formation and Favors a Male Sex Bias. Eur Urol 2023; 83:70-81. [PMID: 36273937 DOI: 10.1016/j.eururo.2022.09.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 08/29/2022] [Accepted: 09/29/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Bladder cancer (BCa) is more common in men and presents differences in molecular subtypes based on sex. Fibroblast growth factor receptor 3 (FGFR3) mutations are enriched in the luminal papillary muscle-invasive BCa (MIBC) and non-MIBC subtypes. OBJECTIVE To determine whether FGFR3 mutations initiate BCa and impact BCa male sex bias. DESIGN, SETTING, AND PARTICIPANTS We developed a transgenic mouse model expressing the most frequent FGFR3 mutation, FGFR3-S249C, in urothelial cells. Bladder tumorigenesis was monitored in transgenic mice, with and without carcinogen exposure. Mouse and human BCa transcriptomic data were compared. INTERVENTION Mutant FGFR3 overexpression in mouse urothelium and siRNA knockdown in cell lines, and N-butyl-N(4-hydroxybutyl)-nitrosamine (BBN) exposure. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Impact of transgene dosage on tumor frequency, synergy with BBN treatment, and FGFR3 pathway activation were analyzed. The sex-specific incidence of FGFR3-mutated tumors was evaluated in mice and humans. FGFR3 expression in FGFR3-S249C mouse urothelium and in various human epithelia was measured. Mutant FGFR3 regulation of androgen (AR) and estrogen (ESR1) receptor activity was evaluated, through target gene expression (regulon) and reporter assays. RESULTS AND LIMITATIONS FGFR3-S249C expression in mice induced low-grade papillary BCa resembling human luminal counterpart at histological, genomic, and transcriptomic levels, and promoted BBN-induced basal BCa formation. Mutant FGFR3 expression levels impacted tumor incidence in mice, and mutant FGFR3-driven human tumors were restricted to epithelia presenting high normal FGFR3 expression levels. BCa male sex bias, also found in our model, was even higher in human FGFR3-mutated tumors compared with wild-type tumors and was associated with higher AR and lower ESR1 regulon activity. Mutant FGFR3 expression inhibited both ESR1 and AR activity in mouse tumors and human cell lines, demonstrating causation only between FGFR3 activation and low ESR1 activity in tumors. CONCLUSIONS Mutant FGFR3 initiates luminal papillary BCa formation and favors BCa male sex bias, potentially through FGFR3-dependent ESR1 downregulation. Patients with premalignant lesions or early-stage BCa could thus potentially benefit from FGFR3 targeting. FGFR3 expression level in epithelia could account for FGFR3-driven carcinoma tissue specificity. PATIENT SUMMARY By developing a transgenic mouse model, we showed that gain-of-function mutations of FGFR3 receptor, among the most frequent genetic alterations in bladder cancer (BCa), initiate BCa formation. Our results could support noninvasive detection of FGFR3 mutations and FGFR3 targeting in early-stage bladder lesions.
Collapse
Affiliation(s)
- Ming-Jun Shi
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Institut Curie, PSL Research University, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, Paris, France; Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, Paris, France
| | - Jacqueline Fontugne
- Institut Curie, PSL Research University, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, Paris, France; Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, Paris, France; Université Versailles St-Quentin, Université Paris-Saclay, Montigny-le-Bretonneux, France; Institut Curie, Department of Pathology, Saint-Cloud, France
| | - Aura Moreno-Vega
- Institut Curie, PSL Research University, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, Paris, France; Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, Paris, France
| | - Xiang-Yu Meng
- Institut Curie, PSL Research University, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, Paris, France; Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, Paris, France; Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Clarice Groeneveld
- Institut Curie, PSL Research University, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, Paris, France; La Ligue contre le Cancer, Paris, France
| | - Florent Dufour
- Institut Curie, PSL Research University, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, Paris, France; Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, Paris, France; Inovarion, Paris, France
| | | | | | - Luc Cabel
- Institut Curie, PSL Research University, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, Paris, France; Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, Paris, France
| | - Clémentine Krucker
- Institut Curie, PSL Research University, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, Paris, France; Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, Paris, France
| | - Audrey Rapinat
- Department of Translational Research, Institut Curie, Paris, France
| | - Claire Dunois-Larde
- Institut Curie, PSL Research University, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, Paris, France; Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, Paris, France
| | - May-Linda Lepage
- Institut Curie, PSL Research University, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, Paris, France; Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, Paris, France
| | - Elodie Chapeaublanc
- Institut Curie, PSL Research University, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, Paris, France; Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, Paris, France
| | | | - Victoria Dixon
- Institut Curie, PSL Research University, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, Paris, France; Institut Curie, Department of Pathology, Saint-Cloud, France
| | | | - Anna Almeida
- Department of Translational Research, Institut Curie, Paris, France
| | | | - Natacha Rochel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de La Santé et de La Recherche Médicale (INSERM), Illkirch, France; U1258/Centre National de Recherche Scientifique (CNRS), Illkirch, France; UMR7104/Université de Strasbourg, Illkirch, France
| | - Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Yves Allory
- Institut Curie, PSL Research University, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, Paris, France; Université Versailles St-Quentin, Université Paris-Saclay, Montigny-le-Bretonneux, France; Institut Curie, Department of Pathology, Saint-Cloud, France
| | - François Radvanyi
- Institut Curie, PSL Research University, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, Paris, France; Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, Paris, France
| | - Isabelle Bernard-Pierrot
- Institut Curie, PSL Research University, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, Paris, France; Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, Paris, France.
| |
Collapse
|
45
|
Revesz J, Posfai B, Pajor L, Papdan T, Varga L, Paczona VR, Varga Z, Sukosd F, Maraz A. Correlation between fibroblast growth factor receptor mutation, programmed death ligand-1 expression and survival in urinary bladder cancer based on real-world data. Pathol Oncol Res 2023; 29:1611077. [PMID: 37151354 PMCID: PMC10160374 DOI: 10.3389/pore.2023.1611077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023]
Abstract
Background: Programmed cell death (PD)-1/PD-ligand 1 (PD-L1) inhibitors have made a breakthrough in the therapy of advanced urothelial bladder cancer (UBC). The impact of Fibroblast Growth Factor Receptor 3 (FGFR3) mutation on the effectiveness of PD-L1 treatment remains still unclear. Objective: Our study aimed to investigate the frequency of FGFR mutations at different tumor stages, and their relation to PD-L1 status and survival. Methods: 310 patients with urothelial bladder cancer and subsequent radical cystectomy were included in a retrospective study over a 10-year study period at the University of Szeged, Hungary. FGFR3 mutations from the most infiltrative areas of the tumor were analyzed by targeted next-generation sequencing and PD-L1 (28-8 DAKO) tests (tumor positive score -TPS and combined positives score-CPS). In T0 cases FGFR3 mutations were analyzed from the earlier resection samples. Survival and oncological treatment data were collected from the National Health Insurance Fund (NHIF). Neoadjuvant, adjuvant and palliative conventional chemotherapies were allowed; immunotherapies were not. The relationship between the covariates was tested using chi-square tests, and survival analysis was performed using the Kaplan-Meier model and Cox proportional hazards regression. Results: PD-L1 and FGFR could be tested successfully in 215 of the 310 UBC samples [pT0cyst 19 (8.8%); St.0-I 43 (20%); St.II 41 (19%); St.III-IV 112 (52%)]. Significant pairwise dependency was found between tumor stage, FGFR3 mutation status and PD-L1 expression (p < 0.01). Samples with FGFR mutation were more common in less advanced stages and were also less likely to demonstrate PD-L1 expression. The effect of all investigated factors on survival was found to correlate with tumor stage. Conclusion: FGFR alteration frequency varied between the different stages of cancer. Higher positivity rates were observed at early stages, but lower levels of PD-L1 expression were detected in patients with FGFR mutations across at all stages of the disease.
Collapse
Affiliation(s)
- Janos Revesz
- PhD School, University of Szeged, Szeged, Hungary
| | - Boglarka Posfai
- Department of Oncotherapy, University of Szeged, Szeged, Hungary
| | - Laszlo Pajor
- Department of Urology, University of Szeged, Szeged, Hungary
| | - Timea Papdan
- Department of Oncotherapy, University of Szeged, Szeged, Hungary
| | - Linda Varga
- Department of Oncotherapy, University of Szeged, Szeged, Hungary
| | | | - Zoltan Varga
- Department of Oncotherapy, University of Szeged, Szeged, Hungary
| | - Farkas Sukosd
- Department of Pathology, University of Szeged, Szeged, Hungary
| | - Aniko Maraz
- Department of Oncotherapy, University of Szeged, Szeged, Hungary
- *Correspondence: Aniko Maraz,
| |
Collapse
|
46
|
Rezazadeh Kalebasty A, Benjamin DJ, Loriot Y, Papantoniou D, Siefker-Radtke AO, Necchi A, Naini V, Carcione JC, Santiago-Walker A, Triantos S, Burgess EF. Outcomes of Patients with Advanced Urothelial Carcinoma after Anti-programmed Death-(ligand) 1 Therapy by Fibroblast Growth Factor Receptor Gene Alteration Status: An Observational Study. EUR UROL SUPPL 2022; 47:48-57. [PMID: 36601039 PMCID: PMC9806713 DOI: 10.1016/j.euros.2022.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2022] [Indexed: 12/23/2022] Open
Abstract
Background Clinical outcomes of anti-programmed death‑(ligand) 1 (anti-PD-[L]1) therapy in patients with locally advanced or metastatic urothelial carcinoma (mUC) and fibroblast growth factor receptor alterations (FGFRa+) remain unclear; recent studies have reported either comparable or poorer outcomes versus patients without FGFR alterations (FGFRa-). Objective To analyze the outcomes of patients with mUC and any FGFRa (mutations or fusions) who received anti-PD-(L)1 therapy. Design setting and participants In this noninterventional, retrospective, multicenter study, clinical practice data were collected from FGFRa+/- patients who received prior immunotherapy between May 2018 and July 2019. Outcome measurements and statistical analysis Investigator‑determined overall response rate (ORR), disease control rate (DCR), and overall survival (OS) were assessed in multivariate and unadjusted analyses. Results and limitations Ninety-four patients (66% men; median age, 63 yr) with mUC and known FGFR status were included; 38 (40%) were FGFRa+ and 56 (60%) were FGFRa-. In FGFRa+ versus FGFRa- patients who received any line of anti-PD-(L)1 therapy (n = 92), ORR, DCR, and OS were 16% versus 26%, 29% versus 52% (relative risk: 1.14 [95% confidence interval {CI}, 0.92-1.40]; p = 0.3), and 8.57 versus 13.2 mo (hazard ratio [HR]: 1.33 [95% CI, 0.77-2.30]; p = 0.3), respectively. A multivariate analysis provided some evidence supporting shorter OS in FGFRa+ versus FGFRa- (any line of anti-PD-L[1] therapy; HR: 1.81 [95% CI, 0.99-3.31]; p = 0.054). Limitations include this study's retrospective nature and a potential selection bias from small sample size. Conclusions Some evidence of lower response rates and shortened OS following anti-PD-(L)1 therapy was observed in FGFRa+ patients. The phase 3 THOR study (NCT03390504) will prospectively compare FGFRa+ patients with advanced mUC treated with erdafitinib versus pembrolizumab. Patient summary Patients with metastatic urothelial carcinoma and prespecified fibroblast growth factor receptor alterations (FGFRa) potentially have worse clinical outcomes when treated with anti-PD-(L)1 therapy than those without FGFRa.
Collapse
Affiliation(s)
- Arash Rezazadeh Kalebasty
- University of California Irvine, Irvine, CA, USA,Corresponding author. Division of Hematology/Oncology, Department of Medicine and Department of Urology, UCI Health, 101 The City Drive South, Building 55, ZOT 4061, Orange, CA 92868, USA. Tel. +1 714 456 5153; Fax: +1 714 456 2242.
| | | | - Yohann Loriot
- Institut Gustave Roussy, Université Paris‑Sud, Université Paris‑Saclay, Villejuif, France
| | - Dimitrios Papantoniou
- Institut Gustave Roussy, Université Paris‑Sud, Université Paris‑Saclay, Villejuif, France
| | | | - Andrea Necchi
- Vita-Salute San Raffaele University, Department of Medical Oncology, IRCCS San Raffaele Hospital, Milan, Italy
| | - Vahid Naini
- Janssen Research & Development, San Diego, CA, USA
| | | | | | | | | |
Collapse
|
47
|
Talukder R, Makrakis D, Lin GI, Diamantopoulos LN, Dawsey S, Gupta S, Carril-Ajuria L, Castellano D, de Kouchkovsky I, Jindal T, Koshkin VS, Park JJ, Alva A, Bilen MA, Stewart TF, McKay RR, Tripathi N, Agarwal N, Vather-Wu N, Zakharia Y, Morales-Barrera R, Devitt ME, Cortellini A, Fulgenzi CAM, Pinato DJ, Nelson A, Hoimes CJ, Gupta K, Gartrell BA, Sankin A, Tripathi A, Zakopoulou R, Bamias A, Murgic J, Fröbe A, Rodriguez-Vida A, Drakaki A, Liu S, Lu E, Kumar V, Lorenzo GD, Joshi M, Isaacsson-Velho P, Buznego LA, Duran I, Moses M, Barata P, Sonpavde G, Wright JL, Yu EY, Montgomery RB, Hsieh AC, Grivas P, Khaki AR. Association of the Time to Immune Checkpoint Inhibitor (ICI) Initiation and Outcomes With Second Line ICI in Patients With Advanced Urothelial Carcinoma. Clin Genitourin Cancer 2022; 20:558-567. [PMID: 36155169 PMCID: PMC10233855 DOI: 10.1016/j.clgc.2022.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Early progression on first-line (1L) platinum-based therapy or between therapy lines may be a surrogate of more aggressive disease and poor outcomes in advanced urothelial carcinoma (aUC), but its prognostic role regarding immune checkpoint inhibitor (ICI) response and survival is unclear. We hypothesized that shorter time until start of second-line (2L) ICI would be associated with worse outcomes in aUC. PATIENTS AND METHODS We performed a retrospective multi-institution cohort study in patients with aUC treated with 1L platinum-based chemotherapy, who received 2L ICI. Patients receiving switch maintenance ICI were excluded. We defined time to 2L ICI therapy as the time between the start of 1L platinum-based chemotherapy to the start of 2L ICI and categorized patients a priori into 1 of 3 groups: less than 3 months versus 3-6 months versus more than 6 months. We calculated overall response rate (ORR) with 2L ICI, progression-free survival (PFS) and overall survival (OS) from the start of 2L ICI. ORR was compared among the 3 groups using multivariable logistic regression, and PFS, OS using cox regression. Multivariable models were adjusted for known prognostic factors. RESULTS We included 215, 215, and 219 patients in the ORR, PFS, and OS analyses, respectively, after exclusions. ORR difference did not reach statistical significance between patients with less than 3 months versus 3-6 months versus more than 6 months to 2L ICI. However, PFS (HR 1.64; 95% CI 1.02-2.63) and OS (HR 1.77; 95% CI 1.10-2.84) was shorter among those with time to 2L ICI less than 3 months compared to those who initiated 2L ICI more than 6 months. CONCLUSION Among patients with aUC treated with 2L ICI, time to 2L ICI less than 3 months was associated with lower, but not significantly different ORR, but shorter PFS and OS compared to 2L ICI more than 6 months. This highlights potential cross resistance mechanisms between ICI and platinum-based chemotherapy.
Collapse
Affiliation(s)
- Rafee Talukder
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA
| | - Dimitrios Makrakis
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA
| | | | | | - Scott Dawsey
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Shilpa Gupta
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH
| | | | - Daniel Castellano
- Department of Medical Oncology, Hospital Universitario, Madrid, Spain
| | - Ivan de Kouchkovsky
- Division of Oncology, Department of Medicine, University of California, San Francisco, CA
| | - Tanya Jindal
- Division of Oncology, Department of Medicine, University of California, San Francisco, CA
| | - Vadim S Koshkin
- Division of Oncology, Department of Medicine, University of California, San Francisco, CA
| | - Joseph J Park
- Division of Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI
| | - Ajjai Alva
- Division of Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI
| | - Mehmet A Bilen
- Winship Cancer Institute of Emory University, Atlanta, GA
| | - Tyler F Stewart
- Division of Hematology/Oncology, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Rana R McKay
- Division of Hematology/Oncology, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Nishita Tripathi
- Division of Oncology, Department of Medicine, University of Utah, Salt Lake City, UT
| | - Neeraj Agarwal
- Division of Oncology, Department of Medicine, University of Utah, Salt Lake City, UT
| | | | - Yousef Zakharia
- Division of Oncology, Department of Medicine, University of Iowa, Iowa City, IA
| | - Rafael Morales-Barrera
- Vall d'Hebron Institute of Oncology, Vall d' Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Michael E Devitt
- Division of Hematology/Oncology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| | | | | | - David J Pinato
- Department of Surgery and Cancer, Imperial College London, London
| | - Ariel Nelson
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Christopher J Hoimes
- Division of Medical Oncology, Seidman Cancer Center at Case Comprehensive Cancer Center, Cleveland, OH; Division of Medical Oncology, Duke University, Durham, NC
| | - Kavita Gupta
- Departments of Medical Oncology and Urology, Montefiore Medical Center, Bronx, NY
| | - Benjamin A Gartrell
- Departments of Medical Oncology and Urology, Montefiore Medical Center, Bronx, NY
| | - Alex Sankin
- Departments of Medical Oncology and Urology, Montefiore Medical Center, Bronx, NY
| | - Abhishek Tripathi
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Roubini Zakopoulou
- Department of Clinical Therapeutics, Alexandra General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Aristotelis Bamias
- 2nd Propaedeutic Department of Internal Medicine, ATTIKON University Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Jure Murgic
- Department of Oncology and Nuclear Medicine, University Hospital Center Sestre Milosrdnice, Zagreb
| | - Ana Fröbe
- Department of Oncology and Nuclear Medicine, University Hospital Center Sestre Milosrdnice, Zagreb; School of Dental Medicine, Zagreb, Croatia
| | - Alejo Rodriguez-Vida
- Medical Oncology Department, Hospital del Mar Research Institute, Barcelona, Spain
| | - Alexandra Drakaki
- Division of Hematology/Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Sandy Liu
- Division of Hematology/Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Eric Lu
- Division of Hematology/Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Vivek Kumar
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | - Monika Joshi
- Division of Hematology/Oncology, Department of Medicine, Penn State Cancer Institute, Hershey, PA
| | - Pedro Isaacsson-Velho
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD; Division of Oncology, Hospital Moinhos de Vento, Porto Alegre, Brazil
| | | | - Ignacio Duran
- Hospital Universitario Marques de Valdecilla. IDIVAL. Santander, Spain
| | - Marcus Moses
- Deming Department of Medicine, Section of Hematology/Oncology, Tulane University, New Orleans, LA
| | - Pedro Barata
- Deming Department of Medicine, Section of Hematology/Oncology, Tulane University, New Orleans, LA
| | - Guru Sonpavde
- Genitourinary Oncology Program, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Jonathan L Wright
- Fred Hutchinson Cancer Center, Seattle, WA; Department of Urology, University of Washington, Seattle, WA
| | - Evan Y Yu
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA; Fred Hutchinson Cancer Center, Seattle, WA
| | - Robert Bruce Montgomery
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA; Fred Hutchinson Cancer Center, Seattle, WA
| | - Andrew C Hsieh
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA; Fred Hutchinson Cancer Center, Seattle, WA
| | - Petros Grivas
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA; Fred Hutchinson Cancer Center, Seattle, WA.
| | - Ali Raza Khaki
- Division of Oncology, Department of Medicine, Stanford University, Palo Alto, CA.
| |
Collapse
|
48
|
Dhawan D, Ramos-Vara JA, Utturkar SM, Ruple A, Tersey SA, Nelson JB, Cooper B, Heng HG, Ostrander EA, Parker HG, Hahn NM, Adams LG, Fulkerson CM, Childress MO, Bonney P, Royce C, Fourez LM, Enstrom AW, Ambrosius LA, Knapp DW. Identification of a naturally-occurring canine model for early detection and intervention research in high grade urothelial carcinoma. Front Oncol 2022; 12:1011969. [PMID: 36439482 PMCID: PMC9692095 DOI: 10.3389/fonc.2022.1011969] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/24/2022] [Indexed: 09/23/2023] Open
Abstract
Background Early detection and intervention research is expected to improve the outcomes for patients with high grade muscle invasive urothelial carcinoma (InvUC). With limited patients in suitable high-risk study cohorts, relevant animal model research is critical. Experimental animal models often fail to adequately represent human cancer. The purpose of this study was to determine the suitability of dogs with high breed-associated risk for naturally-occurring InvUC to serve as relevant models for early detection and intervention research. The feasibility of screening and early intervention, and similarities and differences between canine and human tumors, and early and later canine tumors were determined. Methods STs (n=120) ≥ 6 years old with no outward evidence of urinary disease were screened at 6-month intervals for 3 years with physical exam, ultrasonography, and urinalysis with sediment exam. Cystoscopic biopsy was performed in dogs with positive screening tests. The pathological, clinical, and molecular characteristics of the "early" cancer detected by screening were determined. Transcriptomic signatures were compared between the early tumors and published findings in human InvUC, and to more advanced "later" canine tumors from STs who had the typical presentation of hematuria and urinary dysfunction. An early intervention trial of an oral cyclooxygenase inhibitor, deracoxib, was conducted in dogs with cancer detected through screening. Results Biopsy-confirmed bladder cancer was detected in 32 (27%) of 120 STs including InvUC (n=29, three starting as dysplasia), grade 1 noninvasive cancer (n=2), and carcinoma in situ (n=1). Transcriptomic signatures including druggable targets such as EGFR and the PI3K-AKT-mTOR pathway, were very similar between canine and human InvUC, especially within luminal and basal molecular subtypes. Marked transcriptomic differences were noted between early and later canine tumors, particularly within luminal subtype tumors. The deracoxib remission rate (42% CR+PR) compared very favorably to that with single-agent cyclooxygenase inhibitors in more advanced canine InvUC (17-25%), supporting the value of early intervention. Conclusions The study defined a novel naturally-occurring animal model to complement experimental models for early detection and intervention research in InvUC. Research incorporating the canine model is expected to lead to improved outcomes for humans, as well as pet dogs, facing bladder cancer.
Collapse
Affiliation(s)
- Deepika Dhawan
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - José A. Ramos-Vara
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
- Purdue University Center for Cancer Research, West Lafayette, IN, United States
| | - Sagar M. Utturkar
- Purdue University Center for Cancer Research, West Lafayette, IN, United States
| | - Audrey Ruple
- Purdue University Center for Cancer Research, West Lafayette, IN, United States
- Department of Public Health, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States
| | - Sarah A. Tersey
- Department of Medicine, Section of Endocrinology, Metabolism, and Diabetes, University of Chicago, Chicago, IL, United States
| | - Jennifer B. Nelson
- Department of Medicine, Section of Endocrinology, Metabolism, and Diabetes, University of Chicago, Chicago, IL, United States
| | - Bruce R. Cooper
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, United States
| | - Hock Gan Heng
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Elaine A. Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Heidi G. Parker
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Noah M. Hahn
- Department of Oncology and Urology, Johns Hopkins University School of Medicine, and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, United States
| | - Larry G. Adams
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Christopher M. Fulkerson
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Michael O. Childress
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Patty L. Bonney
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Christine Royce
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Lindsey M. Fourez
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Alexander W. Enstrom
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Lisbeth A. Ambrosius
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Deborah W. Knapp
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
- Purdue University Center for Cancer Research, West Lafayette, IN, United States
| |
Collapse
|
49
|
Katims AB, Reisz PA, Nogueira L, Truong H, Lenis AT, Pietzak EJ, Kim K, Coleman JA. Targeted Therapies in Advanced and Metastatic Urothelial Carcinoma. Cancers (Basel) 2022; 14:5431. [PMID: 36358849 PMCID: PMC9655342 DOI: 10.3390/cancers14215431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022] Open
Abstract
This review describes the current landscape of targeted therapies in urothelial carcinoma. The standard of care for advanced urothelial carcinoma patients remains platinum-based combination chemotherapy followed by immunotherapy. However, median overall survival for these patients is still <1 year and there is an urgent need for alternative therapies. The advent of next-generation sequencing has allowed widespread comprehensive molecular characterization of urothelial tumors and, subsequently, the development of therapies targeting specific molecular pathways implicated in carcinogenesis such as FGFR inhibition, Nectin-4, Trop-2, and HER2 targeting. As these therapies are demonstrated to be effective in the second-line setting, they will be advanced in the treatment paradigm to localized and even non-muscle invasive disease.
Collapse
Affiliation(s)
- Andrew B. Katims
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Peter A. Reisz
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lucas Nogueira
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hong Truong
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrew T. Lenis
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eugene J. Pietzak
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kwanghee Kim
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jonathan A. Coleman
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
50
|
Haddad AF, Young JS, Gill S, Aghi MK. Resistance to immune checkpoint blockade: Mechanisms, counter-acting approaches, and future directions. Semin Cancer Biol 2022; 86:532-541. [PMID: 35276342 PMCID: PMC9458771 DOI: 10.1016/j.semcancer.2022.02.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 02/01/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023]
Abstract
Immunotherapies seek to unleash the immune system against cancer cells. While a variety of immunotherapies exist, one of the most commonly used is immune checkpoint blockade, which refers to the use of antibodies to interfere with immunosuppressive signaling through immune checkpoint molecules. Therapies against various checkpoints have had success in the clinic across cancer types. However, the efficacy of checkpoint inhibitors has varied across different cancer types and non-responsive patient populations have emerged. Non-responders to these therapies have highlighted the importance of understanding underlying mechanisms of resistance in order to predict which patients will respond and to tailor individual treatment paradigms. In this review we discuss the literature surrounding tumor mediated mechanisms of immune checkpoint resistance. We also describe efforts to overcome resistance and combine checkpoint inhibitors with additional immunotherapies. Finally, we provide insight into the future of immune checkpoint blockade, including the need for improved preclinical modeling and predictive biomarkers to facilitate personalized cancer treatments for patients.
Collapse
Affiliation(s)
| | | | | | - Manish K. Aghi
- Corresponding author at: Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Ave, M-779, San Francisco, CA 94143-0112, USA. (M.K. Aghi)
| |
Collapse
|