1
|
Roet JEG, Morrison AI, Mikula AM, de Kok M, Panocha D, Roest HP, van der Laan LJW, de Winde CM, Mebius RE. Human lymph node fibroblastic reticular cells maintain heterogeneous characteristics in culture. iScience 2024; 27:110179. [PMID: 38989462 PMCID: PMC11233964 DOI: 10.1016/j.isci.2024.110179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/16/2024] [Accepted: 05/31/2024] [Indexed: 07/12/2024] Open
Abstract
Fibroblastic reticular cells (FRCs) are mesenchymal stromal cells in human lymph nodes (LNs) playing a pivotal role in adaptive immunity. Several FRC subsets have been identified, yet it remains to be elucidated if their heterogeneity is maintained upon culture. Here, we established a protocol to preserve and culture FRCs from human LNs and characterized their phenotypic profile in fresh LN suspensions and upon culture using multispectral flow cytometry. We found nine FRC subsets in fresh human LNs, independent of donor, of which four persisted in culture throughout several passages. Interestingly, the historically FRC-defining marker podoplanin (PDPN) was not present on all FRC subsets. Therefore, we propose that CD45negCD31neg human FRCs are not restricted by PDPN expression, as we found CD90, BST1, and CD146/MCAM to be more widely expressed. Together, our data provide insight into FRC heterogeneity in human LNs, enabling further investigation into the function of individual FRC subsets.
Collapse
Affiliation(s)
- Janna E G Roet
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology & Immunology, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, the Netherlands
| | - Andrew I Morrison
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology & Immunology, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, the Netherlands
| | - Aleksandra M Mikula
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology & Immunology, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology & Immunology, Amsterdam, the Netherlands
| | - Michael de Kok
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology & Immunology, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, the Netherlands
| | - Daphne Panocha
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology & Immunology, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology & Immunology, Amsterdam, the Netherlands
| | - Henk P Roest
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Surgery, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Luc J W van der Laan
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Surgery, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Charlotte M de Winde
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology & Immunology, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology & Immunology, Amsterdam, the Netherlands
| | - Reina E Mebius
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology & Immunology, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology & Immunology, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Ohtani H, Matsuo K, Kitahata K, Sato E, Nakayama T. C-C Chemokine 21-Expressing T-cell Zone Fibroblastic Reticular Cells, Abundant in Lymph Nodes, Are Absent in Cancer Lymphoid Stroma. Acta Histochem Cytochem 2024; 57:67-74. [PMID: 38695036 PMCID: PMC11058464 DOI: 10.1267/ahc.23-00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/09/2024] [Indexed: 05/04/2024] Open
Abstract
Cancer tissue generally possesses an immunosuppressive microenvironment. However, some cancers are associated with lymphoid stroma (i.e., a widely developed tertiary lymphoid structure). The T-cell zone (paracortex) of secondary lymphoid organs, particularly lymph nodes, is characterized by an abundance of T-cell zone fibroblastic reticular cells (TCZ-FRCs) that express C-C motif chemokine ligand 21 (CCL21) and smooth muscle actin (SMA). We analyzed the presence of TCZ-FRCs in 30 cases of carcinomas with lymphoid stroma of the breast, stomach, colon, tongue, and skin. Immunohistochemistry corroborated the abundance of CCL21+ SMA+ TCZ-FRCs in the normal lymph nodes. In sharp contrast, all 30 carcinomas with lymphoid stroma displayed no CCL21+ SMA+ TCZ-FRCs despite the affluence of T cells. Real-time reverse transcription polymerase chain reaction confirmed a marked decrease in the messenger ribonucleic acid expression of CCL21 and its receptor C-C motif chemokine receptor 7 in cancer lymphoid stroma compared to that in lymph nodes. Next, we analyzed the T cell phenotypes. The cancer lymphoid stroma demonstrated an abundance of CD3+ CD62L- memory-type T cells, in contrast to the presence of CD3+ CD62L+ naïve- and central memory T cells in the T cell zone of lymphoid tissues. Our data demonstrated the following: 1) Cancer lymphoid stroma lacked TCZ-FRCs with abundance of more activated T cells than in lymph nodes and 2) these were common phenomena in cancer lymphoid stroma irrespective of the histological types and organs involved.
Collapse
Affiliation(s)
- Haruo Ohtani
- Departments of Pathology, Mito Saiseikai General Hospital, Mito, Japan
- Department of Pathology, Ibaraki Children Hospital, Mito, Japan
| | - Kazuhiko Matsuo
- Division of Chemotherapy, Kindai University Faculty of Pharmacy, Osaka, Japan
| | - Kosuke Kitahata
- Division of Chemotherapy, Kindai University Faculty of Pharmacy, Osaka, Japan
- Present address: Laboratory for Immunological Memory, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Eiichi Sato
- Department of Pathology, Tokyo Medical University, Tokyo, Japan
| | - Takashi Nakayama
- Division of Chemotherapy, Kindai University Faculty of Pharmacy, Osaka, Japan
| |
Collapse
|
3
|
Morrison AI, Mikula AM, Spiekstra SW, de Kok M, Affandi AJ, Roest HP, van der Laan LJW, de Winde CM, Koning JJ, Gibbs S, Mebius RE. An Organotypic Human Lymph Node Model Reveals the Importance of Fibroblastic Reticular Cells for Dendritic Cell Function. Tissue Eng Regen Med 2024; 21:455-471. [PMID: 38114886 PMCID: PMC10987465 DOI: 10.1007/s13770-023-00609-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Human lymph node (HuLN) models have emerged with invaluable potential for immunological research and therapeutic application given their fundamental role in human health and disease. While fibroblastic reticular cells (FRCs) are instrumental to HuLN functioning, their inclusion and recognition of importance for organotypic in vitro lymphoid models remain limited. METHODS Here, we established an in vitro three-dimensional (3D) model in a collagen-fibrin hydrogel with primary FRCs and a dendritic cell (DC) cell line (MUTZ-3 DC). To study and characterise the cellular interactions seen in this 3D FRC-DC organotypic model compared to the native HuLN; flow cytometry, immunohistochemistry, immunofluorescence and cytokine/chemokine analysis were performed. RESULTS FRCs were pivotal for survival, proliferation and localisation of MUTZ-3 DCs. Additionally, we found that CD1a expression was absent on MUTZ-3 DCs that developed in the presence of FRCs during cytokine-induced MUTZ-3 DC differentiation, which was also seen with primary monocyte-derived DCs (moDCs). This phenotype resembled HuLN-resident DCs, which we detected in primary HuLNs, and these CD1a- MUTZ-3 DCs induced T cell proliferation within a mixed leukocyte reaction (MLR), indicating a functional DC status. FRCs expressed podoplanin (PDPN), CD90 (Thy-1), CD146 (MCAM) and Gremlin-1, thereby resembling the DC supporting stromal cell subset identified in HuLNs. CONCLUSION This 3D FRC-DC organotypic model highlights the influence and importance of FRCs for DC functioning in a more realistic HuLN microenvironment. As such, this work provides a starting point for the development of an in vitro HuLN.
Collapse
Affiliation(s)
- Andrew I Morrison
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Aleksandra M Mikula
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Sander W Spiekstra
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Michael de Kok
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Alsya J Affandi
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Henk P Roest
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015GD, Rotterdam, The Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015GD, Rotterdam, The Netherlands
| | - Charlotte M de Winde
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Jasper J Koning
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Susan Gibbs
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Department Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - Reina E Mebius
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Ishimatsu-Tsuji Y, Niiyama S, Irisawa R, Harada K, Kishimoto J, Tsuboi R. High migratory activity of dermal sheath cup cells associated with the clinical efficacy of autologous cell-based therapy for pattern hair loss. J Dermatol Sci 2024; 113:26-33. [PMID: 38016881 DOI: 10.1016/j.jdermsci.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/21/2023] [Accepted: 11/08/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Autologous cell-based therapy using dermal sheath cup (DSC) cells was reported as a new treatment for male and female pattern hair loss. However, the mechanisms underlying its action remain unclear. OBJECTIVE We investigated the mechanisms underlying the efficacy of DSC cells in cell-based therapy. METHODS We conducted multivariate analysis to categorize individuals based on treatment response as responders and non-responders. The differentially expressed genes in DSC cells from the two groups were evaluated using bulk transcriptome, quantitative polymerase chain reaction, and single-cell transcriptome analyses. We performed live cell imaging combined with immunostaining to characterize the DSC subpopulation associated with responders. RESULTS We identified nine and three genes as high efficacy (HE) and low efficacy (LE) marker genes, respectively. The HE subpopulations were enriched for cell migration-related genes in single-cell analysis. In contrast, the LE subpopulation was enriched for basement membrane and vasculature-related genes. Moreover, DSC cells in culture were immunocytochemically and morphologically heterogeneous, expressing characteristic factors. Furthermore, live cell imaging showed that DSC cells expressing integrin subunit alpha 6 (ITGA6), an HE subpopulation gene, had markedly higher mobility than those expressing the LE subpopulation genes collagen type IV or CD36. CONCLUSIONS ITGA6-positive DSC cells, with superior migratory activity, may contribute to cell-based therapy by promoting cell migration into nearby hair follicles.
Collapse
Affiliation(s)
- Yumiko Ishimatsu-Tsuji
- Toho University Ohashi Medical Center, Department of Dermatology, Tokyo, Japan; Shiseido Co., Ltd MIRAI Technology Institute, Frontier Business R&D Center, Regenerative Medicine Research & Business Development Department, Yokohama, Japan.
| | - Shiro Niiyama
- Toho University Ohashi Medical Center, Department of Dermatology, Tokyo, Japan
| | - Ryokichi Irisawa
- Tokyo Medical University, Department of Dermatology, Tokyo, Japan
| | - Kazutoshi Harada
- Tokyo Medical University, Department of Dermatology, Tokyo, Japan
| | - Jiro Kishimoto
- Shiseido Co., Ltd MIRAI Technology Institute, Frontier Business R&D Center, Regenerative Medicine Research & Business Development Department, Yokohama, Japan
| | - Ryoji Tsuboi
- Tokyo Medical University, Department of Dermatology, Tokyo, Japan
| |
Collapse
|
5
|
Suman S, Markovic SN. Melanoma-derived mediators can foster the premetastatic niche: crossroad to lymphatic metastasis. Trends Immunol 2023; 44:724-743. [PMID: 37573226 PMCID: PMC10528107 DOI: 10.1016/j.it.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 08/14/2023]
Abstract
The natural history of advanced malignant melanoma demonstrates that, in most cases, widespread tumor dissemination is preceded by regional metastases involving tumor-draining lymph nodes [sentinel lymph nodes (SLNs)]. Under physiological conditions, LNs play a central role in immunosurveillance to non-self-antigens to which they are exposed via afferent lymph. The dysfunctional immunity in SLNs is mediated by tumor secretory factors that allow the survival of metastatic melanoma cells within the LN by creating a premetastatic niche (PMN). Recent studies outline the altered microenvironment of LNs shaped by melanoma mediators. Here, we discuss tumor secretory factors involved in subverting tumor immunity and remodeling LNs and highlight emerging therapeutic strategies to reinvigorate antitumoral immunity in SLNs.
Collapse
Affiliation(s)
- Shankar Suman
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Svetomir N Markovic
- Department of Oncology, Mayo Clinic, Rochester, MN, USA; Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
6
|
Park SM, Chen CJJ, Mathy JE, Lin SCY, Martin RCW, Mathy JA, Dunbar PR. Seven-colour multiplex immunochemistry/immunofluorescence and whole slide imaging of frozen sections. J Immunol Methods 2023:113490. [PMID: 37172777 DOI: 10.1016/j.jim.2023.113490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Multiplex Immunochemistry/Immunofluorescence (mIHC/IF) aims to visualise multiple biomarkers in a single tissue section and is especially powerful when used on slide scanners coupled with digital analysis tools. mIHC/IF is commonly employed in immuno-oncology to characterise features of the tumour microenvironment (TME) and correlate them with clinical parameters to guide prognostication and therapy. However, mIHC/IF can be applied to a wide range of organisms in any physiological or disease context. Recent innovation has extended the number of markers that can be detected using slide scanners well beyond the 3-4 markers typically reported in traditional fluorescence microscopy. However, these methods often require sequential antibody staining and stripping, and are not compatible with frozen tissue sections. Using fluorophore-conjugated antibodies, we have established a simple mIHC/IF imaging workflow that enables simultaneous staining and detection of seven markers in a single section of frozen tissue. Coupled with automated whole slide imaging and digital quantification, our data efficiently revealed the tumour-immune complexity in metastatic melanoma. Computational image analysis quantified the immune and stromal cell populations present in the TME as well as their spatial interactions. This imaging workflow can also be performed with an indirect labelling panel consisting of primary and secondary antibodies. Our new methods, combined with digital quantification, will provide a valuable tool for high-quality mIHC/IF assays in immuno-oncology research and other translational studies, especially in circumstances where frozen sections are required for detection of particular markers, or for applications where frozen sections may be preferred, such as spatial transcriptomics.
Collapse
Affiliation(s)
- Saem Mul Park
- School of Biological Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| | - Chun-Jen J Chen
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Joanna E Mathy
- School of Biological Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| | - Shelly C Y Lin
- School of Biological Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| | | | - Jon A Mathy
- Department of Surgery, Faculty of Medical Health Sciences, Waipapa Taumata Rau - The University of Auckland, Auckland, New Zealand; Auckland Regional Plastic, Reconstructive & Hand Surgery Unit, Auckland, New Zealand
| | - P Rod Dunbar
- School of Biological Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
7
|
Grasso C, Pierie C, Mebius RE, van Baarsen LGM. Lymph node stromal cells: subsets and functions in health and disease. Trends Immunol 2021; 42:920-936. [PMID: 34521601 DOI: 10.1016/j.it.2021.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 02/04/2023]
Abstract
Lymph nodes (LNs) aid the interaction between lymphocytes and antigen-presenting cells, resulting in adequate and prolonged adaptive immune responses. LN stromal cells (LNSCs) are crucially involved in steering adaptive immune responses at different levels. Most knowledge on LNSCs has been obtained from mouse studies, and few studies indicate similarities with their human counterparts. Recent advances in single-cell technologies have revealed significant LNSC heterogeneity among different subsets with potential selective functions in immunity. This review provides an overview of current knowledge of LNSCs based on human and murine studies describing the role of these cells in health and disease.
Collapse
Affiliation(s)
- C Grasso
- Department of Rheumatology and Clinical Immunology, Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Rheumatology and Immunology Center (ARC), Academic Medical Center, Amsterdam, The Netherlands
| | - C Pierie
- Department of Rheumatology and Clinical Immunology, Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Rheumatology and Immunology Center (ARC), Academic Medical Center, Amsterdam, The Netherlands
| | - R E Mebius
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands.
| | - L G M van Baarsen
- Department of Rheumatology and Clinical Immunology, Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Rheumatology and Immunology Center (ARC), Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Elmentaite R, Kumasaka N, Roberts K, Fleming A, Dann E, King HW, Kleshchevnikov V, Dabrowska M, Pritchard S, Bolt L, Vieira SF, Mamanova L, Huang N, Perrone F, Goh Kai'En I, Lisgo SN, Katan M, Leonard S, Oliver TRW, Hook CE, Nayak K, Campos LS, Domínguez Conde C, Stephenson E, Engelbert J, Botting RA, Polanski K, van Dongen S, Patel M, Morgan MD, Marioni JC, Bayraktar OA, Meyer KB, He X, Barker RA, Uhlig HH, Mahbubani KT, Saeb-Parsy K, Zilbauer M, Clatworthy MR, Haniffa M, James KR, Teichmann SA. Cells of the human intestinal tract mapped across space and time. Nature 2021; 597:250-255. [PMID: 34497389 PMCID: PMC8426186 DOI: 10.1038/s41586-021-03852-1] [Citation(s) in RCA: 278] [Impact Index Per Article: 92.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 07/26/2021] [Indexed: 12/12/2022]
Abstract
The cellular landscape of the human intestinal tract is dynamic throughout life, developing in utero and changing in response to functional requirements and environmental exposures. Here, to comprehensively map cell lineages, we use single-cell RNA sequencing and antigen receptor analysis of almost half a million cells from up to 5 anatomical regions in the developing and up to 11 distinct anatomical regions in the healthy paediatric and adult human gut. This reveals the existence of transcriptionally distinct BEST4 epithelial cells throughout the human intestinal tract. Furthermore, we implicate IgG sensing as a function of intestinal tuft cells. We describe neural cell populations in the developing enteric nervous system, and predict cell-type-specific expression of genes associated with Hirschsprung's disease. Finally, using a systems approach, we identify key cell players that drive the formation of secondary lymphoid tissue in early human development. We show that these programs are adopted in inflammatory bowel disease to recruit and retain immune cells at the site of inflammation. This catalogue of intestinal cells will provide new insights into cellular programs in development, homeostasis and disease.
Collapse
Affiliation(s)
- Rasa Elmentaite
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Kenny Roberts
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Aaron Fleming
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Emma Dann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Hamish W King
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | | | | | | | - Liam Bolt
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Sara F Vieira
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Lira Mamanova
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Ni Huang
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Issac Goh Kai'En
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Steven N Lisgo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Matilda Katan
- Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Steven Leonard
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Thomas R W Oliver
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - C Elizabeth Hook
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Komal Nayak
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Lia S Campos
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Emily Stephenson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Justin Engelbert
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Rachel A Botting
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | | | - Minal Patel
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Michael D Morgan
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - John C Marioni
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Xiaoling He
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences and Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences and Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Krishnaa T Mahbubani
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Matthias Zilbauer
- Department of Paediatrics, University of Cambridge, Cambridge, UK
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Cambridge University Hospitals Trust, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, UK
| | - Menna R Clatworthy
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Kylie R James
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia.
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Theory of Condensed Matter Group, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
9
|
Ferreira BO, Gamarra LF, Nucci MP, Oliveira FA, Rego GNA, Marti L. LN-Derived Fibroblastic Reticular Cells and Their Impact on T Cell Response—A Systematic Review. Cells 2021; 10:1150. [DOI: https:/doi.org/10.3390/cells10051150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Fibroblastic reticular cells (FRCs), usually found and isolated from the T cell zone of lymph nodes, have recently been described as much more than simple structural cells. Originally, these cells were described to form a conduit system called the “reticular fiber network” and for being responsible for transferring the lymph fluid drained from tissues through afferent lymphatic vessels to the T cell zone. However, nowadays, these cells are described as being capable of secreting several cytokines and chemokines and possessing the ability to interfere with the immune response, improving it, and also controlling lymphocyte proliferation. Here, we performed a systematic review of the several methods employed to investigate the mechanisms used by fibroblastic reticular cells to control the immune response, as well as their ability in determining the fate of T cells. We searched articles indexed and published in the last five years, between 2016 and 2020, in PubMed, Scopus, and Cochrane, following the PRISMA guidelines. We found 175 articles published in the literature using our searching strategies, but only 24 articles fulfilled our inclusion criteria and are discussed here. Other articles important in the built knowledge of FRCs were included in the introduction and discussion. The studies selected for this review used different strategies in order to access the contribution of FRCs to different mechanisms involved in the immune response: 21% evaluated viral infection in this context, 13% used a model of autoimmunity, 8% used a model of GvHD or cancer, 4% used a model of Ischemic-reperfusion injury (IRI). Another four studies just targeted a particular signaling pathway, such as MHC II expression, FRC microvesicles, FRC secretion of IL-15, FRC network, or ablation of the lysophosphatidic acid (LPA)-producing ectoenzyme autotaxin. In conclusion, our review shows the strategies used by several studies to isolate and culture fibroblastic reticular cells, the models chosen by each one, and dissects their main findings and implications in homeostasis and disease.
Collapse
|
10
|
LN-Derived Fibroblastic Reticular Cells and Their Impact on T Cell Response-A Systematic Review. Cells 2021; 10:cells10051150. [PMID: 34068712 PMCID: PMC8151444 DOI: 10.3390/cells10051150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/11/2021] [Accepted: 04/23/2021] [Indexed: 12/27/2022] Open
Abstract
Fibroblastic reticular cells (FRCs), usually found and isolated from the T cell zone of lymph nodes, have recently been described as much more than simple structural cells. Originally, these cells were described to form a conduit system called the “reticular fiber network” and for being responsible for transferring the lymph fluid drained from tissues through afferent lymphatic vessels to the T cell zone. However, nowadays, these cells are described as being capable of secreting several cytokines and chemokines and possessing the ability to interfere with the immune response, improving it, and also controlling lymphocyte proliferation. Here, we performed a systematic review of the several methods employed to investigate the mechanisms used by fibroblastic reticular cells to control the immune response, as well as their ability in determining the fate of T cells. We searched articles indexed and published in the last five years, between 2016 and 2020, in PubMed, Scopus, and Cochrane, following the PRISMA guidelines. We found 175 articles published in the literature using our searching strategies, but only 24 articles fulfilled our inclusion criteria and are discussed here. Other articles important in the built knowledge of FRCs were included in the introduction and discussion. The studies selected for this review used different strategies in order to access the contribution of FRCs to different mechanisms involved in the immune response: 21% evaluated viral infection in this context, 13% used a model of autoimmunity, 8% used a model of GvHD or cancer, 4% used a model of Ischemic-reperfusion injury (IRI). Another four studies just targeted a particular signaling pathway, such as MHC II expression, FRC microvesicles, FRC secretion of IL-15, FRC network, or ablation of the lysophosphatidic acid (LPA)-producing ectoenzyme autotaxin. In conclusion, our review shows the strategies used by several studies to isolate and culture fibroblastic reticular cells, the models chosen by each one, and dissects their main findings and implications in homeostasis and disease.
Collapse
|
11
|
Bekkhus T, Martikainen T, Olofsson A, Franzén Boger M, Vasiliu Bacovia D, Wärnberg F, Ulvmar MH. Remodeling of the Lymph Node High Endothelial Venules Reflects Tumor Invasiveness in Breast Cancer and is Associated with Dysregulation of Perivascular Stromal Cells. Cancers (Basel) 2021; 13:cancers13020211. [PMID: 33430113 PMCID: PMC7827313 DOI: 10.3390/cancers13020211] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 01/02/2023] Open
Abstract
The tumor-draining lymph nodes (TDLNs) are primary sites for induction of tumor immunity. They are also common sites of metastasis, suggesting that tumor-induced mechanisms can subvert anti-tumor immune responses and promote metastatic seeding. The high endothelial venules (HEVs) together with CCL21-expressing fibroblastic reticular cells (FRCs) are essential for lymphocyte recruitment into the LNs. We established multicolor antibody panels for evaluation of HEVs and FRCs in TDLNs from breast cancer (BC) patients. Our data show that patients with invasive BC display extensive structural and molecular remodeling of the HEVs, including vessel dilation, thinning of the endothelium and discontinuous expression of the HEV-marker PNAd. Remodeling of the HEVs was associated with dysregulation of CCL21 in perivascular FRCs and with accumulation of CCL21-saturated lymphocytes, which we link to loss of CCL21-binding heparan sulfate in FRCs. These changes were rare or absent in LNs from patients with non-invasive BC and cancer-free organ donors and were observed independent of nodal metastasis. Thus, pre-metastatic dysregulation of core stromal and vascular functions within TDLNs reflect the primary tumor invasiveness in BC. This adds to the understanding of cancer-induced perturbation of the immune response and opens for prospects of vascular and stromal changes in TDLNs as potential biomarkers.
Collapse
Affiliation(s)
- Tove Bekkhus
- The Beijer Laboratory, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Dag Hammarskjölds väg 20, Uppsala University, 75185 Uppsala, Sweden; (T.B.); (T.M.); (A.O.); (M.F.B.); (D.V.B.)
| | - Teemu Martikainen
- The Beijer Laboratory, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Dag Hammarskjölds väg 20, Uppsala University, 75185 Uppsala, Sweden; (T.B.); (T.M.); (A.O.); (M.F.B.); (D.V.B.)
| | - Anna Olofsson
- The Beijer Laboratory, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Dag Hammarskjölds väg 20, Uppsala University, 75185 Uppsala, Sweden; (T.B.); (T.M.); (A.O.); (M.F.B.); (D.V.B.)
| | - Mathias Franzén Boger
- The Beijer Laboratory, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Dag Hammarskjölds väg 20, Uppsala University, 75185 Uppsala, Sweden; (T.B.); (T.M.); (A.O.); (M.F.B.); (D.V.B.)
| | - Daniel Vasiliu Bacovia
- The Beijer Laboratory, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Dag Hammarskjölds väg 20, Uppsala University, 75185 Uppsala, Sweden; (T.B.); (T.M.); (A.O.); (M.F.B.); (D.V.B.)
| | - Fredrik Wärnberg
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, 41345 Gothenburg, Sweden;
| | - Maria H. Ulvmar
- The Beijer Laboratory, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Dag Hammarskjölds väg 20, Uppsala University, 75185 Uppsala, Sweden; (T.B.); (T.M.); (A.O.); (M.F.B.); (D.V.B.)
- Correspondence: ; Tel.: +46-737834297
| |
Collapse
|
12
|
Park SM, Brooks AE, Chen CJJ, Sheppard HM, Loef EJ, McIntosh JD, Angel CE, Mansell CJ, Bartlett A, Cebon J, Birch NP, Dunbar PR. Migratory cues controlling B-lymphocyte trafficking in human lymph nodes. Immunol Cell Biol 2020; 99:49-64. [PMID: 32740978 DOI: 10.1111/imcb.12386] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022]
Abstract
B-cell migration within lymph nodes (LNs) is crucial to adaptive immune responses. Chemotactic gradients are proposed to drive migration of B cells into follicles, followed by their relocation to specific zones of the follicle during activation, and ultimately egress. However, the molecular drivers of these processes and the cells generating chemotactic signals that affect B cells in human LNs are not well understood. We used immunofluorescence microscopy, flow cytometry and functional assays to study molecular mechanisms of B-cell migration within human LNs, and found subtle but important differences to previous murine models. In human LNs we find CXCL13 is prominently expressed at the follicular edge, often associated with fibroblastic reticular cells located in these areas, whereas follicular dendritic cells show minimal contribution to CXCL13 expression. Human B cells rapidly downregulate CXCR5 on encountering CXCL13, but recover CXCR5 expression in the CXCL13-low environment. These data suggest that the CXCL13 gradient in human LNs is likely to be different from that proposed in mice. We also identify CD68+ CD11c+ PU.1+ tingible body macrophages within both primary and secondary follicles as likely drivers of the sphingosine-1-phosphate (S1P) gradient that mediates B-cell egress from LNs, through their expression of the S1P-degrading enzyme, S1P lyase. Based on our findings, we present a model of B-cell migration within human LNs, which has both similarities and interesting differences to that proposed for mice.
Collapse
Affiliation(s)
- Saem Mul Park
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Anna Es Brooks
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Chun-Jen J Chen
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Hilary M Sheppard
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Evert Jan Loef
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Julie D McIntosh
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Catherine E Angel
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Claudia J Mansell
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Adam Bartlett
- School of Medicine, The University of Auckland, Auckland, New Zealand
| | - Jonathan Cebon
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Heidelberg, Australia
| | - Nigel P Birch
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - P Rod Dunbar
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|