1
|
Zhan H, Xiao J, Shi S, Zou F, Wang S, Mo F, Liu X, Zhang B, Dai M, Zeng J, Liu H. Pluripotent stem cell-derived CTLs targeting FGFR3-TACC3 fusion gene in osteosarcoma. Int Immunopharmacol 2024; 142:112862. [PMID: 39306889 DOI: 10.1016/j.intimp.2024.112862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/15/2024] [Accepted: 07/31/2024] [Indexed: 10/12/2024]
Abstract
Osteosarcoma, a highly aggressive bone cancer, poses significant treatment challenges. This study investigates a novel approach utilizing induced pluripotent stem cells (iPSCs) engineered with the FGFR3-TACC3 fusion gene to generate cytotoxic T lymphocytes (CTLs) targeting osteosarcoma. The aim was to assess the efficacy of iPSC-derived CTLs in combating osteosarcoma progression. Abnormal expression of the FGFR3-TACC3 fusion gene was confirmed in osteosarcoma samples. iPSCs were successfully modified to express the fusion gene and were then differentiated into CTLs. In vitro experiments demonstrated that these modified CTLs effectively killed osteosarcoma cells, induced apoptosis, and inhibited migration and invasion. Findings were validated in in vivo experiments. This study suggests that iPSC-derived CTLs targeting FGFR3-TACC3 hold promise for personalized immunotherapy against osteosarcoma.
Collapse
Affiliation(s)
- Haibo Zhan
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China
| | - Jun Xiao
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China
| | - Shoujie Shi
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China
| | - Fan Zou
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Departerment of orthopedic, Gaoxin Branch Of The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 7889, Changdong Ave., Gaoxin District, Nanchang, Jiangxi Province 330046, China
| | - Song Wang
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China
| | - Fengbo Mo
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China
| | - Xuqiang Liu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China
| | - Bin Zhang
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China
| | - Min Dai
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China.
| | - Jin Zeng
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China.
| | - Hucheng Liu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China.
| |
Collapse
|
2
|
Liang H, Cui M, Tu J, Chen X. Advancements in osteosarcoma management: integrating immune microenvironment insights with immunotherapeutic strategies. Front Cell Dev Biol 2024; 12:1394339. [PMID: 38915446 PMCID: PMC11194413 DOI: 10.3389/fcell.2024.1394339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024] Open
Abstract
Osteosarcoma, a malignant bone tumor predominantly affecting children and adolescents, presents significant therapeutic challenges, particularly in metastatic or recurrent cases. Conventional surgical and chemotherapeutic approaches have achieved partial therapeutic efficacy; however, the prognosis for long-term survival remains bleak. Recent studies have highlighted the imperative for a comprehensive exploration of the osteosarcoma immune microenvironment, focusing on the integration of diverse immunotherapeutic strategies-including immune checkpoint inhibitors, tumor microenvironment modulators, cytokine therapies, tumor antigen-specific interventions, cancer vaccines, cellular therapies, and antibody-based treatments-that are directly pertinent to modulating this intricate microenvironment. By targeting tumor cells, modulating the tumor microenvironment, and activating host immune responses, these innovative approaches have demonstrated substantial potential in enhancing the effectiveness of osteosarcoma treatments. Although most of these novel strategies are still in research or clinical trial phases, they have already demonstrated significant potential for individuals with osteosarcoma, suggesting the possibility of developing new, more personalized and effective treatment options. This review aims to provide a comprehensive overview of the current advancements in osteosarcoma immunotherapy, emphasizing the significance of integrating various immunotherapeutic methods to optimize therapeutic outcomes. Additionally, it underscores the imperative for subsequent research to further investigate the intricate interactions between the tumor microenvironment and the immune system, aiming to devise more effective treatment strategies. The present review comprehensively addresses the landscape of osteosarcoma immunotherapy, delineating crucial scientific concerns and clinical challenges, thereby outlining potential research directions.
Collapse
Affiliation(s)
- Hang Liang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Cui
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Huang KCY, Chen WTL, Chen JY, Lee CY, Wu CH, Lai CY, Yang PC, Liang JA, Shiau AC, Chao KSC, Ke TW. Neoantigen-augmented iPSC cancer vaccine combined with radiotherapy promotes antitumor immunity in poorly immunogenic cancers. NPJ Vaccines 2024; 9:95. [PMID: 38821980 PMCID: PMC11143272 DOI: 10.1038/s41541-024-00881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/19/2024] [Indexed: 06/02/2024] Open
Abstract
Although irradiated induced-pluripotent stem cells (iPSCs) as a prophylactic cancer vaccine elicit an antitumor immune response, the therapeutic efficacy of iPSC-based cancer vaccines is not promising due to their insufficient antigenicity and the immunosuppressive tumor microenvironment. Here, we found that neoantigen-engineered iPSC cancer vaccines can trigger neoantigen-specific T cell responses to eradicate cancer cells and increase the therapeutic efficacy of RT in poorly immunogenic colorectal cancer (CRC) and triple-negative breast cancer (TNBC). We generated neoantigen-augmented iPSCs (NA-iPSCs) by engineering AAV2 vector carrying murine neoantigens and evaluated their therapeutic efficacy in combination with radiotherapy. After administration of NA-iPSC cancer vaccine and radiotherapy, we found that ~60% of tumor-bearing mice achieved a complete response in microsatellite-stable CRC model. Furthermore, splenocytes from mice treated with NA-iPSC plus RT produced high levels of IFNγ secretion in response to neoantigens and had a greater cytotoxicity to cancer cells, suggesting that the NA-iPSC vaccine combined with radiotherapy elicited a superior neoantigen-specific T-cell response to eradicate cancer cells. The superior therapeutic efficacy of NA-iPSCs engineered by mouse TNBC neoantigens was also observed in the syngeneic immunocompetent TNBC mouse model. We found that the risk of spontaneous lung and liver metastasis was dramatically decreased by NA-iPSCs plus RT in the TNBC animal model. Altogether, these results indicated that autologous iPSC cancer vaccines engineered by neoantigens can elicit a high neoantigen-specific T-cell response, promote tumor regression, and reduce the risk of distant metastasis in combination with local radiotherapy.
Collapse
Affiliation(s)
- Kevin Chih-Yang Huang
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 406040, Taiwan, ROC.
- Translation Research Core, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC.
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 406040, Taiwan, ROC.
| | - William Tzu-Liang Chen
- Department of Surgery, School of Medicine, China Medical University, Taichung, 406040, Taiwan, ROC
- Department of Colorectal Surgery, China Medical University HsinChu Hospital, China Medical University, HsinChu, 302, Taiwan, ROC
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC
| | - Jia-Yi Chen
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC
| | - Chien-Yueh Lee
- Innovation Frontier Institute of Research for Science and Technology, National Taipei University of Technology, Taipei, 106344, Taiwan, ROC
- Department of Electrical Engineering, National Taipei University of Technology, Taipei, 106344, Taiwan, ROC
- Department of Biomedical Engineering, China Medical University, Taichung, 406040, Taiwan, ROC
| | - Chia-Hsin Wu
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC
- Bioinformatics and Biostatistics Core, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, 10055, Taiwan, ROC
| | - Chia-Ying Lai
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 406040, Taiwan, ROC
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC
| | - Pei-Chen Yang
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC
| | - Ji-An Liang
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC
- Department of Radiotherapy, School of Medicine, China Medical University, Taichung, 406040, Taiwan, ROC
| | - An-Cheng Shiau
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 406040, Taiwan, ROC
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC
| | - K S Clifford Chao
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC.
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC.
- Department of Radiotherapy, School of Medicine, China Medical University, Taichung, 406040, Taiwan, ROC.
| | - Tao-Wei Ke
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC.
- School of Chinese Medicine and Graduate Institute of Chinese Medicine, China Medical University, Taichung, 406040, Taiwan, ROC.
| |
Collapse
|
4
|
Kinoshita S, Ishii M, Ando J, Kimura T, Yamaguchi T, Harada S, Takahashi F, Nakashima K, Nakazawa Y, Yamazaki S, Ohshima K, Takahashi K, Nakauchi H, Ando M. Rejuvenated iPSC-derived GD2-directed CART Cells Harbor Robust Cytotoxicity Against Small Cell Lung Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:723-737. [PMID: 38380966 PMCID: PMC10926899 DOI: 10.1158/2767-9764.crc-23-0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/21/2023] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Small cell lung cancer (SCLC) is exceptionally aggressive, with limited treatment options. Disialoganglioside (GD2) is highly expressed on SCLC and is considered a good target for chimeric antigen receptor (CAR) T cells (CART). Although GD2-directed CARTs (GD2-CART) exhibit cytotoxicity against various GD2-expressing tumors, they lack significant cytotoxicity against SCLC. To enhance cytotoxicity of GD2-CARTs against SCLC, we introduced GD2-CAR into induced pluripotent stem cells (iPSC)-derived rejuvenated cytotoxic T lymphocytes (GD2-CARrejT). GD2-CARrejTs acted much more strongly against SCLC cells than did GD2-CARTs both in vitro and in vivo. Single-cell RNA sequencing elucidated that levels of expression of TIGIT were significantly lower and levels of expression of genes associated with cytotoxicity were significantly higher in GD2-CARrejTs than those in GD2-CARTs. Dual blockade of TIGIT and programmed death-1 (PD-1) increased the cytotoxicity of GD2-CARTs to some extent, suggesting that low TIGIT and PD-1 expression by GD2-CARrejTs is a major factor required for robust cytotoxicity against SCLC. Not only for robust cytotoxicity but also for availability as "off-the-shelf" T-cell therapy, iPSC-derived GD2-CARrejTs are a promising novel treatment for SCLC. SIGNIFICANCE This research introduces iPSC-derived rejuvenated GD2-CARTs (GD2-CARrejT) as a novel approach to combat SCLC. Compared with conventional GD2-CARTs, GD2-CARrejTs with reduced TIGIT and PD-1 expression demonstrate robust cytotoxicity against SCLC and would be a promising therapy for SCLC.
Collapse
Affiliation(s)
- Shintaro Kinoshita
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan
| | - Midori Ishii
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan
| | - Jun Ando
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan
- Division of Cell Therapy and Blood Transfusion Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Takaharu Kimura
- Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Tomoyuki Yamaguchi
- Laboratory of Regenerative Medicine, Tokyo University of Pharmacy and Life Science, Tokyo, Japan
| | - Sakiko Harada
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan
| | - Fumiyuki Takahashi
- Department of Respiratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazutaka Nakashima
- Department of Pathology, School of Medicine, Kurume University, Fukuoka, Japan
| | - Yozo Nakazawa
- Department of Pediatrics, Shinsyu University School of Medicine, Nagano, Japan
| | - Satoshi Yamazaki
- Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Koichi Ohshima
- Department of Pathology, School of Medicine, Kurume University, Fukuoka, Japan
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
- Stem Cell Therapy Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Miki Ando
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Furukawa Y, Ishii M, Ando J, Ikeda K, Igarashi KJ, Kinoshita S, Azusawa Y, Toyota T, Honda T, Nakanishi M, Ohshima K, Masuda A, Yoshida E, Kitade M, Porteus M, Terao Y, Nakauchi H, Ando M. iPSC-derived hypoimmunogenic tissue resident memory T cells mediate robust anti-tumor activity against cervical cancer. Cell Rep Med 2023; 4:101327. [PMID: 38091985 PMCID: PMC10772465 DOI: 10.1016/j.xcrm.2023.101327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/20/2023] [Accepted: 11/17/2023] [Indexed: 12/22/2023]
Abstract
Functionally rejuvenated human papilloma virus-specific cytotoxic T lymphocytes (HPV-rejTs) generated from induced pluripotent stem cells robustly suppress cervical cancer. However, autologous rejT generation is time consuming, leading to difficulty in treating patients with advanced cancer. Although use of allogeneic HPV-rejTs can obviate this, the major obstacle is rejection by the patient immune system. To overcome this, we develop HLA-A24&-E dual integrated HPV-rejTs after erasing HLA class I antigens. These rejTs effectively suppress recipient immune rejection while maintaining more robust cytotoxicity than original cytotoxic T lymphocytes. Single-cell RNA sequencing performed to gain deeper insights reveal that HPV-rejTs are highly enriched with tissue resident memory T cells, which enhance cytotoxicity against cervical cancer through TGFβR signaling, with increased CD103 expression. Genes associated with the immunological synapse also are upregulated, suggesting that these features promote stronger activation of T cell receptor (TCR) and increased TCR-mediated target cell death. We believe that our work will contribute to feasible "off-the-shelf" T cell therapy with robust anti-cervical cancer effects.
Collapse
Affiliation(s)
- Yoshiki Furukawa
- Department of Hematology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Midori Ishii
- Department of Hematology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Jun Ando
- Department of Hematology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Division of Cell Therapy & Blood Transfusion Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kazuya Ikeda
- Department of Pediatrics, School of Medicine, Stanford University, 291 Campus Drive, Stanford, CA 94305, USA
| | - Kyomi J Igarashi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Shintaro Kinoshita
- Department of Hematology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yoko Azusawa
- Division of Cell Therapy & Blood Transfusion Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tokuko Toyota
- Department of Hematology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tadahiro Honda
- Department of Hematology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Mahito Nakanishi
- TOKIWA-Bio, Inc., Tsukuba Center Inc. (TCI), Building G, 2-1-6 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Koichi Ohshima
- Department of Pathology, School of Medicine, Kurume University, Fukuoka 830-0011, Japan
| | - Ayako Masuda
- Department of Obstetrics and Gynecology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Emiko Yoshida
- Department of Obstetrics and Gynecology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Mari Kitade
- Department of Obstetrics and Gynecology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Matthew Porteus
- Department of Pediatrics, School of Medicine, Stanford University, 291 Campus Drive, Stanford, CA 94305, USA
| | - Yasuhisa Terao
- Department of Obstetrics and Gynecology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA.
| | - Miki Ando
- Department of Hematology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| |
Collapse
|
6
|
Chehelgerdi M, Behdarvand Dehkordi F, Chehelgerdi M, Kabiri H, Salehian-Dehkordi H, Abdolvand M, Salmanizadeh S, Rashidi M, Niazmand A, Ahmadi S, Feizbakhshan S, Kabiri S, Vatandoost N, Ranjbarnejad T. Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy. Mol Cancer 2023; 22:189. [PMID: 38017433 PMCID: PMC10683363 DOI: 10.1186/s12943-023-01873-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/27/2023] [Indexed: 11/30/2023] Open
Abstract
The advent of iPSCs has brought about a significant transformation in stem cell research, opening up promising avenues for advancing cancer treatment. The formation of cancer is a multifaceted process influenced by genetic, epigenetic, and environmental factors. iPSCs offer a distinctive platform for investigating the origin of cancer, paving the way for novel approaches to cancer treatment, drug testing, and tailored medical interventions. This review article will provide an overview of the science behind iPSCs, the current limitations and challenges in iPSC-based cancer therapy, the ethical and social implications, and the comparative analysis with other stem cell types for cancer treatment. The article will also discuss the applications of iPSCs in tumorigenesis, the future of iPSCs in tumorigenesis research, and highlight successful case studies utilizing iPSCs in tumorigenesis research. The conclusion will summarize the advancements made in iPSC-based tumorigenesis research and the importance of continued investment in iPSC research to unlock the full potential of these cells.
Collapse
Affiliation(s)
- Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fereshteh Behdarvand Dehkordi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Hamidreza Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Mohammad Abdolvand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Sharareh Salmanizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar-Jereeb Street, Isfahan, 81746-73441, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saba Ahmadi
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Sara Feizbakhshan
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saber Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Nasimeh Vatandoost
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tayebeh Ranjbarnejad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
7
|
Meng W, Schreiber RD, Lichti CF. Recent advances in immunopeptidomic-based tumor neoantigen discovery. Adv Immunol 2023; 160:1-36. [PMID: 38042584 DOI: 10.1016/bs.ai.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
The role of aberrantly expressed proteins in tumors in driving immune-mediated control of cancer has been well documented for more than five decades. Today, we know that both aberrantly expressed normal proteins as well as mutant proteins (neoantigens) can function as tumor antigens in both humans and mice. Next-generation sequencing (NGS) and high-resolution mass spectrometry (MS) technologies have made significant advances since the early 2010s, enabling detection of rare but clinically relevant neoantigens recognized by T cells. MS profiling of tumor-specific immunopeptidomes remains the most direct method to identify mutant peptides bound to cellular MHC. However, the need for use of large numbers of cells or significant amounts of tumor tissue to achieve neoantigen detection has historically limited the application of MS. Newer, more sensitive MS technologies have recently demonstrated the capacities to detect neoantigens from fewer cells. Here, we highlight recent advancements in immunopeptidomics-based characterization of tumor-specific neoantigens. Various tumor antigen categories and neoantigen identification approaches are also discussed. Furthermore, we summarize recent reports that achieved successful tumor neoantigen detection by MS using a variety of starting materials, MS acquisition modes, and novel ion mobility devices.
Collapse
Affiliation(s)
- Wei Meng
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States
| | - Robert D Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States.
| | - Cheryl F Lichti
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States.
| |
Collapse
|
8
|
He R, Weng Z, Liu Y, Li B, Wang W, Meng W, Li B, Li L. Application of Induced Pluripotent Stem Cells in Malignant Solid Tumors. Stem Cell Rev Rep 2023; 19:2557-2575. [PMID: 37755647 PMCID: PMC10661832 DOI: 10.1007/s12015-023-10633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
In the past decade, induced pluripotent stem cells (iPSCs) technology has significantly progressed in studying malignant solid tumors. This technically feasible reprogramming techniques can reawaken sequestered dormant regions that regulate the fate of differentiated cells. Despite the evolving therapeutic modalities for malignant solid tumors, treatment outcomes have not been satisfactory. Recently, scientists attempted to apply induced pluripotent stem cell technology to cancer research, from modeling to treatment. Induced pluripotent stem cells derived from somatic cells, cancer cell lines, primary tumors, and individuals with an inherited propensity to develop cancer have shown great potential in cancer modeling, cell therapy, immunotherapy, and understanding tumor progression. This review summarizes the evolution of induced pluripotent stem cells technology and its applications in malignant solid tumor. Additionally, we discuss potential obstacles to induced pluripotent stem cell technology.
Collapse
Affiliation(s)
- Rong He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhijie Weng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunkun Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bingzhi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenxuan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wanrong Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Deng X, Zhou J, Cao Y. Generating universal chimeric antigen receptor expressing cell products from induced pluripotent stem cells: beyond the autologous CAR-T cells. Chin Med J (Engl) 2023; 136:127-137. [PMID: 36806264 PMCID: PMC10106131 DOI: 10.1097/cm9.0000000000002513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Indexed: 02/23/2023] Open
Abstract
ABSTRACT Adoptive therapeutic immune cells, such as chimeric antigen receptor (CAR)-T cells and natural killer cells, have established a new generation of precision medicine based on which dramatic breakthroughs have been achieved in intractable lymphoma treatments. Currently, well-explored approaches focus on autologous cells due to their low immunogenicity, but they are highly restricted by the high costs, time consumption of processing, and the insufficiency of primary cells in some patients. Induced pluripotent stem cells (iPSCs) are cell sources that can theoretically produce indefinite well-differentiated immune cells. Based on the above facts, it may be reasonable to combine the iPSC technology and the CAR design to produce a series of highly controllable and economical "live" drugs. Manufacturing hypoimmunogenic iPSCs by inactivation or over-expression at the genetic level and then arming the derived cells with CAR have emerged as a form of "off-the-shelf" strategy to eliminate tumor cells efficiently and safely in a broader range of patients. This review describes the reasonability, feasibility, superiority, and drawbacks of such approaches, summarizes the current practices and relevant research progress, and provides insights into the possible new paths for personalized cell-based therapies.
Collapse
Affiliation(s)
- Xinyue Deng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Department of Scientific Research Management, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Department of Scientific Research Management, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yang Cao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Department of Scientific Research Management, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
10
|
Neoantigens: promising targets for cancer therapy. Signal Transduct Target Ther 2023; 8:9. [PMID: 36604431 PMCID: PMC9816309 DOI: 10.1038/s41392-022-01270-x] [Citation(s) in RCA: 226] [Impact Index Per Article: 226.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 01/07/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development and regulatory approval of tumor immunotherapies, including cancer vaccines, adoptive cell therapy and antibody-based therapies, especially for solid tumors. Neoantigens are newly formed antigens generated by tumor cells as a result of various tumor-specific alterations, such as genomic mutation, dysregulated RNA splicing, disordered post-translational modification, and integrated viral open reading frames. Neoantigens are recognized as non-self and trigger an immune response that is not subject to central and peripheral tolerance. The quick identification and prediction of tumor-specific neoantigens have been made possible by the advanced development of next-generation sequencing and bioinformatic technologies. Compared to tumor-associated antigens, the highly immunogenic and tumor-specific neoantigens provide emerging targets for personalized cancer immunotherapies, and serve as prospective predictors for tumor survival prognosis and immune checkpoint blockade responses. The development of cancer therapies will be aided by understanding the mechanism underlying neoantigen-induced anti-tumor immune response and by streamlining the process of neoantigen-based immunotherapies. This review provides an overview on the identification and characterization of neoantigens and outlines the clinical applications of prospective immunotherapeutic strategies based on neoantigens. We also explore their current status, inherent challenges, and clinical translation potential.
Collapse
|
11
|
Advances in Allogeneic Cancer Cell Therapy and Future Perspectives on “Off-the-Shelf” T Cell Therapy Using iPSC Technology and Gene Editing. Cells 2022; 11:cells11020269. [PMID: 35053386 PMCID: PMC8773622 DOI: 10.3390/cells11020269] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/03/2022] Open
Abstract
The concept of allogeneic cell therapy was first presented over 60 years ago with hematopoietic stem cell transplantation. However, complications such as graft versus host disease (GVHD) and regimen-related toxicities remained as major obstacles. To maximize the effect of graft versus leukemia, while minimizing the effect of GVHD, donor lymphocyte infusion was utilized. This idea, which was used against viral infections, postulated that adoptive transfer of virus-specific cytotoxic T lymphocytes could reconstitute specific immunity and eliminate virus infected cells and led to the idea of banking third party cytotoxic T cells (CTLs). T cell exhaustion sometimes became a problem and difficulty arose in creating robust CTLs. However, the introduction of induced pluripotent stem cells (iPSCs) lessens such problems, and by using iPSC technology, unlimited numbers of allogeneic rejuvenated CTLs with robust and proliferative cytotoxic activity can be created. Despite this revolutionary concept, several concerns still exist, such as immunorejection by recipient cells and safety issues of gene editing. In this review, we describe approaches to a feasible “off-the-shelf” therapy that can be distributed rapidly worldwide. We also offer perspectives on the future of allogeneic cell cancer immunotherapy.
Collapse
|