1
|
Dave F, Vaghela P, Heath B, Dunster Z, Dubinina E, Thakker D, Mann K, Chadwick J, Cane G, Kaira BG, Mohammed OJ, Choudhury R, Paston S, Parsons T, Vankemmelbeke M, Durrant L. SC134-TCB Targeting Fucosyl-GM1, a T Cell-Engaging Antibody with Potent Antitumor Activity in Preclinical Small Cell Lung Cancer Models. Mol Cancer Ther 2024; 23:1626-1638. [PMID: 39186309 PMCID: PMC11532774 DOI: 10.1158/1535-7163.mct-24-0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/25/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options. Fucosyl-GM1 (FucGM1) is a glycolipid overexpressed in the majority of SCLC tumors but virtually absent from normal healthy tissues. In this study, we validate a FucGM1-targeting T cell-redirecting bispecific (TCB) antibody for the treatment of SCLC. More than 80% of patient-derived xenograft tissues of SCLC expressed FucGM1, whereas only three normal human tissues: pituitary, thymus, and skin expressed low and focal FucGM1. A FucGM1-targeting TCB (SC134-TCB), based on the Fc-silenced humanized SC134 antibody, exhibited nanomolar efficiency in FucGM1 glycolipid and SCLC cell surface binding. SC134-TCB showed potent ex vivo killing of SCLC cell lines with donor-dependent EC50 ranging from 7.2 pmol/L up to 211.0 pmol/L, effectively activating T cells, with picomolar efficiency, coinciding with target-dependent cytokine production such as IFNγ, IL2, and TNFα and robust proliferation of both CD4 and CD8 T cells. The ex vivo SC134-TCB tumor controlling activity translated into an effective in vivo anti-DMS79 tumor therapy, resulting in 100% tumor-free survival in a human peripheral blood mononuclear cell admixed setting and 40% overall survival (55% tumor growth inhibition) with systemically administered human peripheral blood mononuclear cells. Combination treatment with atezolizumab further enhanced survival and tumor growth inhibition (up to 73%). A 10-fold SC134-TCB dose reduction maintained the strong in vivo antitumor impact, translating into 70% overall survival (P < 0.0001). Whole-blood incubation with SC134-TCB, as well as healthy human primary cells analysis, revealed no target-independent cytokine production. SC134-TCB presents an attractive candidate to deliver an effective immunotherapy treatment option for patients with SCLC.
Collapse
Affiliation(s)
- Foram Dave
- Scancell Ltd., Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Poonam Vaghela
- Scancell Ltd., Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Bryony Heath
- Scancell Ltd., Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Zuzana Dunster
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Elena Dubinina
- Scancell Ltd., Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Dhruma Thakker
- Scancell Ltd., Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Katie Mann
- Scancell Ltd., Bellhouse Building, Oxford Science Park, Oxford, United Kingdom
| | - Joe Chadwick
- Scancell Ltd., Bellhouse Building, Oxford Science Park, Oxford, United Kingdom
| | - Gaëlle Cane
- Scancell Ltd., Bellhouse Building, Oxford Science Park, Oxford, United Kingdom
| | - Bubacarr G. Kaira
- Scancell Ltd., Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Omar J. Mohammed
- Scancell Ltd., Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Ruhul Choudhury
- Scancell Ltd., Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Samantha Paston
- Scancell Ltd., Bellhouse Building, Oxford Science Park, Oxford, United Kingdom
| | - Tina Parsons
- Scancell Ltd., Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Mireille Vankemmelbeke
- Scancell Ltd., Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Lindy Durrant
- Scancell Ltd., Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
2
|
Su Z, Almo SC, Wu Y. Computational simulations of bispecific T cell engagers by a multiscale model. Biophys J 2024; 123:235-247. [PMID: 38102828 PMCID: PMC10808035 DOI: 10.1016/j.bpj.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/04/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023] Open
Abstract
The use of bispecific antibodies as T cell engagers can bypass the normal T cell receptor-major histocompatibility class interaction, redirect the cytotoxic activity of T cells, and lead to highly efficient tumor cell killing. However, this immunotherapy also causes significant on-target off-tumor toxicologic effects, especially when it is used to treat solid tumors. To avoid these adverse events, it is necessary to understand the fundamental mechanisms involved in the physical process of T cell engagement. We developed a multiscale computational framework to reach this goal. The framework combines simulations on the intercellular and multicellular levels. On the intercellular level, we simulated the spatial-temporal dynamics of three-body interactions among bispecific antibodies, CD3 and tumor-associated antigens (TAAs). The derived number of intercellular bonds formed between CD3 and TAAs was further transferred to the multicellular simulations as the input parameter of adhesive density between cells. Through the simulations under various molecular and cellular conditions, we were able to gain new insights into how to adopt the most appropriate strategy to maximize the drug efficacy and avoid the off-target effect. For instance, we discovered that the low antibody-binding affinity resulted in the formation of large clusters at the cell-cell interface, which could be important to control the downstream signaling pathways. We also tested different molecular architectures of the bispecific antibody and suggested the existence of an optimal length in regulating the T cell engagement. Overall, the current multiscale simulations serve as a proof-of-concept study to help in the future design of new biological therapeutics.
Collapse
Affiliation(s)
- Zhaoqian Su
- Data Science Institute, Vanderbilt University, Nashville, Tennessee
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York; Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
3
|
Middelburg J, Sluijter M, Schaap G, Göynük B, Lloyd K, Ovcinnikovs V, Zom GG, Marijnissen RJ, Groeneveldt C, Griffioen L, Sandker GGW, Heskamp S, van der Burg SH, Arakelian T, Ossendorp F, Arens R, Schuurman J, Kemper K, van Hall T. T-cell stimulating vaccines empower CD3 bispecific antibody therapy in solid tumors. Nat Commun 2024; 15:48. [PMID: 38167722 PMCID: PMC10761684 DOI: 10.1038/s41467-023-44308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
CD3 bispecific antibody (CD3 bsAb) therapy is clinically approved for refractory hematological malignancies, but responses in solid tumors have been limited so far. One of the main hurdles in solid tumors is the lack of sufficient T-cell infiltrate. Here, we show that pre-treatment vaccination, even when composed of tumor-unrelated antigens, induces CXCR3-mediated T-cell influx in immunologically 'cold' tumor models in male mice. In the absence of CD3 bsAb, the infiltrate is confined to the tumor invasive margin, whereas subsequent CD3 bsAb administration induces infiltration of activated effector CD8 T cells into the tumor cell nests. This combination therapy installs a broadly inflamed Th1-type tumor microenvironment, resulting in effective tumor eradication. Multiple vaccination formulations, including synthetic long peptides and viruses, empower CD3 bsAb therapy. Our results imply that eliciting tumor infiltration with vaccine-induced tumor-(un)related T cells can greatly improve the efficacy of CD3 bsAbs in solid tumors.
Collapse
Affiliation(s)
- Jim Middelburg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Marjolein Sluijter
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Gaby Schaap
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Büşra Göynük
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | | | - Christianne Groeneveldt
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Lisa Griffioen
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Gerwin G W Sandker
- Department of Medical Imaging, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Sandra Heskamp
- Department of Medical Imaging, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Tsolere Arakelian
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ferry Ossendorp
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ramon Arens
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
4
|
Bousso P, Grandjean CL. Immunomodulation under the lens of real-time in vivo imaging. Eur J Immunol 2023; 53:e2249921. [PMID: 37051691 DOI: 10.1002/eji.202249921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/16/2022] [Accepted: 04/11/2023] [Indexed: 04/14/2023]
Abstract
Modulation of cells and molecules of the immune system not only represents a major opportunity to treat a variety of diseases including infections, cancer, autoimmune, and inflammatory disorders but could also help understand the intricacies of immune responses. A detailed mechanistic understanding of how a specific immune intervention may provide clinical benefit is essential for the rational design of efficient immunomodulators. Visualizing the impact of immunomodulation in real-time and in vivo has emerged as an important approach to achieve this goal. In this review, we aim to illustrate how multiphoton intravital imaging has helped clarify the mode of action of immunomodulatory strategies such as antibodies or cell therapies. We also discuss how optogenetics combined with imaging will further help manipulate and precisely understand immunomodulatory pathways. Combined with other single-cell technologies, in vivo dynamic imaging has therefore a major potential for guiding preclinical development of immunomodulatory drugs.
Collapse
Affiliation(s)
- Philippe Bousso
- Dynamics of Immune Responses Unit, Institut Pasteur, INSERM U1223, Université de Paris Cité, Paris, France
| | - Capucine L Grandjean
- Dynamics of Immune Responses Unit, Institut Pasteur, INSERM U1223, Université de Paris Cité, Paris, France
| |
Collapse
|
5
|
Su Z, Almo SC, Wu Y. Understanding the General Principles of T Cell Engagement by Multiscale Computational Simulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544116. [PMID: 37333150 PMCID: PMC10274768 DOI: 10.1101/2023.06.07.544116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The use of bispecific antibodies as T cell engagers can bypass the normal TCR-MHC interaction, redirect the cytotoxic activity of T-cells, and lead to highly efficient tumor cell killing. However, this immunotherapy also causes significant on-target off-tumor toxicologic effects, especially when they were used to treat solid tumors. In order to avoid these adverse events, it is necessary to understand the fundamental mechanisms during the physical process of T cell engagement. We developed a multiscale computational framework to reach this goal. The framework combines simulations on the intercellular and multicellular levels. On the intercellular level, we simulated the spatial-temporal dynamics of three-body interactions among bispecific antibodies, CD3 and TAA. The derived number of intercellular bonds formed between CD3 and TAA were further transferred into the multicellular simulations as the input parameter of adhesive density between cells. Through the simulations under various molecular and cellular conditions, we were able to gain new insights of how to adopt the most appropriate strategy to maximize the drug efficacy and avoid the off-target effect. For instance, we discovered that the low antibody binding affinity resulted in the formation of large clusters at the cell-cell interface, which could be important to control the downstream signaling pathways. We also tested different molecular architectures of the bispecific antibody and suggested the existence of an optimal length in regulating the T cell engagement. Overall, the current multiscale simulations serve as a prove-of-concept study to help the future design of new biological therapeutics. SIGNIFICANCE T-cell engagers are a class of anti-cancer drugs that can directly kill tumor cells by bringing T cells next to them. However, current treatments using T-cell engagers can cause serious side-effects. In order to reduce these effects, it is necessary to understand how T cells and tumor cells interact together through the connection of T-cell engagers. Unfortunately, this process is not well studied due to the limitations in current experimental techniques. We developed computational models on two different scales to simulate the physical process of T cell engagement. Our simulation results provide new insights into the general properties of T cell engagers. The new simulation methods can therefore serve as a useful tool to design novel antibodies for cancer immunotherapy.
Collapse
|
6
|
Bryniarski MA, Sandoval RM, Ruszaj DM, Fraser-McArthur J, Yee BM, Yacoub R, Chaves LD, Campos-Bilderback SB, Molitoris BA, Morris ME. Defining the Intravital Renal Disposition of Fluorescence-Quenched Exenatide. Mol Pharm 2023; 20:987-996. [PMID: 36626167 PMCID: PMC9907348 DOI: 10.1021/acs.molpharmaceut.2c00671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023]
Abstract
Despite the understanding that renal clearance is pivotal for driving the pharmacokinetics of numerous therapeutic proteins and peptides, the specific processes that occur following glomerular filtration remain poorly defined. For instance, sites of catabolism within the proximal tubule can occur at the brush border, within lysosomes following endocytosis, or even within the tubule lumen itself. The objective of the current study was to address these limitations and develop methodology to study the kidney disposition of a model therapeutic protein. Exenatide is a peptide used to treat type 2 diabetes mellitus. Glomerular filtration and ensuing renal catabolism have been shown to be its principal clearance pathway. Here, we designed and validated a Förster resonance energy transfer-quenched exenatide derivative to provide critical information on the renal handling of exenatide. A combination of in vitro techniques was used to confirm substantial fluorescence quenching of intact peptide that was released upon proteolytic cleavage. This evaluation was then followed by an assessment of the in vivo disposition of quenched exenatide directly within kidneys of living rats via intravital two-photon microscopy. Live imaging demonstrated rapid glomerular filtration and identified exenatide metabolism occurred within the subapical regions of the proximal tubule epithelia, with subsequent intracellular trafficking of cleaved fragments. These results provide a novel examination into the real-time, intravital disposition of a protein therapeutic within the kidney and offer a platform to build upon for future work.
Collapse
Affiliation(s)
- Mark A. Bryniarski
- Department
of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical
Sciences, University at Buffalo, 304 Pharmacy Building, Buffalo, New York 14215, United States
| | - Ruben M. Sandoval
- Department
of Medicine, Indiana University, Indianapolis, Indiana 46202, United States
| | - Donna M. Ruszaj
- Department
of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical
Sciences, University at Buffalo, 304 Pharmacy Building, Buffalo, New York 14215, United States
| | - John Fraser-McArthur
- Department
of Pharmacy, University of Rochester Medical
Center, Rochester, New York 14642, United States
| | - Benjamin M. Yee
- Department
of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical
Sciences, University at Buffalo, 304 Pharmacy Building, Buffalo, New York 14215, United States
| | - Rabi Yacoub
- Department
of Internal Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, United States
| | - Lee D. Chaves
- Department
of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical
Sciences, University at Buffalo, 304 Pharmacy Building, Buffalo, New York 14215, United States
- Department
of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, United States
| | | | - Bruce A. Molitoris
- Department
of Medicine, Indiana University, Indianapolis, Indiana 46202, United States
| | - Marilyn E. Morris
- Department
of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical
Sciences, University at Buffalo, 304 Pharmacy Building, Buffalo, New York 14215, United States
| |
Collapse
|