1
|
Geng H, Zheng F, Sun W, Huang S, Wang Z, Yang K, Wang C, Tian C, Xu C, Zhai G, Zhao M, Hou S, Song A, Zhang Y, Zhao Q. Effect and mechanism of novel HDAC inhibitor ZDLT-1 in colorectal cancer by regulating apoptosis and inflammation. Int Immunopharmacol 2024; 143:113333. [PMID: 39383785 DOI: 10.1016/j.intimp.2024.113333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/17/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND Histone deacetylase (HDAC) is a potential target for Colorectal Cancer (CRC) molecular target therapy, dehydroharmine derivative ZDLT-1 was designed to inhibit CRC cell proliferation by inhibiting HDAC target. This study aimed to explore the effect of ZDLT-1 could induce apoptosis in CRC in vitro and in vivo, and determine the mechanism of ZDLT-1. METHODS First, MTT assay, colony formation, wound healing, Transwell assay, Hoechst33342 staining and Annexin V-FITC/PI double staining assay were used to investigate the in vitro effect of ZDLT-1. Second, the toxicity and the anti-tumor effect of ZDLT-1 by subcutaneous tumorigenesis assay were used to determine the in vivo effect of ZDLT-1. In terms of mechanism, we evaluated the effect of ZDLT-1 on HDAC downstream proteins such as HIF-1α, NF-κB, Cleaved-Caspase-3/9, GSDMD and acetylated histone by immunofluorescence and Western blot assessments. RESULTS This study confirmed that ZDLT-1 had anti-tumor activity by inhibiting cell proliferation in vitro and solid tumor growth in vivo. Furthermore, ZDLT-1 can inhibit CRC cell invasion, migration and apoptosis in vitro. Moreover, ZDLT-1 can promote the expression of apoptosis proteins in HIF-1α/Caspase-3/Caspase-9 pathway and inhibit the expression of tumor-related immune proteins mainly in NF-κB/GSDMD/GSDME pathway. CONCLUSION ZDLT-1 as HDAC inhibitor could suppresses CRC cell growth in vivo and in vitro by triggering HIF-1α/Caspase-3/Caspase-9 pathway in promoting apoptosis, and triggering NF-κB/GSDMD/GSDME pathway in inhibiting tumor inflammation. Our results propose dehydroharmine derivative ZDLT-1 as a promising therapeutic small molecular agent for CRC.
Collapse
Affiliation(s)
- Hefeng Geng
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, 100016 Shenyang City, Liaoning Province, PR China; Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang City, Liaoning Province, PR China.
| | - Fangyuan Zheng
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, 100016 Shenyang City, Liaoning Province, PR China; Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang City, Liaoning Province, PR China.
| | - Wentao Sun
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang City, Liaoning Province, PR China.
| | - Shuoqi Huang
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang City, Liaoning Province, PR China; Pharmacy Department, Tianjin Hospital, Tianjin, PR China.
| | - Zhiya Wang
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, 100016 Shenyang City, Liaoning Province, PR China; Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang City, Liaoning Province, PR China.
| | - Kaisi Yang
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, 100016 Shenyang City, Liaoning Province, PR China; Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang City, Liaoning Province, PR China.
| | - Chengkang Wang
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, 100016 Shenyang City, Liaoning Province, PR China; Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang City, Liaoning Province, PR China.
| | - Caizhi Tian
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang City, Liaoning Province, PR China.
| | - Chang Xu
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, 100016 Shenyang City, Liaoning Province, PR China; Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang City, Liaoning Province, PR China.
| | - Guanchao Zhai
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang City, Liaoning Province, PR China.
| | - Mingyi Zhao
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang City, Liaoning Province, PR China.
| | - Shanbo Hou
- Luoxin Pharmaceuticals Group Stock Co., Ltd., Linyi, PR China.
| | - Aigang Song
- Luoxin Pharmaceuticals Group Stock Co., Ltd., Linyi, PR China.
| | - Yingshi Zhang
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, 100016 Shenyang City, Liaoning Province, PR China; Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang City, Liaoning Province, PR China.
| | - Qingchun Zhao
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, 100016 Shenyang City, Liaoning Province, PR China; Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang City, Liaoning Province, PR China.
| |
Collapse
|
3
|
Chen X, Ding X, Fang J, Mao C, Gong X, Zhang Y, Zhang N, Yan F, Lou Y, Chen Z, Ding W, Ma Z. Natural Derivatives of Selective HDAC8 Inhibitors with Potent in Vivo Antitumor Efficacy against Breast Cancer. J Med Chem 2024; 67:14609-14632. [PMID: 39110628 DOI: 10.1021/acs.jmedchem.4c01438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
HDAC8 is a therapeutic target with great promise for breast cancer. Here, we reported a novel compound corallorazine D from Nocardiopsis sp. XZB108, selectively inhibited HDAC8 (IC50 = 0.90 ± 0.014 μM), suggesting that it may be a promising nonhydroxamate HDAC8 inhibitor. Upon additional modifications of corallorazine D, a candidate compound 5k, demonstrated remarkable inhibitory potency against HDAC8 (IC50 = 0.12 ± 0.01 nM), 89-fold superior to PCI-34051. The selectivity of 5k was at least 439-fold, superior to corallorazine D, confirming the efficacy of our modifications. In an orthotopic mouse model of breast cancer, 5k displayed nearly 4-fold superior antitumor activity than SAHA. Furthermore, 5k triggered antitumor immunity by activating T cells. Treatment with 5k significantly increased the proportion of M1 macrophages and decreased the proportion of M2 macrophages (M1/M2 ratio = 2.67 ± 0.25). 5k represents a promising compound for further investigation as a potential treatment for breast cancer.
Collapse
Affiliation(s)
- Xiaoming Chen
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Xia Ding
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Jiebin Fang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Churu Mao
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Xingzhi Gong
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Yuxiao Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Ningjing Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Feihang Yan
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Yijie Lou
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhe Chen
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wanjing Ding
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Zhongjun Ma
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
- Hainan Institute of Zhejiang University, Sanya 572025, China
| |
Collapse
|
4
|
Şansaçar M, Sağır H, Gencer Akçok EB. Inhibition of PI3K-AKT-mTOR pathway and modulation of histone deacetylase enzymes reduce the growth of acute myeloid leukemia cells. Med Oncol 2023; 41:31. [PMID: 38148433 DOI: 10.1007/s12032-023-02247-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/10/2023] [Indexed: 12/28/2023]
Abstract
One of the most widespread forms of blood cancer is known as acute myeloid leukemia (AML) which has an incidence of 80% with poor prognosis. Although there are different treatment methods for AML in clinic, the heterogeneity and complexity of the disease show that new treatments are needed. The aim of this study is to investigate the anticancer effects of inhibition of PI3K and HDAC enzymes on CMK and MOLM-13 AML cells lines. We demonstrated that the combination of LY294002 with SAHA and Tubastatin A significantly decreased the cell viability of both cell lines. In contrast, the LY294002 and PCI-34051 combination did not show a significant difference compared to the single LY294002 administration. The combination treatment of LY294002 and HDAC inhibitors did not induce apoptosis significantly. However, LY294002 + SAHA and LY294002 + PCI-34051 resulted in G0/G1 and G2/M cell cycle arrest in CMK cells, respectively. On the other hand, compared to control cells, LY294002 + SAHA and LY294002 + PCI-34051 led to G0/G1 phase arrest in MOLM-13. Furthermore, the LY294002 + PCI-34051 combination elevated the expression rate of LC3BII/I, an autophagy marker, in CMK cells by 2.5-fold. Our study revealed that the combinations of PI3K inhibitor and HDAC inhibitors showed a synergistic effect and caused a reduction in cell viability and increased cell cycle arrest on MOLM-13 and CMK cell lines. In addition, the expression of LC3BII was elevated in the CMK cell line. In conclusion, although more mechanistic studies are required, a combinational inhibition of PI3K and HDAC could be a promising approach for AML.
Collapse
Affiliation(s)
- Merve Şansaçar
- Bioengineering Department, Graduate School of Engineering and Science, Abdullah Gul University, Kayseri, Turkey
| | - Helin Sağır
- Bioengineering Department, Graduate School of Engineering and Science, Abdullah Gul University, Kayseri, Turkey
| | - Emel Başak Gencer Akçok
- Molecular Biology and Genetics Department, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey.
| |
Collapse
|