1
|
Glajch KE, Ferraiuolo L, Mueller KA, Stopford MJ, Prabhkar V, Gravanis A, Shaw PJ, Sadri-Vakili G. MicroNeurotrophins Improve Survival in Motor Neuron-Astrocyte Co-Cultures but Do Not Improve Disease Phenotypes in a Mutant SOD1 Mouse Model of Amyotrophic Lateral Sclerosis. PLoS One 2016; 11:e0164103. [PMID: 27716798 PMCID: PMC5055348 DOI: 10.1371/journal.pone.0164103] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/20/2016] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease caused by loss of motor neurons. ALS patients experience rapid deterioration in muscle function with an average lifespan of 3–5 years after diagnosis. Currently, the most effective therapeutic only extends lifespan by a few months, thus highlighting the need for new and improved therapies. Neurotrophic factors (NTFs) are important for neuronal development, maintenance, and survival. NTF treatment has previously shown efficacy in pre-clinical ALS models. However, clinical trials using NTFs produced no major improvements in ALS patients, due in part to the limited blood brain barrier (BBB) penetration. In this study we assessed the potential neuroprotective effects of a novel class of compounds known as MicroNeurotrophins (MNTs). MNTs are derivatives of Dehydroepiandrosterone (DHEA), an endogenous neurosteroid that can cross the BBB and bind to tyrosine kinase receptors mimicking the pro-survival effects of NTFs. Here we sought to determine whether MNTs were neuroprotective in two different models of ALS. Our results demonstrate that BNN27 (10 μM) attenuated loss of motor neurons co-cultured with astrocytes derived from human ALS patients with SOD1 mutations via the reduction of oxidative stress. Additionally, in the G93A SOD1 mouse, BNN27 (10 mg/kg) treatment attenuated motor behavioral impairment in the paw grip endurance and rotarod tasks at postnatal day 95 in female but not male mice. In contrast, BNN27 (10 mg/kg and 50 mg/kg) treatment did not alter any other behavioral outcome or neuropathological marker in male or female mice. Lastly, BNN27 was not detected in post-mortem brain or spinal cord tissue of treated mice due to the rapid metabolism of BNN27 by mouse hepatocytes relative to human hepatocytes. Together, these findings demonstrate that BNN27 treatment failed to yield significant neuroprotective effects in the G93A SOD1 model likely due to its rapid rate of metabolism in mice.
Collapse
Affiliation(s)
- Kelly E. Glajch
- NeuroEpigenetics Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129–4404, United States of America
| | - Laura Ferraiuolo
- Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, United Kingdom
| | - Kaly A. Mueller
- NeuroEpigenetics Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129–4404, United States of America
| | - Matthew J. Stopford
- Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, United Kingdom
| | - Varsha Prabhkar
- NeuroEpigenetics Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129–4404, United States of America
| | - Achille Gravanis
- Department of Pharmacology, School of Medicine, University of Crete, Institute of Molecular Biology & Biotechnology-FORTH, Heraklion 71003, Greece
| | - Pamela J. Shaw
- Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, United Kingdom
| | - Ghazaleh Sadri-Vakili
- NeuroEpigenetics Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129–4404, United States of America
- * E-mail:
| |
Collapse
|
2
|
Pasquin S, Sharma M, Gauchat JF. Ciliary neurotrophic factor (CNTF): New facets of an old molecule for treating neurodegenerative and metabolic syndrome pathologies. Cytokine Growth Factor Rev 2015; 26:507-15. [PMID: 26187860 DOI: 10.1016/j.cytogfr.2015.07.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 07/01/2015] [Indexed: 12/13/2022]
Abstract
Ciliary neurotrophic factor (CNTF) is the most extensively studied member of the cytokine family that signal through intracellular chains of the gp130/LIFRβ receptor. The severe phenotype in patients suffering from mutations inactivating LIFRβ indicates that members of this cytokine family play key, non-redundant roles during development. Accordingly, three decades of research has revealed potent and promising trophic and regulatory activities of CNTF in neurons, oligodendrocytes, muscle cells, bone cells, adipocytes and retinal cells. These findings led to clinical trials to test the therapeutic potential of CNTF and CNTF derivatives for treating neurodegenerative and metabolic diseases. Promising results have encouraged continuation of studies for treating retinal degenerative diseases. Results of some clinical trials showed that side-effects may limit the systemically administrated doses of CNTF. Therefore, therapies being currently tested rely on local delivery of CNTF using encapsulated cytokine-secreting implants. Since the side effects of CNTF might be linked to its ability to activate the alternative IL6Rα-LIFRβ-gp130 receptor, CNTFR-specific mutants of CNTF have been developed that bind to the CNTFRα-LIFRβ-gp130 receptor. These developments may prove to be a breakthrough for therapeutic applications of systemically administered CNTF in pathologies such as multiple sclerosis or Alzheimer's disease. The "designer cytokine approach" offers future opportunities to further enhance specificity by conjugating mutant CNTF with modified soluble CNTFRα to target therapeutically relevant cells that express gp130-LIFRβ and a specific cell surface marker.
Collapse
Affiliation(s)
- Sarah Pasquin
- Département de Pharmacologie, Université de Montréal, 2900 Édouard Montpetit, Montreal, QC H3T 1J4, Canada
| | - Mukut Sharma
- Renal Division, KCVA Medical Center, 4801 Linwood Blvd, Kansas City, MO 64128, USA
| | - Jean-François Gauchat
- Département de Pharmacologie, Université de Montréal, 2900 Édouard Montpetit, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
3
|
Laaksovirta H, Soinila S, Hukkanen V, Röyttä M, Soilu-Hänninen M. Serum level of CNTF is elevated in patients with amyotrophic lateral sclerosis and correlates with site of disease onset. Eur J Neurol 2008; 15:355-9. [DOI: 10.1111/j.1468-1331.2008.02080.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
4
|
Bodega G, Suárez I, Almonacid L, Ciordia S, Beloso A, López-Fernández LA, Zaballos A, Fernández B. Effect of ammonia on ciliary neurotrophic factor mRNA and protein expression and its upstream signalling pathway in cultured rat astroglial cells: possible implication of c-fos, Sp1 and p38MAPK. Neuropathol Appl Neurobiol 2007; 33:420-30. [PMID: 17442060 DOI: 10.1111/j.1365-2990.2007.00831.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ciliary neurotrophic factor (CNTF) may be implicated in the pathogenetic mechanisms of hepatic encephalopathy. We tested this hypothesis by treating confluent primary cultures of rat astroglial cells with ammonium chloride for various periods and analysing the effect of ammonia on the signalling pathway that regulates CNTF mRNA and protein expression. Ammonia treatment induced a dose- and time-dependent reduction in CNTF mRNA and protein expression. Surface-enhanced laser desorption/ionization-time-of-flight mass spectrometry analysis of CNTF in the culture medium demonstrated that ammonia also induced a significant decrease in CNTF release. In addition, ammonia affected Sp1 and c-fos, transcription factors that regulate CNTF mRNA and protein expression, which showed partial dephosphorylation and significantly lower mRNA and protein levels. Total content of p38MAPK (for which Sp1 and c-fos are substrates) was unaffected by ammonia, although the diphosphorylated (active) form was significantly reduced after ammonia exposure.
Collapse
Affiliation(s)
- G Bodega
- Departamento de Biología Celular y Genética, Facultad de Biología, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Motor neuron diseases (MND), such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), are progressive neurodegenerative diseases that share the common characteristic of upper and/or lower motor neuron degeneration. Therapeutic strategies for MND are designed to confer neuroprotection, using trophic factors, anti-apoptotic proteins, as well as antioxidants and anti-excitotoxicity agents. Although a large number of therapeutic clinical trials have been attempted, none has been shown satisfactory for MND at this time. A variety of strategies have emerged for motor neuron gene transfer. Application of these approaches has yielded therapeutic results in cell culture and animal models, including the SOD1 models of ALS. In this study we describe the gene-based treatment of MND in general, examining the potential viral vector candidates, gene delivery strategies, and main therapeutic approaches currently attempted. Finally, we discuss future directions and potential strategies for more effective motor neuron gene delivery and clinical translation.
Collapse
Affiliation(s)
- Thais Federici
- Department of Neuroscience, Cleveland Clinic Foundation, NB2-126A, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
6
|
Levy YS, Gilgun-Sherki Y, Melamed E, Offen D. Therapeutic potential of neurotrophic factors in neurodegenerative diseases. BioDrugs 2005; 19:97-127. [PMID: 15807629 DOI: 10.2165/00063030-200519020-00003] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
There is a vast amount of evidence indicating that neurotrophic factors play a major role in the development, maintenance, and survival of neurons and neuron-supporting cells such as glia and oligodendrocytes. In addition, it is well known that alterations in levels of neurotrophic factors or their receptors can lead to neuronal death and contribute to the pathogenesis of neurodegenerative diseases such as Parkinson disease, Alzheimer disease, Huntington disease, amyotrophic lateral sclerosis, and also aging. Although various treatments alleviate the symptoms of neurodegenerative diseases, none of them prevent or halt the neurodegenerative process. The high potency of neurotrophic factors, as shown by many experimental studies, makes them a rational candidate co-therapeutic agent in neurodegenerative disease. However, in practice, their clinical use is limited because of difficulties in protein delivery and pharmacokinetics in the central nervous system. To overcome these disadvantages and to facilitate the development of drugs with improved pharmacotherapeutic profiles, research is underway on neurotrophic factors and their receptors, and the molecular mechanisms by which they work, together with the development of new technologies for their delivery into the brain.
Collapse
Affiliation(s)
- Yossef S Levy
- Laboratory of Neuroscineces, Felsenstein Medical Research Center, Israel
| | | | | | | |
Collapse
|
7
|
Vergara C, Ramirez B. CNTF, a pleiotropic cytokine: emphasis on its myotrophic role. ACTA ACUST UNITED AC 2004; 47:161-73. [PMID: 15572170 DOI: 10.1016/j.brainresrev.2004.07.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2004] [Indexed: 11/19/2022]
Abstract
Ciliary neurotrophic factor (CNTF) is a cytokine whose neurotrophic and differentiating effects over cells in the central nervous system (CNS) have been clearly demonstrated. This article summarizes the general characteristics of CNTF, its receptor and the signaling pathway that it activates and focuses on its effects over skeletal muscle, one of its major target tissues outside the central nervous system. The evidence for the existence of other molecules that signal through the same complex as CNTF is also reviewed.
Collapse
Affiliation(s)
- Cecilia Vergara
- Biology Department, Faculty of Sciences, University of Chile, Casilla 653, Santiago, Chile.
| | | |
Collapse
|
8
|
Malaspina A, de Belleroche J. Spinal cord molecular profiling provides a better understanding of amyotrophic lateral sclerosis pathogenesis. ACTA ACUST UNITED AC 2004; 45:213-29. [PMID: 15210305 DOI: 10.1016/j.brainresrev.2004.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2004] [Indexed: 12/11/2022]
Abstract
Research efforts in amyotrophic lateral sclerosis (ALS) have not yet provided a comprehensive explanation of the disease pathogenesis, which is emerging as a complex interaction between multiple factors. Gene expression studies traditionally based on single mRNA specie analysis have recently progressed to allow entire transcriptional profiles of affected tissues to be obtained through array-based methods. This experimental approach has significantly improved our understanding of the molecular changes occurring in ALS, although its limitations in the detection of low-abundance transcripts in tissues with a high level of complexity are becoming increasingly recognized. In this paper, experimental findings based on an expression study in post-mortem spinal cord from sporadic ALS individuals will be discussed in light of recently published data using array analysis in an animal model of the disease. Previous expression data obtained using conventional techniques are also compared. Through the analysis of the information arising from ALS post-mortem and animal model tissues studies, we have identified a pattern of molecular events in which factors implicated in the immune response, cytoprotection and growth-differentiation are differentially regulated in a time-dependent way from early to advanced stages of disease progression.
Collapse
Affiliation(s)
- Andrea Malaspina
- Department of Neuromuscular Diseases, Division of Neuroscience and Psychological Medicine, Faculty of Medicine, Imperial College London, Charing Cross Hospital, London W14 8RF, UK.
| | | |
Collapse
|
9
|
Abstract
Amyotrophic lateral sclerosis (ALS) is a late onset, rapidly progressive and ultimately fatal neurological disorder, caused by the loss of motor neurons in the brain and spinal cord. Familial aggregation of ALS, with an age-dependent but high penetrance, is a major risk factor for ALS. Familial ALS (FALS) is clinically and genetically heterogeneous. Three genes and linkage to four additional gene loci have been identified so far and may either predominantly lead to ALS (ALSI-ALS6) or cause multisystem neurodegeneration with ALS as an occasional symptom (tauopathies, ALS-dementia complex). This review presents a tentative classification of the "major" ALS genes and ALS "susceptibility" genes, that may act as susceptibility factors for neurodegeneration in interaction with other genetic or environmental risk factors. Considering that mutations in ALS genes explain approximately 10% of familial as well as sporadic ALS, and most remaining cases of the discase are thought to result form the interaction of several genes and environmental factors, ALS is a paradigm for multifactorial discases.
Collapse
Affiliation(s)
- D Majoor-Krakauer
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands.
| | | | | |
Collapse
|
10
|
Alisky JM, Davidson BL. Gene therapy for amyotrophic lateral sclerosis and other motor neuron diseases. Hum Gene Ther 2000; 11:2315-29. [PMID: 11096437 DOI: 10.1089/104303400750038435] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There are several incurable diseases of motor neuron degeneration, including amyotrophic lateral sclerosis (ALS), primary lateral sclerosis, hereditary spastic hemiplegia, spinal muscular atrophy, and bulbospinal atrophy. Advances in gene transfer techniques coupled with new insights into molecular pathology have opened promising avenues for gene therapy aimed at halting disease progression. Nonviral preparations and recombinant adenoviruses, adeno-associated viruses, herpesviruses, and lentiviruses may ultimately transduce sufficient numbers of cerebral, brainstem, and spinal cord neurons for therapeutic applications. This could be accomplished by direct injection, transduction of lower motor neurons via retrograde transport after intramuscular injection, or cell-based therapies. Studies using transgenic mice expressing mutant superoxide dismutase 1 (SOD1), a model for one form of ALS, established that several proteins were neuroprotective, including calbindin, bcl-2, and growth factors. These same molecules promoted neuronal survival in other injury models, suggesting general applicability to all forms of ALS. Potentially correctable genetic lesions have also been identified for hereditary spastic hemiplegia, bulbospinal atrophy, and spinal muscular atrophy. Finally, it may be possible to repopulate lost corticospinal and lower motor neurons by transplanting stem cells or stimulating native progenitor populations. The challenge ahead is to translate these basic science breakthroughs into workable clinical practice.
Collapse
Affiliation(s)
- J M Alisky
- Program in Gene Therapy, Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | | |
Collapse
|