1
|
Timsina R, Mainali L. Association of Alpha-Crystallin with Fiber Cell Plasma Membrane of the Eye Lens Accompanied by Light Scattering and Cataract Formation. MEMBRANES 2021; 11:447. [PMID: 34203836 PMCID: PMC8232717 DOI: 10.3390/membranes11060447] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 02/04/2023]
Abstract
α-crystallin is a major protein found in the mammalian eye lens that works as a molecular chaperone by preventing the aggregation of proteins and providing tolerance to stress in the eye lens. These functions of α-crystallin are significant for maintaining lens transparency. However, with age and cataract formation, the concentration of α-crystallin in the eye lens cytoplasm decreases with a corresponding increase in the membrane-bound α-crystallin, accompanied by increased light scattering. The purpose of this review is to summarize previous and recent findings of the role of the: (1) lens membrane components, i.e., the major phospholipids (PLs) and sphingolipids, cholesterol (Chol), cholesterol bilayer domains (CBDs), and the integral membrane proteins aquaporin-0 (AQP0; formally MIP26) and connexins, and (2) α-crystallin mutations and post-translational modifications (PTMs) in the association of α-crystallin to the eye lens's fiber cell plasma membrane, providing thorough insights into a molecular basis of such an association. Furthermore, this review highlights the current knowledge and need for further studies to understand the fundamental molecular processes involved in the association of α-crystallin to the lens membrane, potentially leading to new avenues for preventing cataract formation and progression.
Collapse
Affiliation(s)
- Raju Timsina
- Department of Physics, Boise State University, Boise, ID 83725, USA;
| | - Laxman Mainali
- Department of Physics, Boise State University, Boise, ID 83725, USA;
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| |
Collapse
|
2
|
Lyon YA, Sabbah GM, Julian RR. Identification of Sequence Similarities among Isomerization Hotspots in Crystallin Proteins. J Proteome Res 2017; 16:1797-1805. [PMID: 28234481 PMCID: PMC5387677 DOI: 10.1021/acs.jproteome.7b00073] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The eye lens crystallins represent
an ideal target for studying
the effects of aging on protein structure. Herein we examine separately
the water-soluble (WS) and water-insoluble (WI) crystallin fractions
and identify sites of isomerization and epimerization. Both collision-induced
dissociation and radical-directed dissociation are needed for detection
of these non-mass-shifting post-translational modifications. Isomerization
levels differ significantly between the WS and the WI fractions from
sheep, pig, and cow eye lenses. Residues that are most susceptible
to isomerization are identified site-specifically and are found to
reside in structurally disordered regions. However, isomerization
in structured domains, although less common, often yields more dramatic
effects on solubility. Numerous isomerization hotspots were also identified
and occur in regions with aspartic acid and serine repeats. For example, 128KMEIVDDDVPSLW140 in βB3
crystallin contains three sequential aspartic acid residues and is
isomerized heavily in the WI fractions, while it is not modified at
all in the WS fractions. Potential causes for enhanced isomerization
at sites with acidic residue repeats are presented. The importance
of acidic residue repeats extends beyond the lens, as they are found
in many other long-lived proteins associated with disease.
Collapse
Affiliation(s)
- Yana A Lyon
- Department of Chemistry, University of California , Riverside, 501 Big Springs Road, Riverside, California 92521, United States
| | - Georgette M Sabbah
- Department of Chemistry, University of California , Riverside, 501 Big Springs Road, Riverside, California 92521, United States
| | - Ryan R Julian
- Department of Chemistry, University of California , Riverside, 501 Big Springs Road, Riverside, California 92521, United States
| |
Collapse
|
3
|
Brinkmeier H, Ohlendieck K. Chaperoning heat shock proteins: Proteomic analysis and relevance for normal and dystrophin-deficient muscle. Proteomics Clin Appl 2014; 8:875-95. [DOI: 10.1002/prca.201400015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/24/2014] [Accepted: 05/28/2014] [Indexed: 12/15/2022]
Affiliation(s)
| | - Kay Ohlendieck
- Department of Biology; National University of Ireland; Maynooth Co. Kildare Ireland
| |
Collapse
|
4
|
Lyon RC, Lange S, Sheikh F. Breaking down protein degradation mechanisms in cardiac muscle. Trends Mol Med 2013; 19:239-49. [PMID: 23453282 DOI: 10.1016/j.molmed.2013.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/08/2013] [Accepted: 01/31/2013] [Indexed: 12/22/2022]
Abstract
Regulated protein degradation through the ubiquitin-proteasome and lysosomal/autophagy systems is critical for homeostatic protein turnover in cardiac muscle and for proper cardiac function. The discovery of muscle-specific components in these systems has illuminated how aberrations in their levels are pivotal to the development of cardiac stress and disease. New evidence suggests that equal importance in disease development should be given to ubiquitously expressed degradation components. These are compartmentalized within cardiac muscles and, when mislocalized, can be critical in the development of specific cardiac diseases. Here, we discuss how alterations in the compartmentalization of degradation components affect disease states, the tools available to investigate these mechanisms, as well as recent discoveries that highlight the therapeutic value of targeting these pathways in disease.
Collapse
Affiliation(s)
- Robert C Lyon
- Department of Medicine (Cardiology Division), University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
5
|
Christians ES, Ishiwata T, Benjamin IJ. Small heat shock proteins in redox metabolism: implications for cardiovascular diseases. Int J Biochem Cell Biol 2012; 44:1632-45. [PMID: 22710345 DOI: 10.1016/j.biocel.2012.06.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 06/02/2012] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
Abstract
A timely review series on small heat shock proteins has to appropriately examine their fundamental properties and implications in the cardiovascular system since several members of this chaperone family exhibit robust expression in the myocardium and blood vessels. Due to energetic and metabolic demands, the cardiovascular system maintains a high mitochondrial activity but irreversible oxidative damage might ensue from increased production of reactive oxygen species. How equilibrium between their production and scavenging is achieved becomes paramount for physiological maintenance. For example, heat shock protein B1 (HSPB1) is implicated in maintaining this equilibrium or redox homeostasis by upholding the level of glutathione, a major redox mediator. Studies of gain or loss of function achieved by genetic manipulations have been highly informative for understanding the roles of those proteins. For example, genetic deficiency of several small heat shock proteins such as HSPB5 and HSPB2 is well-tolerated in heart cells whereas a single missense mutation causes human pathology. Such evidence highlights both the profound genetic redundancy observed among the multigene family of small heat shock proteins while underscoring the role proteotoxicity plays in driving disease pathogenesis. We will discuss the available data on small heat shock proteins in the cardiovascular system, redox metabolism and human diseases. From the medical perspective, we envision that such emerging knowledge of the multiple roles small heat shock proteins exert in the cardiovascular system will undoubtedly open new avenues for their identification and possible therapeutic targeting in humans. This article is part of a Directed Issue entitled: Small HSPs in physiology and pathology.
Collapse
Affiliation(s)
- Elisabeth S Christians
- Laboratory of Cardiac Disease, Redox Signaling and Cell Regeneration, Division of Cardiology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| | | | | |
Collapse
|
6
|
Functional rescue of experimental ischemic optic neuropathy with αB-crystallin. Eye (Lond) 2011; 25:809-17. [PMID: 21475310 DOI: 10.1038/eye.2011.42] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
PURPOSE Anterior ischemic optic neuropathy (AION) is an important cause of acute vision loss in adults, and there is no effective treatment. We studied early changes following experimental AION and tested the benefit of a potential treatment. MATERIALS AND METHODS We induced experimental AION in adult mice and tested the effects of short-term (daily for 3 days) and long-term (every other day for 3 weeks) αB-crystallin (αBC) treatment using histological and serial intracranial flash visual evoked potential recordings. RESULTS One day after experimental AION, there was swelling at the optic nerve (ON) head and increased expression of αBC, a small heat shock protein important in ischemia and inflammation. This upregulation coincided with microglial and astrocytic activation. Our hypothesis was that αBC may be part of the endogenous protective mechanism against injury, thus we tested the effects of αBC on experimental AION. Daily intraveneous or intravitreal αBC injections did not improve visual evoked potential amplitude or latency at days 1-2. However, αBC treatment decreased swelling and dampened the microglial and astrocytic activation on day 3. Longer treatment with intravenous αBC led to acceleration of visual evoked potential latency over 3 weeks, without improving amplitude. This latency acceleration did not correlate with increased retinal ganglion cell survival but did correlate with complete rescue of the ON oligodendrocytes, which are important for myelination. CONCLUSIONS We identified αBC as an early marker following experimental AION. Treatment with αBC enhanced this endogenous, post-ischemic response by decreasing microglial activation and promoting ON oligodendrocyte survival.
Collapse
|
7
|
Doran P, Donoghue P, O'Connell K, Gannon J, Ohlendieck K. Proteomics of skeletal muscle aging. Proteomics 2009; 9:989-1003. [DOI: 10.1002/pmic.200800365] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Kelley MJ, Rose AY, Keller KE, Hessle H, Samples JR, Acott TS. Stem cells in the trabecular meshwork: present and future promises. Exp Eye Res 2008; 88:747-51. [PMID: 19061887 DOI: 10.1016/j.exer.2008.10.024] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Revised: 10/25/2008] [Accepted: 10/28/2008] [Indexed: 12/25/2022]
Abstract
Primary open-angle glaucoma is recognized as a disease of aging, and studies show a relationship between aging and trabecular meshwork (TM) cell density. Human TM cell division occurs primarily in the anterior, non-filtering region. A commonly used glaucoma treatment, laser trabeculoplasty (LTP), triggers and increases cell division, as well as cell migration of these anterior TM cells. These freshly-divided migrating cells repopulate the burned laser sites, suggesting that they are stem cells. Several studies concerning this putative TM stem cell will be discussed.
Collapse
Affiliation(s)
- M J Kelley
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Doran P, Gannon J, O'Connell K, Ohlendieck K. Aging skeletal muscle shows a drastic increase in the small heat shock proteins αB-crystallin/HspB5 and cvHsp/HspB7. Eur J Cell Biol 2007; 86:629-40. [PMID: 17761354 DOI: 10.1016/j.ejcb.2007.07.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 06/30/2007] [Accepted: 07/04/2007] [Indexed: 11/22/2022] Open
Abstract
Most heat shock proteins operate as molecular chaperones and play a central role in the maintenance of normal cellular function. In skeletal muscle, members of the alpha-crystallin domain-containing family of small heat shock proteins are believed to form a cohort of essential stress proteins. Since alphaB-crystallin (alphaBC/HspB5) and the cardiovascular heat shock protein (cvHsp/HspB7) are both implicated in the molecular response to fibre transformation and muscle wasting, it was of interest to investigate the fate of these stress proteins in young adult versus aged muscle. The age-related loss of skeletal muscle mass and strength, now generally referred to as sarcopenia, is one of the most striking features of the senescent organism. In order to better understand the molecular pathogenesis of age-related muscle wasting, we have performed a two-dimensional gel electrophoretic analysis, immunoblotting and confocal microscopy study of aged rat gastrocnemius muscle. Fluorescent labelling of the electrophoretically separated soluble muscle proteome revealed an overall relatively comparable protein expression pattern of young adult versus aged fibres, but clearly an up-regulation of alphaBC and cvHsp. This was confirmed by immunofluorescence microscopy and immunoblot analysis, which showed a dramatic age-induced increase in these small heat shock proteins. Immunodecoration of other major stress proteins showed that they were not affected or less drastically changed in their expression in aged muscle. These findings indicate that the increase in muscle-specific small heat shock proteins constitutes an essential cellular response to fibre aging and might therefore be a novel therapeutic option to treat sarcopenia of old age.
Collapse
MESH Headings
- Aging/physiology
- Animals
- Biomarkers/analysis
- Disease Models, Animal
- Electrophoresis, Gel, Two-Dimensional
- Heat-Shock Proteins, Small/metabolism
- Immunoblotting
- Microscopy, Fluorescence
- Muscle Fibers, Skeletal/metabolism
- Muscle Proteins/metabolism
- Muscle, Skeletal/metabolism
- Myocardium/metabolism
- Rats
- Rats, Wistar
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- alpha-Crystallin B Chain/metabolism
Collapse
Affiliation(s)
- Philip Doran
- Department of Biology, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | | | | | | |
Collapse
|
10
|
N/A, 李 强. N/A. Shijie Huaren Xiaohua Zazhi 2006; 14:2954-2957. [DOI: 10.11569/wcjd.v14.i30.2954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
11
|
Verschuure P, Tatard C, Boelens WC, Grongnet JF, David JC. Expression of small heat shock proteins HspB2, HspB8, Hsp20 and cvHsp in different tissues of the perinatal developing pig. Eur J Cell Biol 2004; 82:523-30. [PMID: 14629120 DOI: 10.1078/0171-9335-00337] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recently, we have described the developmental expression of the small heat shock proteins (sHsps) Hsp27/HspB1 and alphaB-crystallin/HspB5 in different tissues of pigs from almost full-term foetuses to three years old adults (P. Tallot, J. F. Grongnet, J. C. David, Biol. Neonate, 83, 281-288, 2003). The data described in this report extends this study to four other members of the sHsp family (Hsp20/HspB6, cvHsp/HspB7, MKBP/HspB2 and HspB8). We studied expression of these proteins in porcine lens, brain, heart, liver, kidney, lung, skeletal muscle, stomach, and colon, and found a ubiquitous expression of Hsp20 and HspB8 as earlier reported for Hsp27 and alphaB-crystallin. In contrast, cvHsp and HspB2 expression is essentially restricted to heart and muscle. During development, the sHsps tend to (temporarily) increase in stomach, liver, lung, kidney, hippocampus, and striatum, while expression in heart is more or less constant, and a large variation is found in sHsp expression patterns in skeletal muscle. In cerebellum and cortex a temporary decrease of Hsp20 and HspB8 is observed directly after birth. The major impact of this study is that each tissue seems to have a unique profile of sHsp expression, which varies during development and may reflect the need of a particular tissue to maintain at all stages an optimal chaperoning machinery to protect against physiological stress.
Collapse
Affiliation(s)
- Pauline Verschuure
- Department of Biochemistry, 161 Nijmegen Center for Molecular Life Sciences, University of Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
12
|
Cicek M, Samant RS, Kinter M, Welch DR, Casey G. Identification of metastasis-associated proteins through protein analysis of metastatic MDA-MB-435 and metastasis-suppressed BRMS1 transfected-MDA-MB-435 cells. Clin Exp Metastasis 2004; 21:149-57. [PMID: 15168732 DOI: 10.1023/b:clin.0000024729.19084.f0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BRMS1 (breast cancer metastasis suppressor 1) was recently identified as a novel breast cancer metastasis suppressor gene. To further characterize BRMS1-mediated metastasis suppression, we applied two-dimensional proteomic and mass spectrometry (LC-tandem MS and MALDI-TOF) analysis to identify proteins differentially expressed between highly metastatic MDA-MB-435 cells and metastasis-suppressed BRMS1-transfected MDA-MB-435 cells. Quadruplicate independent 2D gels were run and analyzed under identical conditions. Following in-gel trypsin digestion of seven differentially expressed proteins, amino acid sequence and mass profiles of the peptides were generated. Proteins were identified from the NCBI non-redundant database using the search program TurboSequest. Differential expression was confirmed for five proteins, including annexin I and alpha B-crystallin, by Northern blot analysis and immunostaining. Furthermore, we showed that both proteins were expressed in vivo in lungs containing metastasized MDA-MB-435 cells but not expressed in normal lung tissue of athymic mice. Our results suggest that annexin I and alpha B-crystallin are important cellular proteins that are down regulated through BRMS1 mediated metastasis suppression.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Annexin A1/biosynthesis
- Annexin A1/genetics
- Blotting, Northern
- Blotting, Western
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal/genetics
- Carcinoma, Ductal/metabolism
- Carcinoma, Ductal/pathology
- Carcinoma, Ductal/secondary
- Electrophoresis, Gel, Two-Dimensional
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/secondary
- Mice
- Mice, Nude
- Molecular Sequence Data
- Neoplasm Metastasis/genetics
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Repressor Proteins
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Subtraction Technique
- Transfection
- Transplantation, Heterologous
- alpha-Crystallin B Chain/biosynthesis
- alpha-Crystallin B Chain/genetics
Collapse
Affiliation(s)
- Muzaffer Cicek
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
13
|
Roskams T, Cassiman D, De Vos R, Libbrecht L. Neuroregulation of the neuroendocrine compartment of the liver. ACTA ACUST UNITED AC 2004; 280:910-23. [PMID: 15382010 DOI: 10.1002/ar.a.20096] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Liver progenitor cells as well as hepatic stellate cells have neuroendocrine features. Progenitor cells express chromogranin-A and neural cell adhesion molecule, parathyroid hormone-related peptide, S-100 protein, neurotrophins, and neurotrophin receptors, while hepatic stellate cells express synaptophysin, glial fibrillary acidic protein, neural cell adhesion molecule, nestin, neurotrophins, and their receptors. This phenotype suggests that these cell types form a neuroendocrine compartment of the liver, which could be under the control of the central nervous system. We recently showed that the parasympathetic nervous system promotes progenitor cell expansion after liver injury, since selective vagotomy reduces the number of progenitor cells after chemical injury in the rat. Similarly, after transplantation, which surgically denervates the liver, human livers that develop hepatitis have fewer progenitor cells than native, fully innervated livers with similar degrees of liver injury. There is also accumulating experimental evidence linking the autonomic system, in particular the sympathetic nervous system (SNS), with the pathogenesis of cirrhosis and its complications. Recently, it has been shown that hepatic stellate cells themselves respond to neurotransmitters. Moreover, inhibition of the SNS reduced fibrosis in carbon tetrachloride-induced liver injury. In view of the denervated state of transplanted livers, it is very important to unravel the neural control mechanisms of regeneration and fibrogenesis. Moreover, since there is a shortage of donor organs, a better understanding of the mechanisms of regeneration could have therapeutic possibilities, which could even obviate the need for orthotopic liver transplantation.
Collapse
Affiliation(s)
- Tania Roskams
- Department of Pathology, University of Leuven, Belgium.
| | | | | | | |
Collapse
|