1
|
Huang Z, Fong CY, Gauthaman K, Sukumar P, Choolani M, Bongso A. Novel approaches to manipulating foetal cells in the maternal circulation for non-invasive prenatal diagnosis of the unborn child. J Cell Biochem 2011; 112:1475-85. [DOI: 10.1002/jcb.23084] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
2
|
Troeger C, Perahud I, Moser S, Holzgreve W. Transplacental traffic after in utero mesenchymal stem cell transplantation. Stem Cells Dev 2011; 19:1385-92. [PMID: 20131967 DOI: 10.1089/scd.2009.0434] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Transplacental traffic of fetal progenitor and differentiated cells is a well-known phenomenon in pregnancies. We hypothesize that intrauterine stem cell transplantation leads to microchimerism in the dams and that this is gestational age-dependent. EGFP+ fetal liver-derived mesenchymal stem cell (MSC) (10(5) per fetus) were injected intraperitoneally into congeneic and allogeneic recipient fetuses at E12 versus E13.5 of murine pregnancy (56 dams). Engraftment in maternal organs was evaluated using TaqMan quantitative polymerase chain reaction (PCR) and fluorescence microscopy during pregnancy (1, 3, and 7 days after in utero transplantation [IUT]) and after delivery (1 and 4 weeks after delivery). One day after IUT donor cells were mainly found in the placenta (E12: 9/10 dams vs. E13.5: 4/8 dams) and laparotomy site (E12: 5/10 dams vs. E13.5: 4/8 dams). Three days after IUT these probabilities decreased significantly in the placenta to 3/8 and 1/3, respectively, whereas it was increased within the surgical wound to 8/8 and 2/4. One week after IUT donor cells could be detected in other single maternal organs, such as bone marrow or spleen. The surgical wound was chimeric in all dams. One week after delivery the surgical wound was still a major site of engraftment in both groups. E12 IUT resulted in detectable donor cell microchimerism in the maternal bone marrow (3/4), liver (2/4), lungs (1/4), spleen (1/4), and thymus (1/4), whereas engraftment probabilities were lower following E13.5 IUT (BM: 1/4, liver: 2/4, lungs: 1/4, spleen: 1/4, thymus: 0/4). At 4 weeks after delivery persistent microchimerism was found only after E12 IUT in various maternal organs (BM: 1/4, spleen: 1/4, lungs: 1/4) and within newly created surgical wounds (3/4), but completely not in the E13.5 group. Allogeneic IUT did also not result in any detectable long-term fetal microchimerism. An earlier IUT might lead to a higher transplacental traffic of donor MSC and persistent microchimerism within maternal tissues. Even 4 weeks after delivery, these cells are present in surgical wounds.
Collapse
Affiliation(s)
- Carolyn Troeger
- Laboratory for Prenatal Medicine, Department of Obstetrics and Gynecology, University Hospital, Basel, Switzerland.
| | | | | | | |
Collapse
|
3
|
Abstract
The method of spectral karyotyping (SKY) is based on a combination of the technologies of charge-coupled device imaging and spectrometry. The engineering feasibility has been realized in the SpectraCube system from Applied Spectral Imaging Inc., and it allows the simultaneous identification of all 24 human chromosomes. This is performed by characterizing the spectral signature of every image pixel in relation to a fluorochrome combinatorial library translating the image and spectral information into chromosome classification. Applications for SKY include pre- and postnatal characterization of certain numerical and structural rearrangements and complex karyotypes and highly informative analysis of sample materials with only single or few cells available for investigation.
Collapse
|
4
|
|
5
|
Holzgreve W, Hahn S, Zhong XY, Lapaire O, Hösli I, Tercanli S, Mindy P. Genetic communication between fetus and mother: short- and long-term consequences. Am J Obstet Gynecol 2007; 196:372-81. [PMID: 17403426 DOI: 10.1016/j.ajog.2006.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Accepted: 12/12/2006] [Indexed: 01/26/2023]
Affiliation(s)
- Wolfgang Holzgreve
- Department of Obstetrics and Gynecology, University of Basel, Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Fetal stem cells can be isolated from fetal blood and bone marrow as well as from other fetal tissues, including liver and kidney. Fetal blood is a rich source of haemopoietic stem cells (HSC), which proliferate more rapidly than those in cord blood or adult bone marrow. First trimester fetal blood also contains a population of non-haemopoietic mesenchymal stem cells (MSC), which support haemopoiesis and can differentiate along multiple lineages. In terms of eventual downstream application, both fetal HSC and MSC have advantages over their adult counterparts, including better intrinsic homing and engraftment, greater multipotentiality and lower immunogenicity. Fetal stem cells are less ethically contentious than embryonic stem cells and their differentiation potential appears greater than adult stem cells. Fetal stem cells represent powerful tools for exploring many aspects of cell biology and hold considerable promise as therapeutic tools for cell transplantation and ex vivo gene therapy.
Collapse
Affiliation(s)
- Keelin O'Donoghue
- Experimental Fetal Medicine Group, Institute of Reproductive and Developmental Biology, Imperial College London, Queen Charlotte's and Chelsea Hospital, London W12 0NN, UK.
| | | |
Collapse
|
7
|
Fuks AM, Hsu CD. Prenatal Diagnosis using Fetal Genetic Material in Maternal Circulation. Taiwan J Obstet Gynecol 2005. [DOI: 10.1016/s1028-4559(09)60100-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
8
|
Bianchi DW. Fetomaternal cell traffic, pregnancy-associated progenitor cells, and autoimmune disease. Best Pract Res Clin Obstet Gynaecol 2004; 18:959-75. [PMID: 15582549 DOI: 10.1016/j.bpobgyn.2004.06.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Fetal cells in maternal blood are a potential source of fetal genetic material that can be obtained non-invasively. Efforts to isolate these cells from maternal peripheral blood are limited by their low circulating numbers (approximately 1 per ml of maternal blood in euploid pregnancies). Expansion of these cells by culture would provide more cells for diagnosis and give an opportunity to study fetal metaphase chromosomes. Despite extensive optimization of culture conditions, many groups have failed reproducibly to grow fetal cells from pre-procedural maternal samples. An unexpected benefit of this research has been the discovery of a novel population of fetal cells, the pregnancy-associated progenitor cell (PAPC), which remains in maternal blood and tissue for decades following delivery. These cells might play a role in some autoimmune diseases, such as scleroderma. PAPCs appear to have stem cell characteristics, such as the ability to proliferate and differentiate. Recently developed animal models will help to ascertain whether these cells cause disease, respond to disease, or have therapeutic applications.
Collapse
Affiliation(s)
- Diana W Bianchi
- Division of Genetics, Departments of Pediatrics, Obstetrics and Gynecology, Tufts-New England Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
9
|
Guetta E, Simchen MJ, Mammon-Daviko K, Gordon D, Aviram-Goldring A, Rauchbach N, Barkai G. Analysis of Fetal Blood Cells in the Maternal Circulation: Challenges, Ongoing Efforts, and Potential Solutions. Stem Cells Dev 2004; 13:93-9. [PMID: 15068697 DOI: 10.1089/154732804773099290] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The invasive procedures amniocentesis and chorionic villus sampling (CVS) are routinely applied in pregnancies at risk for fetal abnormalities and the results obtained are the gold standard for prenatal diagnosis. Because these methods of fetal cell procurement involve a 0.5-2% risk for fetal loss, they are recommended mainly in cases at high risk for fetal genetic or cytogenetic abnormalities. The development of a reproducible, reliable, noninvasive method based on retrieval of rare fetal cells from the maternal circulation will render testing feasible for the general population. Despite intensive investigation, a satisfactory, clinically acceptable method has not yet emerged. Several cell types have been targeted to this end, mostly nucleated red blood cells (NRBC), CD34+ hematopoietic progenitors, and trophoblasts. Although these cell types have been unequivocally proven to be present in the maternal circulation, each bears a significant disadvantage, rendering their application in clinical testing currently impossible: NRBC cannot be expanded in culture, thereby ruling out metaphase chromosome analysis, an essential component of prenatal diagnosis. CD34+ cells do posses the potential for in vitro proliferation, however, they have been found to persist in the maternal circulation after delivery, thereby complicating diagnosis in consecutive pregnancies. Trophoblasts are not consistently detected in the maternal circulation. Moreover, due to the lack of a definitive fetal cell marker and a reliable sorting method, foolproof fetal cell identification of any of these cell types is not possible. This report outlines the obstacles that impede development of a method for noninvasive fetal cell sampling for prenatal genetic diagnosis, along with a description of our efforts to analyze simultaneously two fetal blood cell types, NRBC and CD34+ cells in maternal blood during pregnancy, and the problems encountered. This work and that of others lead us to suggest potential future directions to help develop this important technique.
Collapse
Affiliation(s)
- Esther Guetta
- Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel-Hashomer, Israel 52621.
| | | | | | | | | | | | | |
Collapse
|
10
|
Bischoff FZ, Marquéz-Do DA, Martinez DI, Dang D, Horne C, Lewis D, Simpson JL. Intact fetal cell isolation from maternal blood: improved isolation using a simple whole blood progenitor cell enrichment approach (RosetteSep). Clin Genet 2003; 63:483-9. [PMID: 12786755 DOI: 10.1034/j.1399-0004.2003.00087.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Isolation and analysis of intact fetal cells in maternal blood is an attractive method of non-invasive prenatal diagnosis; however, detection levels are not optimal. The poor sensitivity and inconsistent recovery of fetal cells is compounded by small numbers of circulating fetal cells and loss of fetal cells during enrichment procedures. Optimizing selection criteria by utilizing less complicated methods for target cell enrichment is essential. We report here salutary results using a simple density-based depletion method that requires neither MACS (magnetic-activated cell sorting) nor flow cytometric separation for enrichment of progenitor cells. Maternal blood samples (n = 81) were obtained from women prior to invasive prenatal genetic diagnostic procedures and processed randomly within 24 h using one of two density-based enrichment methods. For progenitor cell enrichment, samples (n = 49) were labeled with a RosetteSep progenitor antibody cocktail to remove unwanted mature T-cells, B-cells, granulocytes, natural killer cells, neutrophils and myelomonocytic cells. For CD45-negative cell enrichment, samples (n = 14) were labeled with RosetteSep CD45 antibody to remove unwanted maternal white cells. The desired cellular fraction was collected and analyzed by either fluorescent in situ hybridization (FISH) or real-time PCR for the presence of intact fetal cells and to quantify Y-chromosome-specific DYS1 sequences, respectively. Overall, FISH and real-time PCR correct detection rates for the progenitor cell enrichment approach were 53% and 89% with 3% (1 out of 30 cases) and 0% false-positive detection, respectively. Fetal sequences were detected in the range from 0.067 to 1.167 genome equivalents per milliliter of blood. No fetal cells were detected using the CD45-negative enrichment method. Flow cytometric analysis of cord blood showed that a unique myeloid population of cells was recovered using RosetteSep trade mark progenitor enrichment compared with the CD45-negative enrichment method. Sensitivity of the RosetteSep progenitor enrichment approach for detection of fetal cells in this pilot study shows great promise with recovery of cells that are suitable for FISH and automated microscope scanning. This simple and rapid method may also allow expansion in culture and characterization of the fetal cell type(s) that circulate in maternal blood, hence, greatly improving reliability of non-invasive prenatal diagnosis.
Collapse
Affiliation(s)
- F Z Bischoff
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The launch of the genomics and postgenomics era has greatly expanded our understanding of the genetic basis of many diseases. In conjunction with the sociocultural trend to delay childbirth and to maintain smaller family units, extra demand may be placed on the existing prenatal diagnostic services. The inherent risk of fetal loss associated with current prenatal diagnostic procedures, such as amniocentesis and chorionic villus sampling, has spurred research into non-invasive prenatal diagnosis. Much research has been conducted on the exploitation of fetal genetic material present in the maternal circulation. The initial focus was on the isolation of intact fetal cells and subsequently, the existence of extracellular fetal DNA in maternal plasma was realized. Exciting developments have been achieved in recent years. A large-scale trial to evaluate the clinical utility of fetal cell isolation from maternal blood for fetal aneuploidy diagnosis was launched and data were recently published. Much has taken place in the research of fetal DNA analysis in maternal plasma and in one example, namely prenatal RhD determination, this type of analysis has been used in the clinical setting. This paper reviews the technological developments in non-invasive prenatal diagnosis.
Collapse
Affiliation(s)
- Rossa W K Chiu
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Room 38023, 1/F Clinical Sciences Building, 30-32 Ngan Shing Street, Shatin, New Territories, Hong Kong, SAR
| | | |
Collapse
|
12
|
Hahn S, Holzgreve W. Prenatal diagnosis using fetal cells and cell-free fetal DNA in maternal blood: what is currently feasible? Clin Obstet Gynecol 2002; 45:649-56; discussion 730-2. [PMID: 12370604 DOI: 10.1097/00003081-200209000-00008] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Sinuhe Hahn
- Department of Obstetrics and Gynecology, University of Basel, Switzerland.
| | | |
Collapse
|
13
|
Current awareness in prenatal diagnosis. Prenat Diagn 2002; 22:638-44. [PMID: 12124707 DOI: 10.1002/pd.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|