1
|
Qian XH, Chen SY, Liu XL, Tang HD. ABCA7-Associated Clinical Features and Molecular Mechanisms in Alzheimer's Disease. Mol Neurobiol 2023; 60:5548-5556. [PMID: 37322288 DOI: 10.1007/s12035-023-03414-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Alzheimer's disease (AD) is the most common type of neurodegenerative disease and its pathogenesis is still unclear. Genetic factors are thought to account for a large proportion of the overall AD phenotypes. ATP-binding cassette transporter A7 (ABCA7) is one of the most important risk gene for AD. Multiple forms of ABCA7 variants significantly increase the risk of AD, such as single-nucleotide polymorphisms, premature termination codon variants, missense variants, variable number tandem repeat, mutations, and alternative splicing. AD patients with ABCA7 variants usually exhibit typical clinical and pathological features of traditional AD with a wide age of onset range. ABCA7 variants can alter ABCA7 protein expression levels and protein structure to affect protein functions such as abnormal lipid metabolism, amyloid precursor protein (APP) processing, and immune cell function. Specifically, ABCA7 deficiency can cause neuronal apoptosis by inducing endoplasmic reticulum stress through the PERK/eIF2α pathway. Second, ABCA7 deficiency can increase Aβ production by upregulating the SREBP2/BACE1 pathway and promoting APP endocytosis. In addition, the ability of microglia to phagocytose and degrade Aβ is destroyed by ABCA7 deficiency, leading to reduced clearance of Aβ. Finally, disturbance of lipid metabolism may also be an important method by which ABCA7 variants influence the incidence rate of AD. In the future, more attention should be given to different ABCA7 variants and ABCA7 targeted therapies for AD.
Collapse
Affiliation(s)
- Xiao-Hang Qian
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Si-Yue Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Li Liu
- Department of Neurology, Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China.
| | - Hui-Dong Tang
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Dib S, Pahnke J, Gosselet F. Role of ABCA7 in Human Health and in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22094603. [PMID: 33925691 PMCID: PMC8124837 DOI: 10.3390/ijms22094603] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
Several studies, including genome wide association studies (GWAS), have strongly suggested a central role for the ATP-binding cassette transporter subfamily A member 7 (ABCA7) in Alzheimer’s disease (AD). This ABC transporter is now considered as an important genetic determinant for late onset Alzheimer disease (LOAD) by regulating several molecular processes such as cholesterol metabolism and amyloid processing and clearance. In this review we shed light on these new functions and their cross-talk, explaining its implication in brain functioning, and therefore in AD onset and development.
Collapse
Affiliation(s)
- Shiraz Dib
- UR2465, LBHE-Blood–Brain Barrier Laboratory, University Artois, 62300 Lens, France;
| | - Jens Pahnke
- Department of Neuro-/Pathology, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway;
- LIED, University of Lübeck, Ratzenburger Allee 160, 23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Jelgavas iela 3, 1004 Riga, Latvia
- Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Fabien Gosselet
- UR2465, LBHE-Blood–Brain Barrier Laboratory, University Artois, 62300 Lens, France;
- Correspondence: ; Tel.: +33-(0)3-21791733
| |
Collapse
|
3
|
ABCA7 links sterol metabolism to the host defense system: Molecular background for potential management measure of Alzheimer's disease. Gene 2020; 768:145316. [PMID: 33221536 DOI: 10.1016/j.gene.2020.145316] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/20/2020] [Accepted: 11/13/2020] [Indexed: 01/10/2023]
Abstract
ATP-binding cassette transporter (ABC) A7 is a membrane protein that belongs to the large family of ABC transporters. It is 54% homologous in amino acid residue sequence to ABCA1 which mediates biogenesis of plasma high density lipoprotein (HDL) from cellular phospholipid and cholesterol with extracellular helical apolipoproteins such as apolipoprotein (apo) A-I. When transfected and expressed, ABCA7 also mediates generation of HDL-like particles but small and of less cholesterol content. However, endogenous ABCA7 is unlikely involved in HDL biogenesis and rather to regulate the host-defense system such as phagocytotic function of the cells. ABCA1 expression is regulated by cellular cholesterol levels, positively by the liver X receptor (LXR) in extrahepatic peripheral cells. However, it is modulated dually in the liver being relevant to transport of cholesterol for its catabolism; positively by LXR and negatively by sterol regulatory element binding protein (SREBP) or hepatic nuclear factor 4α (HNF4α). In contrast, ABCA7 expression was shown to be regulated negatively by the SREBP system so that decrease of cell cholesterol enhances ABCA7 function such as cellular phagocytotic reaction, suggesting that it links cholesterol metabolism to the host defense system. The interest is being build up in ABCA7 as its genomic diversity has been found related to a risk for late-onset Alzheimer's diseases. More recent findings indicate that ABCA7 is involved in metabolism of amyloid β peptide including its phagocytotic clearance. Accordingly, modulation of ABCA7 activity by manipulating cholesterol metabolism may open a new path for management of Alzheimer's disease.
Collapse
|
4
|
Aikawa T, Holm ML, Kanekiyo T. ABCA7 and Pathogenic Pathways of Alzheimer's Disease. Brain Sci 2018; 8:E27. [PMID: 29401741 PMCID: PMC5836046 DOI: 10.3390/brainsci8020027] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/01/2018] [Accepted: 02/03/2018] [Indexed: 12/22/2022] Open
Abstract
The ATP-binding cassette (ABC) reporter family functions to regulate the homeostasis of phospholipids and cholesterol in the central nervous system, as well as peripheral tissues. ABCA7 belongs to the A subfamily of ABC transporters, which shares 54% sequence identity with ABCA1. While ABCA7 is expressed in a variety of tissues/organs, including the brain, recent genome-wide association studies (GWAS) have identified ABCA7 gene variants as susceptibility loci for late-onset Alzheimer's disease (AD). More important, subsequent genome sequencing analyses have revealed that premature termination codon mutations in ABCA7 are associated with the increased risk for AD. Alzheimer's disease is a progressive neurodegenerative disease and the most common cause of dementia, where the accumulation and deposition of amyloid-β (Aβ) peptides cleaved from amyloid precursor protein (APP) in the brain trigger the pathogenic cascade of the disease. In consistence with human genetic studies, increasing evidence has demonstrated that ABCA7 deficiency exacerbates Aβ pathology using in vitro and in vivo models. While ABCA7 has been shown to mediate phagocytic activity in macrophages, ABCA7 is also involved in the microglial Aβ clearance pathway. Furthermore, ABCA7 deficiency results in accelerated Aβ production, likely by facilitating endocytosis and/or processing of APP. Taken together, current evidence suggests that ABCA7 loss-of-function contributes to AD-related phenotypes through multiple pathways. A better understanding of the function of ABCA7 beyond lipid metabolism in both physiological and pathological conditions becomes increasingly important to explore AD pathogenesis.
Collapse
Affiliation(s)
- Tomonori Aikawa
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | - Marie-Louise Holm
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|
5
|
Xiong T, Xu G, Huang XL, Lu KQ, Xie WQ, Yin K, Tu J. ATP-binding cassette transporter A1: A promising therapy target for prostate cancer. Mol Clin Oncol 2017; 8:9-14. [PMID: 29399345 DOI: 10.3892/mco.2017.1506] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 11/10/2017] [Indexed: 12/21/2022] Open
Abstract
ATP-binding cassette transporter A1 (ABCA1) has been found to mediate the transfer of cellular cholesterol across the plasma membrane to apolipoprotein A-I (apoA-I), and is essential for the synthesis of high-density lipoprotein. Mutations of the ABCA1 gene may induce Tangier disease and familial hypoalphalipoproteinemia; they may also lead to loss of cellular cholesterol homeostasis in prostate cancer, and increased intracellular cholesterol levels are frequently found in prostate cancer cells. Recent studies have demonstrated that ABCA1 may exert anticancer effects through cellular cholesterol efflux, which has been attracting increasing attention in association with prostate cancer. The aim of the present review was to focus on the current views on prostate cancer progression and the various functions of ABCA1, in order to provide new therapeutic targets for prostate cancer.
Collapse
Affiliation(s)
- Ting Xiong
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Gang Xu
- Department of Diagnostics Teaching and Research, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xue-Long Huang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Kai-Qiang Lu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Wei-Quan Xie
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Kai Yin
- Department of Diagnostics Teaching and Research, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jian Tu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
6
|
Rahman MR, Tajmim A, Ali M, Sharif M. Overview and Current Status of Alzheimer's Disease in Bangladesh. J Alzheimers Dis Rep 2017; 1:27-42. [PMID: 30480227 PMCID: PMC6159651 DOI: 10.3233/adr-170012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is a complex neurological disorder with economic, social, and medical burdens which is acknowledged as leading cause of dementia marked by the accumulation and aggregation of amyloid-β peptide and phosphorylated tau (p-tau) protein and concomitant dementia, neuron loss and brain atrophy. AD is the most prevalent neurodegenerative brain disorder with sporadic etiology, except for a small fraction of cases with familial inheritance where familial forms of AD are correlated to mutations in three functionally related genes: the amyloid-β protein precursor and presenilins 1 and 2, two key γ-secretase components. The common clinical features of AD are memory impairment that interrupts daily life, difficulty in accomplishing usual tasks, confusion with time or place, trouble understanding visual images and spatial relationships. Age is the most significant risk factor for AD, whereas other risk factors correlated with AD are hypercholesterolemia, hypertension, atherosclerosis, coronary heart disease, smoking, obesity, and diabetes. Despite decades of research, there is no satisfying therapy which will terminate the advancement of AD by acting on the origin of the disease process, whereas currently available therapeutics only provide symptomatic relief but fail to attain a definite cure and prevention. This review also represents the current status of AD in Bangladesh.
Collapse
Affiliation(s)
- Md Rashidur Rahman
- Department of Pharmacy, Jessore University of Science and Technology, Jessore, Bangladesh
| | - Afsana Tajmim
- Department of Pharmacy, Jessore University of Science and Technology, Jessore, Bangladesh
| | - Mohammad Ali
- Department of Pharmacy, Jessore University of Science and Technology, Jessore, Bangladesh
| | - Mostakim Sharif
- Department of Pharmacy, Jessore University of Science and Technology, Jessore, Bangladesh
| |
Collapse
|
7
|
Abstract
Cholesterol export from cells to extracellular acceptors represents the first step of the reverse cholesterol transport process and is an essential part of the multifaceted pathway for cells to control their cholesterol levels. Malfunction of this pathway leads to cholesterol accumulation in cells such as macrophages, which can form the basis of conditions like atherosclerosis. A number of ATP-binding cassette (ABC) transporters, namely ABCA1, ABCA7, ABCG1, and ABCG4, play an essential role in this process. In this chapter, we describe methods utilizing radiolabeled sterols for measuring ABC-transporter mediated sterol export, utilizing endogenously expressed transporters as well as overexpression systems.
Collapse
Affiliation(s)
- Alryel Yang
- Faculty of Pharmacy, The University of Sydney, Pharmacy Bank Building A15, Camperdown, Sydney, NSW, 2006, Australia
| | - Ingrid C Gelissen
- Faculty of Pharmacy, The University of Sydney, Pharmacy Bank Building A15, Camperdown, Sydney, NSW, 2006, Australia.
| |
Collapse
|
8
|
Zhao QF, Yu JT, Tan MS, Tan L. ABCA7 in Alzheimer's Disease. Mol Neurobiol 2014; 51:1008-16. [PMID: 24878767 DOI: 10.1007/s12035-014-8759-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 05/21/2014] [Indexed: 12/20/2022]
Abstract
ATP-binding cassette A7 (ABCA7) gene has recently been identified as a strong genetic locus associated with late-onset Alzheimer's disease (LOAD) through genome-wide association studies (GWASs). ABCA7 is a member of the ATP-binding cassette (ABC) transporter gene superfamily, which codes for 49 ABC proteins, divided into 7 subfamilies (coded A-G). As a multispan transmembrane protein, ABCA7 is most abundantly expressed in the microglial cells in the brain. The levels of ABCA7 have been detected to be increased in the Alzheimer's disease (AD) brain, which positively correlated with amyloid plaque burden and disease severity. Emerging data suggests that ABCA7 could be associated with AD via various pathways, possibly including amyloid-β (Aβ) accumulation, lipid metabolism, and phagocytosis. In this review, we summarize the known functions of ABCA7 and discuss the single-nucleotide polymorphisms (SNPs) related to LOAD, as well as their potential physiological effects. Finally, given the contributions of ABCA7 to AD pathogenesis, targeting ABCA7 might provide novel opportunities for AD therapy.
Collapse
Affiliation(s)
- Qing-Fei Zhao
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | | | | | | |
Collapse
|
9
|
Ching RW, Ahmed K, Boutros PC, Penn LZ, Bazett-Jones DP. Identifying gene locus associations with promyelocytic leukemia nuclear bodies using immuno-TRAP. ACTA ACUST UNITED AC 2013; 201:325-35. [PMID: 23589495 PMCID: PMC3628506 DOI: 10.1083/jcb.201211097] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Important insights into nuclear function would arise if gene loci physically interacting with particular subnuclear domains could be readily identified. Immunofluorescence microscopy combined with fluorescence in situ hybridization (immuno-FISH), the method that would typically be used in such a study, is limited by spatial resolution and requires prior assumptions for selecting genes to probe. Our new technique, immuno-TRAP, overcomes these limitations. Using promyelocytic leukemia nuclear bodies (PML NBs) as a model, we used immuno-TRAP to determine if specific genes localize within molecular dimensions with these bodies. Although we confirmed a TP53 gene-PML NB association, immuno-TRAP allowed us to uncover novel locus-PML NB associations, including the ABCA7 and TFF1 loci and, most surprisingly, the PML locus itself. These associations were cell type specific and reflected the cell's physiological state. Combined with microarrays or deep sequencing, immuno-TRAP provides powerful opportunities for identifying gene locus associations with potentially any nuclear subcompartment.
Collapse
Affiliation(s)
- Reagan W Ching
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | |
Collapse
|
10
|
Evidence for an alternative genomic structure, mRNA and protein sequence of human ABCA13. Gene 2013; 515:298-307. [DOI: 10.1016/j.gene.2012.11.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/21/2012] [Accepted: 11/29/2012] [Indexed: 11/21/2022]
|
11
|
Turton J, Morgan K. ATP-Binding Cassette, Subfamily A (ABC1), Member 7 (ABCA7). GENETIC VARIANTS IN ALZHEIMER'S DISEASE 2013:135-158. [DOI: 10.1007/978-1-4614-7309-1_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Barber RC. The genetics of Alzheimer's disease. SCIENTIFICA 2012; 2012:246210. [PMID: 24278680 PMCID: PMC3820554 DOI: 10.6064/2012/246210] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 11/28/2012] [Indexed: 06/02/2023]
Abstract
Alzheimer's disease is a progressive, neurodegenerative disease that represents a growing global health crisis. Two major forms of the disease exist: early onset (familial) and late onset (sporadic). Early onset Alzheimer's is rare, accounting for less than 5% of disease burden. It is inherited in Mendelian dominant fashion and is caused by mutations in three genes (APP, PSEN1, and PSEN2). Late onset Alzheimer's is common among individuals over 65 years of age. Heritability of this form of the disease is high (79%), but the etiology is driven by a combination of genetic and environmental factors. A large number of genes have been implicated in the development of late onset Alzheimer's. Examples that have been confirmed by multiple studies include ABCA7, APOE, BIN1, CD2AP, CD33, CLU, CR1, EPHA1, MS4A4A/MS4A4E/MS4A6E, PICALM, and SORL1. Despite tremendous progress over the past three decades, roughly half of the heritability for the late onset of the disease remains unidentified. Finding the remaining genetic factors that contribute to the development of late onset Alzheimer's disease holds the potential to provide novel targets for treatment and prevention, leading to the development of effective strategies to combat this devastating disease.
Collapse
Affiliation(s)
- Robert C. Barber
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| |
Collapse
|
13
|
Peter C, Waibel M, Keppeler H, Lehmann R, Xu G, Halama A, Adamski J, Schulze-Osthoff K, Wesselborg S, Lauber K. Release of lysophospholipid 'find-me' signals during apoptosis requires the ATP-binding cassette transporter A1. Autoimmunity 2012; 45:568-73. [PMID: 22913458 DOI: 10.3109/08916934.2012.719947] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Efficient engulfment of apoptotic cells is essential in multi-cellular organisms in order to prevent inflammatory responses. Apoptotic cells secure this process by releasing 'find-me' signals for the attraction of phagocytes. A major 'find-me' signal liberated from apoptotic cells is lysophosphatidylcholine (LPC). So far, however, the mechanisms underlying LPC release are poorly understood. In this study, we demonstrate that pharmacological inhibition and RNAi-mediated knock-down of the lipid transporter ABCA1 in apoptotic cells completely abolished phagocyte attraction. Moreover, ectopic expression of ABCA1 significantly enhanced monocyte migration to supernatants of apoptotic cells. Hence, ABCA1 represents a novel regulator of LPC release during apoptosis.
Collapse
Affiliation(s)
- Christoph Peter
- Department of Internal Medicine I, University of Tuebingen, Tuebingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Meurs I, Calpe-Berdiel L, Habets KLL, Zhao Y, Korporaal SJA, Mommaas AM, Josselin E, Hildebrand RB, Ye D, Out R, Kuiper J, Van Berkel TJC, Chimini G, Van Eck M. Effects of deletion of macrophage ABCA7 on lipid metabolism and the development of atherosclerosis in the presence and absence of ABCA1. PLoS One 2012; 7:e30984. [PMID: 22403608 PMCID: PMC3293875 DOI: 10.1371/journal.pone.0030984] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 12/29/2011] [Indexed: 11/19/2022] Open
Abstract
ABCA7, a close relative of ABCA1 which facilitates cholesterol efflux to lipid-poor apoproteins, has been implicated in macrophage lipid efflux and clearance of apoptotic cells in in vitro studies. In the current study, we investigated the in vivo effects of macrophage ABCA7 deficiency on lipid metabolism and atherosclerosis. Chimeras with dysfunctional ABCA7 in macrophages and other blood cells were generated by transplantation of bone marrow from ABCA7 knockout (KO) mice into irradiated low-density lipoprotein receptor (LDLr) KO mice. Unexpectedly, macrophage ABCA7 deficiency did not significantly affect atherosclerosis susceptibility of LDLr KO mice after 10 weeks Western-type diet feeding. However, ABCA7 deficiency was associated with 2-fold (p<0.05) higher macrophage ABCA1 mRNA expression levels. Combined disruption of ABCA1 and ABCA7 in bone-marrow-derived cells increased atherosclerotic lesion development (1.5-fold (p>0.05) as compared to wild type transplanted mice. However, single deletion of ABCA1 had a similar effect (1.8-fold, p<0.05). Macrophage foam cell accumulation in the peritoneal cavity was reduced in ABCA1/ABCA7 dKO transplanted animals as compared to single ABCA1 KO transplanted mice, which was associated with increased ABCG1 expression. Interestingly, spleens of ABCA1/ABCA7 double KO transplanted mice were significantly larger as compared to the other 3 groups and showed massive macrophage lipid accumulation, a reduction in CD3+ T-cells, and increased expression of key regulators of erythropoiesis. In conclusion, deletion of ABCA7 in bone marrow-derived cells does not affect atherogenesis in the arterial wall neither in the absence or presence of ABCA1. Interestingly, combined deletion of bone marrow ABCA1 and ABCA7 causes severe splenomegaly associated with cellular lipid accumulation, a reduction in splenic CD3+ T cells, and induced markers of erythropoeisis. Our data indicate that ABCA7 may play a role in T cell proliferation and erythropoeisis in spleen.
Collapse
Affiliation(s)
- Illiana Meurs
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
- Current position at Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Laura Calpe-Berdiel
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
| | - Kim L. L. Habets
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
| | - Ying Zhao
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
| | - Suzanne J. A. Korporaal
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
| | - A. Mieke Mommaas
- Electron Microscopy Section, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Emmanuelle Josselin
- Centre d'Immunologie de Marseille Luminy, Institut National de la Santé et de la Recherche Médicale, Université de la Méditerranée, Marseille, France
| | - Reeni B. Hildebrand
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
| | - Dan Ye
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
| | - Ruud Out
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
| | - Johan Kuiper
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
| | - Theo J. C. Van Berkel
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
| | - Giovanna Chimini
- Centre d'Immunologie de Marseille Luminy, Institut National de la Santé et de la Recherche Médicale, Université de la Méditerranée, Marseille, France
| | - Miranda Van Eck
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
15
|
Piehler AP, Ozcürümez M, Kaminski WE. A-Subclass ATP-Binding Cassette Proteins in Brain Lipid Homeostasis and Neurodegeneration. Front Psychiatry 2012; 3:17. [PMID: 22403555 PMCID: PMC3293240 DOI: 10.3389/fpsyt.2012.00017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 02/19/2012] [Indexed: 12/24/2022] Open
Abstract
The A-subclass of ATP-binding cassette (ABC) transporters comprises 12 structurally related members of the evolutionarily highly conserved superfamily of ABC transporters. ABCA transporters represent a subgroup of "full-size" multispan transporters of which several members have been shown to mediate the transport of a variety of physiologic lipid compounds across membrane barriers. The importance of ABCA transporters in human disease is documented by the observations that so far four members of this protein family (ABCA1, ABCA3, ABCA4, ABCA12) have been causatively linked to monogenetic disorders including familial high-density lipoprotein deficiency, neonatal surfactant deficiency, degenerative retinopathies, and congenital keratinization disorders. Recent research also point to a significant contribution of several A-subfamily ABC transporters to neurodegenerative diseases, in particular Alzheimer's disease (AD). This review will give a summary of our current knowledge of the A-subclass of ABC transporters with a special focus on brain lipid homeostasis and their involvement in AD.
Collapse
|
16
|
Lee JS, Ward WO, Liu J, Ren H, Vallanat B, Delker D, Corton JC. Hepatic xenobiotic metabolizing enzyme and transporter gene expression through the life stages of the mouse. PLoS One 2011; 6:e24381. [PMID: 21931700 PMCID: PMC3169610 DOI: 10.1371/journal.pone.0024381] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 08/09/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Differences in responses to environmental chemicals and drugs between life stages are likely due in part to differences in the expression of xenobiotic metabolizing enzymes and transporters (XMETs). No comprehensive analysis of the mRNA expression of XMETs has been carried out through life stages in any species. RESULTS Using full-genome arrays, the mRNA expression of all XMETs and their regulatory proteins was examined during fetal (gestation day (GD) 19), neonatal (postnatal day (PND) 7), prepubescent (PND32), middle age (12 months), and old age (18 and 24 months) in the C57BL/6J (C57) mouse liver and compared to adults. Fetal and neonatal life stages exhibited dramatic differences in XMET mRNA expression compared to the relatively minor effects of old age. The total number of XMET probe sets that differed from adults was 636, 500, 84, 5, 43, and 102 for GD19, PND7, PND32, 12 months, 18 months and 24 months, respectively. At all life stages except PND32, under-expressed genes outnumbered over-expressed genes. The altered XMETs included those in all of the major metabolic and transport phases including introduction of reactive or polar groups (Phase I), conjugation (Phase II) and excretion (Phase III). In the fetus and neonate, parallel increases in expression were noted in the dioxin receptor, Nrf2 components and their regulated genes while nuclear receptors and regulated genes were generally down-regulated. Suppression of male-specific XMETs was observed at early (GD19, PND7) and to a lesser extent, later life stages (18 and 24 months). A number of female-specific XMETs exhibited a spike in expression centered at PND7. CONCLUSIONS The analysis revealed dramatic differences in the expression of the XMETs, especially in the fetus and neonate that are partially dependent on gender-dependent factors. XMET expression can be used to predict life stage-specific responses to environmental chemicals and drugs.
Collapse
Affiliation(s)
- Janice S Lee
- National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America.
| | | | | | | | | | | | | |
Collapse
|
17
|
Tanaka N, Abe-Dohmae S, Iwamoto N, Yokoyama S. Roles of ATP-binding cassette transporter A7 in cholesterol homeostasis and host defense system. J Atheroscler Thromb 2010; 18:274-81. [PMID: 21173549 DOI: 10.5551/jat.6726] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
ATP-binding cassette transporter (ABC) A7 is an ABC family protein that is a so-called full-size ABC transporter, highly homologous to ABCA1, which mediates the biogenesis of high-density lipoprotein (HDL) with cellular lipid and helical apolipoproteins. ABCA7 mediates the formation of HDL when exogenously transfected and expressed; however, endogenous ABCA7 was shown to have no significant impact on the generation of HDL and was found to be associated with phagocytosis regulated by sterol regulatory element binding protein 2. Since phagocytosis is one of the fundamental functions of animal cells as an important responsive reaction to infection, injury and apoptosis, ABCA7 seems to be one of the key molecules linking sterol homeostasis and the host defense system. In this context, HDL apolipoproteins were shown to enhance phagocytosis by stabilizing ABCA7 against calpain-mediated degradation and increasing its activity, shedding light on a new aspect of the regulation of the host-defense system.
Collapse
Affiliation(s)
- Nobukiyo Tanaka
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| | | | | | | |
Collapse
|
18
|
Hamon Y, Trompier D, Ma Z, Venegas V, Pophillat M, Mignotte V, Zhou Z, Chimini G. Cooperation between engulfment receptors: the case of ABCA1 and MEGF10. PLoS One 2006; 1:e120. [PMID: 17205124 PMCID: PMC1762421 DOI: 10.1371/journal.pone.0000120] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 11/28/2006] [Indexed: 11/26/2022] Open
Abstract
The engulfment of dying cells is a specialized form of phagocytosis that is extremely conserved across evolution. In the worm, it is genetically controlled by two parallel pathways, which are only partially reconstituted in mammals. We focused on the recapitulation of the CED-1 defined pathway in mammalian systems. We first explored and validated MEGF10, a novel receptor bearing striking structural similarities to CED-1, as a bona fide functional ortholog in mammals and hence progressed toward the analysis of molecular interactions along the corresponding pathway. We ascertained that, in a system of forced expression by transfection, MEGF10 function can be modulated by the ATP binding cassette transporter ABCA1, ortholog to CED-7. Indeed, the coexpression of either a functional or a mutant ABCA1 exerted a transdominant positive or negative modulation on the MEGF10-dependent engulfment. The combined use of biochemical and biophysical approaches indicated that this functional cooperation relies on the alternate association of these receptors with a common partner, endogenously expressed in our cell system. We provide the first working model structuring in mammals the CED-1 dependent pathway.
Collapse
Affiliation(s)
- Yannick Hamon
- Centre d'Immunologie de Marseille Luminy, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de la Méditerranée, Marseille, France
| | - Doriane Trompier
- Centre d'Immunologie de Marseille Luminy, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de la Méditerranée, Marseille, France
| | - Zhong Ma
- Carter Immunology Center and the Department Of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Victor Venegas
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Matthieu Pophillat
- Centre d'Immunologie de Marseille Luminy, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de la Méditerranée, Marseille, France
| | - Vincent Mignotte
- Institut Cochin, Institut National de la Santé et de la Recherche Médicale U 567, Centre National de la Recherche Scientifique UMR 8104, Université Paris V, Paris, France
| | - Zheng Zhou
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Giovanna Chimini
- Centre d'Immunologie de Marseille Luminy, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de la Méditerranée, Marseille, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
19
|
Farke C, Viturro E, Meyer HHD, Albrecht C. Identification of the bovine cholesterol efflux regulatory protein ABCA1 and its expression in various tissues1. J Anim Sci 2006; 84:2887-94. [PMID: 17032780 DOI: 10.2527/jas.2006-042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ATP-binding cassette transporter A1 (ABCA1) is known to play a significant role in cellular export of phospholipids and cholesterol in humans. The ABCA1 transporter might also play a crucial role in cellular cholesterol homeostasis in the cow or in the transfer of cholesterol into the milk, but its presence and tissue distribution in the bovine is unknown. Therefore, we studied the expression and distribution of the bovine ABCA1 transporter using quantitative PCR and sequenced the entire ABCA1 coding region. In addition, the proximal promoter was identified and screened for regulatory elements. Concordant with data from other mammalian species, bovine ABCA1 mRNA was expressed and detected in all tissues tested. The highest expression levels were detected in lung, esophagus, uterus, spleen, and muscle. Sequence analysis revealed that the open reading frame of this gene consists of 6,786 bases and encodes for a protein of 2,261 AA with a predicted molecular weight of 254 kDa. The deduced bovine ABCA1 protein shows the highest AA sequence homology with human (94%), mouse (93%), rat (92%), and chicken (85%). Analysis of the putative ABCA1 promoter region revealed potential transcription factor binding sites associated with ABCA1 transcription and lipid metabolism. This work could open new avenues for elucidating a potential role of ABCA1 in sterol homeostasis in the bovine organism.
Collapse
Affiliation(s)
- C Farke
- Physiology Weihenstephan, Technical University Munich, 85354 Freising, Germany
| | | | | | | |
Collapse
|
20
|
Pennings M, Meurs I, Ye D, Out R, Hoekstra M, Van Berkel TJC, Van Eck M. Regulation of cholesterol homeostasis in macrophages and consequences for atherosclerotic lesion development. FEBS Lett 2006; 580:5588-96. [PMID: 16935283 DOI: 10.1016/j.febslet.2006.08.022] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 07/28/2006] [Accepted: 08/06/2006] [Indexed: 11/25/2022]
Abstract
Foam cell formation due to excessive accumulation of cholesterol by macrophages is a pathological hallmark of atherosclerosis. Macrophages cannot limit the uptake of cholesterol and therefore depend on cholesterol efflux pathways for preventing their transformation into foam cells. Several ABC-transporters, including ABCA1 and ABCG1, facilitate the efflux of cholesterol from macrophages. These transporters, however, also affect membrane lipid asymmetry which may have important implications for cellular endocytotic pathways. We propose that in addition to the generally accepted role of these ABC-transporters in the prevention of foam cell formation by induction of cholesterol efflux from macrophages, they also influence the macrophage endocytotic uptake.
Collapse
Affiliation(s)
- Marieke Pennings
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
21
|
Zarubica A, Trompier D, Chimini G. ABCA1, from pathology to membrane function. Pflugers Arch 2006; 453:569-79. [PMID: 16858612 DOI: 10.1007/s00424-006-0108-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 05/15/2006] [Accepted: 05/24/2006] [Indexed: 11/30/2022]
Abstract
The ABCA1 transporter is the prototype of the A class of mammalian adenosine triphosphate binding cassette transporters and one of the largest members of this family. ABCA1 has been originally identified as an engulfment receptor on macrophages and, more recently, it has been shown to play an essential role in the handling of cellular lipids. Indeed by promoting the effluxes of membrane phospholipids and cholesterol to lipid-poor apoprotein acceptors, ABCA1 controls the formation of high-density lipoproteins and thus the whole process of reverse cholesterol transport. A number of additional phenotypes have been found in the mouse model of invalidation of the ABCA1 gene. In spite of their clinical diversity, they all are extremely sensitive to variations in the physicochemical properties of the cell membrane, which ABCA1 controls as a lipid translocator.
Collapse
Affiliation(s)
- Ana Zarubica
- Centre d'Immunologie de Marseille Luminy, INSERM, CNRS, Université de la Méditerranée, Parc Scientifique de Luminy, Marseille, Cedex 09, France
| | | | | |
Collapse
|
22
|
Iwamoto N, Abe-Dohmae S, Sato R, Yokoyama S. ABCA7 expression is regulated by cellular cholesterol through the SREBP2 pathway and associated with phagocytosis. J Lipid Res 2006; 47:1915-27. [PMID: 16788211 DOI: 10.1194/jlr.m600127-jlr200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABCA7 is highly homologous to ABCA1 and mediates cellular cholesterol and phospholipid release by apolipoproteins when transfected in vitro. However, expression of ABCA7 was downregulated by increased cellular cholesterol while ABCA1 was upregulated, and the results were consistent by forced expression or downregulation of sterol-responsive/regulatory element (SRE) binding proteins (SREBPs). We analyzed the promoter of the ABCA7 gene and identified the new exon encoding 96 bp (mouse) and 95 bp (human) of the 5' untranslated region and the transcription start site at 1,122 bp (mouse) and 1,260 bp (human) upstream of the initiation methionine codon. At 5' upstream of this exon is the ABCA7 proximal promoter containing multiple binding sites of transcription factors for hematopoiesis and SRE of 9 bp at 212 bp (mouse) and 179 bp (human) upstream of the new exon. The apolipoprotein A-I-mediated lipid release was not influenced by suppression of the endogenous ABCA7 with small interfering RNA in mouse fibroblasts or by its increase in ABCA1-deficient mouse cells. In contrast, phagocytic activity was altered in parallel to the ABCA7 expression in these cells. When phagocytosis was induced, the messages increased for SREBP2, ABCA7, and other SREBP2-regulated proteins. The ABCA1 message decreased in this condition. We conclude that the ABCA7 gene is regulated by sterol in the opposite direction to ABCA1 through SRE/SREBP2 and that expression of ABCA7 by this regulation is associated with phagocytic activity.
Collapse
Affiliation(s)
- Noriyuki Iwamoto
- Biochemistry, Cell Biology, and Metabolism 1, Nagoya City University, Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | | | | | | |
Collapse
|
23
|
Kaminski WE, Piehler A, Wenzel JJ. ABC A-subfamily transporters: Structure, function and disease. Biochim Biophys Acta Mol Basis Dis 2006; 1762:510-24. [PMID: 16540294 DOI: 10.1016/j.bbadis.2006.01.011] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 01/30/2006] [Accepted: 01/31/2006] [Indexed: 12/01/2022]
Abstract
ABC transporters constitute a family of evolutionarily highly conserved multispan proteins that mediate the translocation of defined substrates across membrane barriers. Evidence has accumulated during the past years to suggest that a subgroup of 12 structurally related "full-size" transporters, referred to as ABC A-subfamily transporters, mediates the transport of a variety of physiologic lipid compounds. The emerging importance of ABC A-transporters in human disease is reflected by the fact that as yet four members of this protein family (ABCA1, ABCA3, ABCR/ABCA4, ABCA12) have been causatively linked to completely unrelated groups of monogenetic disorders including familial high-density lipoprotein (HDL) deficiency, neonatal surfactant deficiency, degenerative retinopathies and congenital keratinization disorders. Although the biological function of the remaining 8 ABC A-transporters currently awaits clarification, they represent promising candidate genes for a presumably equally heterogenous group of Mendelian diseases associated with perturbed cellular lipid transport. This review summarizes our current knowledge on the role of ABC A-subfamily transporters in physiology and disease and explores clinical entities which may be potentially associated with dysfunctional members of this gene subfamily.
Collapse
Affiliation(s)
- Wolfgang E Kaminski
- Institute for Clinical Chemistry, Faculty for Clinical Medicine Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | | | | |
Collapse
|
24
|
Albrecht C, Viturro E. The ABCA subfamily--gene and protein structures, functions and associated hereditary diseases. Pflugers Arch 2006; 453:581-9. [PMID: 16586097 DOI: 10.1007/s00424-006-0047-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2005] [Revised: 01/10/2006] [Accepted: 01/17/2006] [Indexed: 12/21/2022]
Abstract
To date, 12 members of the human ABCA subfamily are identified. They share a high degree of sequence conservation and have been mostly related with lipid trafficking in a wide range of body locations. Mutations in some of these genes have been described to cause severe hereditary diseases related with lipid transport, such as fatal surfactant deficiency or harlequin ichthyosis. In addition, most of them are hypothesized to participate in the subcellular sequestration of drugs, thereby being responsible for the resistance of several carcinoma cell lines against drug treatment. The objective of this review is to summarize the literature for this subfamily of ABC transporter proteins, excluding ABCA1 and ABCA4, which will be discussed in other chapters of this issue.
Collapse
|
25
|
Broccardo C, Nieoullon V, Amin R, Masmejean F, Carta S, Tassi S, Pophillat M, Rubartelli A, Pierres M, Rougon G, Nieoullon A, Chazal G, Chimini G. ABCA2 is a marker of neural progenitors and neuronal subsets in the adult rodent brain. J Neurochem 2006; 97:345-55. [PMID: 16539677 DOI: 10.1111/j.1471-4159.2006.03714.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The notion that the ATP-binding cassette transporter-A2 (ABCA2) may be involved in brain sterol homeostasis and is associated with early onset Alzheimer's disease led us to explore its neural expression. Our data support and extend the previous reports on ABCA2 expression by oligodendrocytes. They evidence that ABCA2 (i) is located in intracellular vesicles, identified in transfected cells as lysosome-related organelles only partially overlapping with classical endolysosomes; (ii) is a marker of neural progenitors as it is expressed in the subventricular zone of the lateral ventricle and the dentate gyrus of the hippocampal formation, sites of continual neurogenesis in the adult brain, and in nestin(+) cells differentiated in vitro from embryonic stem cells; (iii) persists, in the adult rodent brain, in a subset of GABAergic and glutamatergic neurons. Considering that the latter are targets of Alzheimer's lesions, these data provide a new rationale to explore the neuropathological consequences of ABCA2 functional dysregulations.
Collapse
Affiliation(s)
- Cyril Broccardo
- Centre d'Immunologie de Marseille Luminy INSERM CNRS, Université de la Méditerranée Marseille, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abe-Dohmae S, Ueda K, Yokoyama S. ABCA7, a molecule with unknown function. FEBS Lett 2005; 580:1178-82. [PMID: 16376881 DOI: 10.1016/j.febslet.2005.12.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 12/09/2005] [Accepted: 12/09/2005] [Indexed: 01/03/2023]
Abstract
Many ABC proteins are functional in cellular lipid transport in various different manners. ABCA7 is a full-size ABC transporter, the physiological function of which is unknown to date. This is a protein that shows the highest homology known to ABCA1, an essential molecule for producing of plasma high-density lipoprotein (HDL), and in fact it mimics ABCA1 to mediate the production of HDL from cellular lipid when transfected in vitro. It is therefore rational to assume that ABCA7 plays a relevant role in regulating of lipid metabolism. However, the ABCA7 expression profile is distinct from that of ABCA1, with respect to tissue-specific distribution and response to some reagents, presumably because of different transcriptional and posttranscriptional regulation. Potential roles and functions of ABCA7 in lipid homeostasis are discussed, especially in relation to HDL metabolism, based on available publications.
Collapse
Affiliation(s)
- Sumiko Abe-Dohmae
- Biochemistry, Molecular Biology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Nagoya, Aichi 467-8601, Japan.
| | | | | |
Collapse
|
27
|
Pohl A, Devaux PF, Herrmann A. Function of prokaryotic and eukaryotic ABC proteins in lipid transport. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1733:29-52. [PMID: 15749056 DOI: 10.1016/j.bbalip.2004.12.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 11/08/2004] [Accepted: 12/16/2004] [Indexed: 12/23/2022]
Abstract
ATP binding cassette (ABC) proteins of both eukaryotic and prokaryotic origins are implicated in the transport of lipids. In humans, members of the ABC protein families A, B, C, D and G are mutated in a number of lipid transport and metabolism disorders, such as Tangier disease, Stargardt syndrome, progressive familial intrahepatic cholestasis, pseudoxanthoma elasticum, adrenoleukodystrophy or sitosterolemia. Studies employing transfection, overexpression, reconstitution, deletion and inhibition indicate the transbilayer transport of endogenous lipids and their analogs by some of these proteins, modulating lipid transbilayer asymmetry. Other proteins appear to be involved in the exposure of specific lipids on the exoplasmic leaflet, allowing their uptake by acceptors and further transport to specific sites. Additionally, lipid transport by ABC proteins is currently being studied in non-human eukaryotes, e.g. in sea urchin, trypanosomatides, arabidopsis and yeast, as well as in prokaryotes such as Escherichia coli and Lactococcus lactis. Here, we review current information about the (putative) role of both pro- and eukaryotic ABC proteins in the various phenomena associated with lipid transport. Besides providing a better understanding of phenomena like lipid metabolism, circulation, multidrug resistance, hormonal processes, fertilization, vision and signalling, studies on pro- and eukaryotic ABC proteins might eventually enable us to put a name on some of the proteins mediating transbilayer lipid transport in various membranes of cells and organelles. It must be emphasized, however, that there are still many uncertainties concerning the functions and mechanisms of ABC proteins interacting with lipids. In particular, further purification and reconstitution experiments with an unambiguous role of ATP hydrolysis are needed to demonstrate a clear involvement of ABC proteins in lipid transbilayer asymmetry.
Collapse
Affiliation(s)
- Antje Pohl
- Humboldt-University Berlin, Institute of Biology, Invalidenstr. 42, D-10115 Berlin, Germany.
| | | | | |
Collapse
|
28
|
Linsel-Nitschke P, Jehle AW, Shan J, Cao G, Bacic D, Lan D, Wang N, Tall AR. Potential role of ABCA7 in cellular lipid efflux to apoA-I. J Lipid Res 2004; 46:86-92. [PMID: 15520449 DOI: 10.1194/jlr.m400247-jlr200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABCA7 is homologous to ABCA1 and has recently been shown in cell culture to bind apolipoprotein A-I (apoA-I) and to promote the efflux of phospholipids. However, it is not known if ABCA7 promotes lipid efflux in vivo. When expressed in HEK293 cells, both human and mouse ABCA7 promoted phospholipid efflux to apoA-I but no detectable cholesterol efflux. However, genetic knockdown of ABCA7 in mouse peritoneal macrophages did not affect phospholipid or cholesterol efflux to apoA-I. Moreover, in ABCA1-knockout macrophages, there was no detectable apoA-I-stimulated phospholipid efflux, inconsistent with a residual role of ABCA7. In contrast to plasma membrane localization of ABCA7 in transfected embryonic kidney cells, immunofluorescence microscopy of endogenous ABCA7 in macrophages showed a predominantly intracellular localization of the protein. Strikingly, immunofluorescence studies of adult mouse kidney revealed an apical brush border membrane localization of ABCA7 in the proximal tubule, suggesting that ABCA7 may come in contact with apoA-I in the glomerular filtrate. Although ABCA7 does not contribute to apolipoprotein-mediated lipid efflux in resting macrophages, its cell surface location in the kidney suggests that it could serve such a role in tissue microenvironments.
Collapse
Affiliation(s)
- Patrick Linsel-Nitschke
- Division of Molecular Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Wang N, Lan D, Gerbod-Giannone M, Linsel-Nitschke P, Jehle AW, Chen W, Martinez LO, Tall AR. ATP-binding cassette transporter A7 (ABCA7) binds apolipoprotein A-I and mediates cellular phospholipid but not cholesterol efflux. J Biol Chem 2003; 278:42906-12. [PMID: 12917409 DOI: 10.1074/jbc.m307831200] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP-binding cassette transporter 1 (ABCA1), the defective transporter in Tangier disease, binds and promotes cellular cholesterol and phospholipid efflux to apolipoprotein I (apoA-I). Based on a high degree of sequence homology between ABCA1 and ABCA7, a transporter of unknown function, we investigated the possibility that ABCA7 might be involved in apolipoprotein binding and lipid efflux. Similarly to cells expressing ABCA1, HEK293 cells overexpressing ABCA7 showed specific binding and cross-linking of lipid-poor apoA-I. ABCA7 expression increased cellular phosphatidylcholine and sphingomyelin efflux to apoA-I in a manner similar to ABCA1 but had no effect on cholesterol efflux. Western analysis showed a high protein level of ABCA7 in mouse spleen, lung, adrenal, and brain but low expression in liver. In contrast to ABCA1, ABCA7 showed moderate basal mRNA and protein levels in macrophages and lymphocytes but no induction by liver X receptor activation. These studies show that ABCA7 has the ability to bind apolipoproteins and promote efflux of cellular phospholipids without cholesterol, and they suggest a possible role of ABCA7 in cellular phospholipid metabolism in peripheral tissues.
Collapse
Affiliation(s)
- Nan Wang
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, New York 10032, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abe-Dohmae S, Ikeda Y, Matsuo M, Hayashi M, Okuhira KI, Ueda K, Yokoyama S. Human ABCA7 supports apolipoprotein-mediated release of cellular cholesterol and phospholipid to generate high density lipoprotein. J Biol Chem 2003; 279:604-11. [PMID: 14570867 DOI: 10.1074/jbc.m309888200] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein-mediated release of cellular cholesterol and phospholipids was induced in HEK293 cells by expressing human ATP-binding cassette transporter A7 (ABCA7) and ABC transporter A1 (ABCA1) proteins, whether transient or stable, to generate cholesterol-rich high density lipoprotein (HDL). Green fluorescent protein (GFP) attached at their C termini did not influence the lipid release reactions. Transfected ABCA7-GFP induced apolipoprotein-mediated assembly of cholesterol-containing HDL also in L929 cells, which otherwise generate only cholesterol-deficient HDL with their endogenous ABCA1. Time-dependent release of cholesterol and phospholipid by apolipoprotein A (apoA)-I was parallel both with ABCA1 and with ABCA7 when highly expressed in HEK293 cells, but dose-dependent profiles of lipid release on apoA-I and apoA-II were somewhat different between ABCA1 and ABCA7. Analyses of the stable clones with ABCA1-GFP (293/2c) and ABCA7-GFP (293/6c) by using the same vector indicated some differences in regulation of their activities by protein kinase modulators. Dibutyryl cyclic AMP increased ABCA1-GFP and the release of cholesterol and phospholipid in 293/2c but increased neither ABCA7-GFP nor the lipid release in 293/6c. Expression of ABCA1-GFP- and apoA-I-mediated lipid release were enhanced in parallel by phorbol 12-myristate 13-acetate (PMA) in 293/2c cells. In contrast, the same treatment of 293/6c increased ABCA7-GFP, but apoA-I-mediated lipid release was significantly suppressed. Despite these different responses to PMA, all of the effects of PMA were reversed by a specific protein kinase C inhibitor Gö6976, suggesting that the changes were in fact due to protein kinase C activation. A thiol protease inhibitor, N-acetyl-Leu-Leu-norleucinal, increased the protein levels of ABCA1-GFP in 293/2c and ABCA7-GFP in 293/6c, indicating their common degradation pathway. The data indicated that human ABCA7 would compensate the function of ABCA1 for release of cell cholesterol in a certain condition(s), but post-transcriptional regulation of their activity is different.
Collapse
Affiliation(s)
- Sumiko Abe-Dohmae
- Biochemistry, Molecular Biology and Metabolism 1, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Sasaki M, Shoji A, Kubo Y, Nada S, Yamaguchi A. Cloning of rat ABCA7 and its preferential expression in platelets. Biochem Biophys Res Commun 2003; 304:777-82. [PMID: 12727224 DOI: 10.1016/s0006-291x(03)00659-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We cloned the full-length cDNA of a rat orthologue of ABCA7 (rABCA7) from rat platelets. The cDNA of rABCA7 is 6510bp in length and encodes a protein of 2170 amino acids. The amino acid sequence of rABCA7 exhibits homology to those of mouse ABCA7 (92.5% identical in amino acid sequence) and human ABCA7 (76.6%). We obtained two clones of monoclonal antibodies against rABCA7 recognizing different epitopes. Analysis of CHO cells stably expressing rABCA7 by confocal laser-scanning microscopy indicated that rABCA7 is mainly located in the plasma membrane. Western blot analysis of rat tissues revealed that rABCA7 was preferentially expressed in platelets and that its apparent molecular mass was 250kDa. This is the first report of the tissue distribution of rABCA7 at the protein level and is the first reported case of ABC transporters being expressed in platelets, suggesting their important role in platelet function.
Collapse
Affiliation(s)
- Mari Sasaki
- Department of Cell Membrane Biology, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | | | | | | | | |
Collapse
|
32
|
Barros SA, Tennant RW, Cannon RE. Molecular structure and characterization of a novel murine ABC transporter, Abca13. Gene 2003; 307:191-200. [PMID: 12706902 DOI: 10.1016/s0378-1119(03)00465-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We report the isolation and structural characterization of the full-length gene and cDNA for a novel mouse ATP-binding cassette (ABC) transporter, Abca13. The mRNA, isolated from mouse kidney, is 6.7 kb in size and encodes a protein consisting of 2143 amino acids with a predicted molecular weight of 240 kDa. The Abca13 gene consists of 44 exons which span 360 kb of genomic sequence. Abca13 has been mapped to mouse chromosome 11.a2, revealing the human orthologue highly conserved on a syntenic region of human chromosome 7p12. The deduced mouse Abca13 protein shows highest amino acid sequence homology to human ABCA1 (50%), ABCA4 (50%), and ABCA12 (56%). Analysis of the putative Abca13 promoter region revealed potential transcription factor binding sites associated with myeloid- and lymphoid-derived cell types. mRNA transcript levels were highest in mouse submaxillary gland, epididymus, ovary, and thymus; with lower levels in a variety of other tissues. An alternative transcript was discovered in mouse kidney devoid of exon 11. The removal of exon 11 by post-transcriptional splicing causes a frameshift in the open reading frame and results in a premature termination codon. We hypothesize that the excision of exon 11 may serve as a regulatory mechanism in kidney, and perhaps other tissues as well. The molecular characterization of the mouse Abca13 gene will establish the foundation for future functional studies of the human ABCA13 transporter.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Exons
- Female
- Gene Expression
- Genes/genetics
- Humans
- Introns
- Male
- Mice
- Molecular Sequence Data
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Transcription Initiation Site
Collapse
Affiliation(s)
- Scott A Barros
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, 27514, USA
| | | | | |
Collapse
|
33
|
Zhou CJ, Inagaki N, Pleasure SJ, Zhao LX, Kikuyama S, Shioda S. ATP-binding cassette transporter ABCA2 (ABC2) expression in the developing spinal cord and PNS during myelination. J Comp Neurol 2002; 451:334-45. [PMID: 12210128 DOI: 10.1002/cne.10354] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We examined developmental characteristics of the ATP-binding cassette transporter ABCA2 (or ABC2) -expressing cells in rat spinal cord and peripheral nerves. In adult spinal cord, ABCA2 immunoreactivity was detected in lysosome-like organelles of mature oligodendrocyte cell bodies, and a single specific band was detected by Western blot analysis. In postnatal developing spinal cord, ABCA2 immunolabeling was first detected in a small number of cells restricted to the ventral marginal area and the dorsal funiculus at birth (P0). ABCA2-positive cells were co-immunolabeled by O4, a marker for late progenitor and immature oligodendrocytes. At the same time, myelin basic protein was apparent in the same restricted regions. The number of ABCA2 and O4 co-immunolabeled cells increased quickly in both dorsal and ventral regions from P2 and reached a peak at P8. After transient expression from P0 to P8, O4 labeling in white matter tracts decreased and disappeared. In contrast, ABCA2-positive oligodendrocytes persisted in gray and white matter throughout the spinal cord into adulthood. These data suggest a role for the ABCA2 transporter in maturation of oligodendrocyte lineage cells and the onset of myelination in the central nervous system. In addition, ABCA2 immunoreactivity was detected in the ciliated region of the ependyma in the central canal from early postnatal development. ABCA2 immunoreactivity was also detected in the Schwann cell lineage in developing spinal nerves and in adult trigeminal and sciatic nerves. ABCA2 was also expressed in numerous undetermined cells distributed in para-nerve connective tissues and nerve sheaths throughout early postnatal development. These data indicate multiple levels of involvement for ABCA2 in nervous system development especially with strong evidence for a role in myelination.
Collapse
Affiliation(s)
- Cheng-Ji Zhou
- Department of Neurology, Neurodevelopmental Disorders Laboratory, Program in Neuroscience, University of California at San Francisco, California 94143-0435, USA.
| | | | | | | | | | | |
Collapse
|
34
|
|