1
|
Zhou G, Wang Y, Gao S, Fu X, Cao Y, Peng Y, Zhuang J, Hu J, Shao A, Wang L. Potential Mechanisms and Perspectives in Ischemic Stroke Treatment Using Stem Cell Therapies. Front Cell Dev Biol 2021; 9:646927. [PMID: 33869200 PMCID: PMC8047216 DOI: 10.3389/fcell.2021.646927] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke (IS) remains one of the major causes of death and disability due to the limited ability of central nervous system cells to regenerate and differentiate. Although several advances have been made in stroke therapies in the last decades, there are only a few approaches available to improve IS outcome. In the acute phase of IS, mechanical thrombectomy and the administration of tissue plasminogen activator have been widely used, while aspirin or clopidogrel represents the main therapy used in the subacute or chronic phase. However, in most cases, stroke patients fail to achieve satisfactory functional recovery under the treatments mentioned above. Recently, cell therapy, especially stem cell therapy, has been considered as a novel and potential therapeutic strategy to improve stroke outcome through mechanisms, including cell differentiation, cell replacement, immunomodulation, neural circuit reconstruction, and protective factor release. Different stem cell types, such as mesenchymal stem cells, marrow mononuclear cells, and neural stem cells, have also been considered for stroke therapy. In recent years, many clinical and preclinical studies on cell therapy have been carried out, and numerous results have shown that cell therapy has bright prospects in the treatment of stroke. However, some cell therapy issues are not yet fully understood, such as its optimal parameters including cell type choice, cell doses, and injection routes; therefore, a closer relationship between basic and clinical research is needed. In this review, the role of cell therapy in stroke treatment and its mechanisms was summarized, as well as the function of different stem cell types in stroke treatment and the clinical trials using stem cell therapy to cure stroke, to reveal future insights on stroke-related cell therapy, and to guide further studies.
Collapse
Affiliation(s)
- Guoyang Zhou
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongjie Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiongjie Fu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Cao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yucong Peng
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianfeng Zhuang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junwen Hu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Franceschetti S, Sancini G, Buzzi A, Zucchini S, Paradiso B, Magnaghi G, Frassoni C, Chikhladze M, Avanzini G, Simonato M. A pathogenetic hypothesis of Unverricht–Lundborg disease onset and progression. Neurobiol Dis 2007; 25:675-85. [PMID: 17188503 DOI: 10.1016/j.nbd.2006.11.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 10/27/2006] [Accepted: 11/13/2006] [Indexed: 11/24/2022] Open
Abstract
Unverricht-Lundborg disease (EPM1), the most common progressive myoclonic epilepsy, is associated with a defect of cystatin B (CSTB), a protease inhibitor. We used CSTB knockout mice to test the hypothesis that EPM1 onset is related to a latent hyperexcitability and that progression depends on higher susceptibility to seizure-induced cell damage. Hippocampal slices prepared from CSTB-deficient mice were hyperexcitable, as they responded to afferent stimuli in CA1 with multiple population spikes and kainate perfusion provoked the appearance of epileptic-like activity earlier than in WT mice. This hyperexcitability may depend on loss of inhibition, because the density of GABA-immunoreactive cells was reduced in the hippocampus of CSTB knockouts. In vivo, CSTB-deficient mice treated with kainate displayed increased susceptibility to seizures, with shorter latency to seizure onset and increased seizure severity compared with WT littermates. Furthermore, a greater degree of neuronal damage was observed in CSTB-deficient than in WT mice after seizures of identical grade, indicating increased susceptibility to seizure-induced cell death.
Collapse
Affiliation(s)
- Silvana Franceschetti
- Division of Neurophysiology and Epileptology, Neurological Institute C. Besta via Caloria 11, 20133 Milan, Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Scallet AC, Kowalke PK, Rountree RL, Thorn BT, Binienda ZK. Electroencephalographic, behavioral, and c-fos responses to acute domoic acid exposure. Neurotoxicol Teratol 2004; 26:331-42. [PMID: 15019966 DOI: 10.1016/j.ntt.2003.10.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2003] [Revised: 08/12/2003] [Accepted: 10/03/2003] [Indexed: 11/17/2022]
Abstract
Domoic acid, a potent excitotoxic analogue of glutamate and kainate, may cause seizures, amnesia, and sometimes death in humans consuming contaminated shellfish. Continuous behavioral observations and recordings of the electrocorticogram (ECoG, via bipolar, epidural electrodes) were obtained from nonanesthetized rats for 2 h after intraperitoneal injection with either saline, 2.2, or 4.4 mg/kg of domoic acid. Rats were then sacrificed for c-fos immunohistochemistry. Fast Fourier transformation (FFT) of the ECoG data to obtain the voltage as a function of frequency indicated that the lower frequency bands (theta, 4.75-6.75 Hz and delta, 1.25-4.50 Hz) were the first to respond, with a significant elevation by 30 min after the high dose of domoic acid. The lower dose of domoic acid also caused a significant elevation of ECoG voltage, but not until later in the session. Sixty minutes after dosing, the behavioral biomarkers of "ear scratching" and "rearing, praying" (RP) seizures became significantly elevated in the high-dose rats. The low-dose rats showed no significant alterations in behavior at any time during the session. In postmortem brains obtained immediately after the sessions, c-fos was activated in the anterior olfactory nucleus by both the low and high doses of domoic acid. However, only the high dose increased c-fos immunoreactivity in the hippocampus, affecting both the granule and pyramidal neurons. These data indicate that electroencephalographic and c-fos responses can be obtained at a dose of domoic acid that fails to activate the behavioral response most commonly used as a bioassay for this marine toxin: ear scratching with the ipsilateral foot.
Collapse
Affiliation(s)
- Andrew C Scallet
- Division of Neurotoxicology, National Center for Toxicological Research, USFDA, 3900 NCTR Drive, Jefferson, AR 72079, USA.
| | | | | | | | | |
Collapse
|