1
|
Lee J, Yin D, Yun J, Kim M, Kim SW, Hwang H, Park JE, Lee B, Lee CJ, Shin HS, An HJ. Deciphering mouse brain spatial diversity via glyco-lipidomic mapping. Nat Commun 2024; 15:8689. [PMID: 39375371 PMCID: PMC11458762 DOI: 10.1038/s41467-024-53032-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
Gangliosides in the brain play a crucial role in modulating the integrity of vertebrate central nervous system in a region-specific manner. However, to date, a comprehensive structural elucidation of complex intact ganglioside isomers has not been achieved, resulting in the elusiveness into related molecular mechanism. Here, we present a glycolipidomic approach for isomer-specific and brain region-specific profiling of the mouse brain. Considerable region-specificity and commonality in specific group of regions are highlighted. Notably, we observe a similarity in the abundance of major isomers, GD1a and GD1b, within certain regions, which provides significant biological implications with interpretation through the lens of a theoretical retrosynthetic state-transition network. Furthermore, A glycocentric-omics approaches using gangliosides and N-glycans reveal a remarkable convergence in spatial dynamics, providing valuable insight into molecular interaction network. Collectively, this study uncovers the spatial dynamics of intact glyco-conjugates in the brain, which are relevant to regional function and accelerates the discovery of potential therapeutic targets for brain diseases.
Collapse
Affiliation(s)
- Jua Lee
- Proteomics Center of Excellence, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Dongtan Yin
- Graduate School of Analytical Science & Technology, Chungnam National University, 34134, Daejeon, South Korea
- Asia-Pacific Glycomics Reference Site, 34134, Daejeon, South Korea
| | - Jaekyung Yun
- Graduate School of Analytical Science & Technology, Chungnam National University, 34134, Daejeon, South Korea
- Asia-Pacific Glycomics Reference Site, 34134, Daejeon, South Korea
| | - Minsoo Kim
- Center for Cognition and Sociality, Institute for Basic Science, 34051, Daejeon, South Korea
| | - Seong-Wook Kim
- Center for Cognition and Sociality, Institute for Basic Science, 34051, Daejeon, South Korea
| | - Heeyoun Hwang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, 28119, Cheongju, South Korea
| | - Ji Eun Park
- Graduate School of Analytical Science & Technology, Chungnam National University, 34134, Daejeon, South Korea
- Asia-Pacific Glycomics Reference Site, 34134, Daejeon, South Korea
| | - Boyoung Lee
- Center for Cognition and Sociality, Institute for Basic Science, 34051, Daejeon, South Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, 34051, Daejeon, South Korea
| | - Hee-Sup Shin
- Center for Cognition and Sociality, Institute for Basic Science, 34051, Daejeon, South Korea
| | - Hyun Joo An
- Graduate School of Analytical Science & Technology, Chungnam National University, 34134, Daejeon, South Korea.
- Asia-Pacific Glycomics Reference Site, 34134, Daejeon, South Korea.
| |
Collapse
|
2
|
Vajn K, Viljetić B, Degmečić IV, Schnaar RL, Heffer M. Differential distribution of major brain gangliosides in the adult mouse central nervous system. PLoS One 2013; 8:e75720. [PMID: 24098718 PMCID: PMC3787110 DOI: 10.1371/journal.pone.0075720] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/16/2013] [Indexed: 11/24/2022] Open
Abstract
Gangliosides - sialic acid-bearing glycolipids - are major cell surface determinants on neurons and axons. The same four closely related structures, GM1, GD1a, GD1b and GT1b, comprise the majority of total brain gangliosides in mammals and birds. Gangliosides regulate the activities of proteins in the membranes in which they reside, and also act as cell-cell recognition receptors. Understanding the functions of major brain gangliosides requires knowledge of their tissue distribution, which has been accomplished in the past using biochemical and immunohistochemical methods. Armed with new knowledge about the stability and accessibility of gangliosides in tissues and new IgG-class specific monoclonal antibodies, we investigated the detailed tissue distribution of gangliosides in the adult mouse brain. Gangliosides GD1b and GT1b are widely expressed in gray and white matter. In contrast, GM1 is predominately found in white matter and GD1a is specifically expressed in certain brain nuclei/tracts. These findings are considered in relationship to the hypothesis that gangliosides GD1a and GT1b act as receptors for an important axon-myelin recognition protein, myelin-associated glycoprotein (MAG). Mediating axon-myelin interactions is but one potential function of the major brain gangliosides, and more detailed knowledge of their distribution may help direct future functional studies.
Collapse
Affiliation(s)
- Katarina Vajn
- Department of Medical Biology, University of Osijek School of Medicine, Osijek, Croatia
| | - Barbara Viljetić
- Department of Chemistry, Biochemistry and Clinical Chemistry, University of Osijek School of Medicine, Osijek, Croatia
| | | | - Ronald L. Schnaar
- Departments of Pharmacology and Neuroscience, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Marija Heffer
- Department of Medical Biology, University of Osijek School of Medicine, Osijek, Croatia
- * E-mail:
| |
Collapse
|