1
|
Panigrahi M, Kumar H, Saravanan KA, Rajawat D, Sonejita Nayak S, Ghildiyal K, Kaisa K, Parida S, Bhushan B, Dutt T. Trajectory of livestock genomics in South Asia: A comprehensive review. Gene 2022; 843:146808. [PMID: 35973570 DOI: 10.1016/j.gene.2022.146808] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Livestock plays a central role in sustaining human livelihood in South Asia. There are numerous and distinct livestock species in South Asian countries. Several of them have experienced genetic development in recent years due to the application of genomic technologies and effective breeding programs. This review discusses genomic studies on cattle, buffalo, sheep, goat, pig, horse, camel, yak, mithun, and poultry. The frontiers covered in this review are genetic diversity, admixture studies, selection signature research, QTL discovery, genome-wide association studies (GWAS), and genomic selection. The review concludes with recommendations for South Asian livestock systems to increasingly leverage genomic technologies, based on the lessons learned from the numerous case studies. This paper aims to present a comprehensive analysis of the dichotomy in the South Asian livestock sector and argues that a realistic approach to genomics in livestock can ensure long-term genetic advancements.
Collapse
Affiliation(s)
- Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India.
| | - Harshit Kumar
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - K A Saravanan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Kanika Ghildiyal
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Kaiho Kaisa
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Subhashree Parida
- Division of Pharmacology & Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| |
Collapse
|
2
|
Abstract
Genetic testing in horses began in the 1960s, when parentage testing using blood group markers became the standard. In the 1990s, parentage testing shifted from evaluating blood groups to DNA testing. The development of genetics and genomics in both human and veterinarian medicine, along with continued technological advances in the last 2 decades, has helped unravel the causal variants for many horse traits. Genetic testing is also now possible for a variety of phenotypic and disease traits and is used to assist in breeding and clinical management decisions. This article describes the genetic tests that are currently available for horses.
Collapse
Affiliation(s)
- Rebecca R Bellone
- Department of Population Health and Reproduction Davis, CA 95616, USA; Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
| | - Felipe Avila
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
3
|
Raudsepp T, Finno CJ, Bellone RR, Petersen JL. Ten years of the horse reference genome: insights into equine biology, domestication and population dynamics in the post-genome era. Anim Genet 2019; 50:569-597. [PMID: 31568563 PMCID: PMC6825885 DOI: 10.1111/age.12857] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2019] [Indexed: 12/14/2022]
Abstract
The horse reference genome from the Thoroughbred mare Twilight has been available for a decade and, together with advances in genomics technologies, has led to unparalleled developments in equine genomics. At the core of this progress is the continuing improvement of the quality, contiguity and completeness of the reference genome, and its functional annotation. Recent achievements include the release of the next version of the reference genome (EquCab3.0) and generation of a reference sequence for the Y chromosome. Horse satellite‐free centromeres provide unique models for mammalian centromere research. Despite extremely low genetic diversity of the Y chromosome, it has been possible to trace patrilines of breeds and pedigrees and show that Y variation was lost in the past approximately 2300 years owing to selective breeding. The high‐quality reference genome has led to the development of three different SNP arrays and WGSs of almost 2000 modern individual horses. The collection of WGS of hundreds of ancient horses is unique and not available for any other domestic species. These tools and resources have led to global population studies dissecting the natural history of the species and genetic makeup and ancestry of modern breeds. Most importantly, the available tools and resources, together with the discovery of functional elements, are dissecting molecular causes of a growing number of Mendelian and complex traits. The improved understanding of molecular underpinnings of various traits continues to benefit the health and performance of the horse whereas also serving as a model for complex disease across species.
Collapse
Affiliation(s)
- T Raudsepp
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Research, Texas A&M University, College Station, TX, 77843, USA
| | - C J Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - R R Bellone
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA.,School of Veterinary Medicine, Veterinary Genetics Laboratory, University of California-Davis, Davis, CA, 95616, USA
| | - J L Petersen
- Department of Animal Science, University of Nebraska, Lincoln, NE, 68583-0908, USA
| |
Collapse
|
4
|
COSTA MFM, DAVIES HM, ANDERSON GA, SLOCOMBE RF. Effects of two training protocols on Angiotensin I-converting enzyme (ACE) activity in horses. Equine Vet J 2011; 43:466-70. [DOI: 10.1111/j.2042-3306.2010.00320.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
|
6
|
|
7
|
Chowdhary BP, Raudsepp T. The horse genome derby: racing from map to whole genome sequence. Chromosome Res 2008; 16:109-27. [PMID: 18274866 DOI: 10.1007/s10577-008-1204-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The map of the horse genome has undergone unprecedented expansion during the past six years. Beginning from a modest collection of approximately 300 mapped markers scattered on the 31 pairs of autosomes and the X chromosome in 2001, today the horse genome is among the best-mapped in domestic animals. Presently, high-resolution linearly ordered gene maps are available for all autosomes as well as the X and the Y chromosome. The approximately 4350 mapped markers distributed over the approximately 2.68 Gbp long equine genome provide on average 1 marker every 620 kb. Among the most remarkable developments in equine genome analysis is the availability of the assembled sequence (EquCab2) of the female horse genome and the generation approximately 1.5 million single nucleotide polymorphisms (SNPs) from diverse breeds. This has triggered the creation of new tools and resources like the 60K SNP-chip and whole genome expression microarrays that hold promise to study the equine genome and transcriptome in ways not previously envisaged. As a result of these developments it is anticipated that, during coming years, the genetics underlying important monogenic traits will be analyzed with improved accuracy and speed. Of larger interest will be the prospects of dissecting the genetic component of various complex/multigenic traits that are of vital significance for equine health and welfare. The number of investigations recently initiated to study a multitude of such traits hold promise for improved diagnostics, prevention and therapeutic approaches for horses.
Collapse
Affiliation(s)
- Bhanu P Chowdhary
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843-4458, USA.
| | | |
Collapse
|
8
|
Lear T, Bailey E. Equine clinical cytogenetics: the past and future. Cytogenet Genome Res 2008; 120:42-9. [DOI: 10.1159/000118739] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2008] [Indexed: 11/19/2022] Open
|
9
|
Ryan MT, Sweeney T. Integrating molecular biology into the veterinary curriculum. JOURNAL OF VETERINARY MEDICAL EDUCATION 2007; 34:658-673. [PMID: 18326779 DOI: 10.3138/jvme.34.5.658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The modern discipline of molecular biology is gaining increasing relevance in the field of veterinary medicine. This trend must be reflected in the curriculum if veterinarians are to capitalize on opportunities arising from this field and direct its development toward their own goals as a profession. This review outlines current applications of molecular-based technologies that are relevant to the veterinary profession. In addition, the current techniques and technologies employed within the field of molecular biology are discussed. Difficulties associated with teaching a subject such as molecular biology within a veterinary curriculum can be alleviated by effectively integrating molecular topics throughout the curriculum, pitching the subject at an appropriate depth, and employing varied teaching methods throughout.
Collapse
Affiliation(s)
- Marion T Ryan
- College of Life Sciences, School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Dublin, Ireland.
| | | |
Collapse
|
10
|
Musilova P, Kubickova S, Vychodilova-Krenkova L, Kralik P, Matiasovic J, Hubertova D, Rubes J, Horin P. Cytogenetic mapping of immunity-related genes in the domestic horse. Anim Genet 2006; 36:507-10. [PMID: 16293125 DOI: 10.1111/j.1365-2052.2005.01348.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chromosomal locations of 19 horse immunity-related loci (CASP1, CD14, EIF5A, FCER1A, IFNG, IL12A, IL12B, IL12RB2, IL1A, IL23A, IL4, IL6, MMP7, MS4A2, MYD88, NOS2A, PTGS2, TFRC and TLR2) were determined by fluorescence in situ hybridization. For IFNG and PTGS2, this study is a confirmation of their previously reported position. In addition, microsatellite (HMBr1) was localized in the same region as IFNG. All genes were assigned to regions of conserved synteny and the data obtained in this study enhance the comparative human-horse map. Cytogenetic localization of IL6 to ECA4q14-q21.1 suggested a new breakage point that changes the order of loci compared with HSA7. The map assignments of these loci serve as anchors for other loci and will aid in the search for candidate genes associated with traits in the horse.
Collapse
Affiliation(s)
- P Musilova
- Department of Genetics and Reproduction, Veterinary Research Institute, Brno 621 32, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Kralik P, Matiasovic J, Horin P. Genetic evidence for the existence of interleukin-23 and for variation in the interleukin-12 and interleukin-12 receptor genes in the horse. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2006; 1:179-186. [PMID: 20483249 DOI: 10.1016/j.cbd.2005.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 09/11/2005] [Accepted: 09/14/2005] [Indexed: 05/29/2023]
Abstract
Immune loci, characterized by features reflecting their role in defense reactions and consequently related to evolutionary mechanisms, including polymorphisms or association with disease are suitable candidates for comparative analysis. Interleukin-12 and related cytokines are key molecules regulating natural and specific immune responses. In this study, we analyzed four horse IL12-related genes: IL23p19, IL12Rbeta2, IL12p40, and IL12p35. Genomic nucleotide sequence of the horse IL23 p19 sub-unit encoding gene was determined. The horse IL23p19 gene consists of four exons; its total mRNA length is 1004 bp, with a coding region of 579 bp. The predicted amino acid sequence of the horse IL23p19 sub-unit showed 88.0% sequence identity with the human sequence. A partial genomic sequence highly homologous to human IL12Rbeta2 suggesting existence of this gene in the horse was retrieved. Single nucleotide polymorphisms (SNPs) were identified in all four genes analyzed. PCR-RFLP genotyping was developed for selected SNPs. Inter-breed differences in allele and genotype frequencies were observed in IL12p35 SNP 242. The results showed that horse IL12-related genes are comparable to their counterparts in other mammalian species in terms of their structure and their genetic variation.
Collapse
Affiliation(s)
- Petr Kralik
- Institute of Animal Genetics, Faculty of Veterinary Medicine, Palackého 1/3, CZ-612 42 Brno, Czech Republic
| | | | | |
Collapse
|
12
|
Abstract
Genome research in animals used in agriculture has progressed rapidly in recent years, moving from rudimentary genome maps to trait maps to gene discovery. These advances are the result of animal genome projects following closely in the footsteps of the Human Genome Project, which has opened the door to genome research in farm animals. In return, genome research in livestock species is contributing to our understanding of chromosome evolution and to informing the human genome. Enhancement of these contributions plus the much anticipated application of DNA-based tools to animal health and production can be expected as livestock genomics enters its sequencing era.
Collapse
Affiliation(s)
- James E Womack
- Department of Veterinary Pathobiology, Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas 77843-4467, USA.
| |
Collapse
|
13
|
Penedo MCT, Millon LV, Bernoco D, Bailey E, Binns M, Cholewinski G, Ellis N, Flynn J, Gralak B, Guthrie A, Hasegawa T, Lindgren G, Lyons LA, Røed KH, Swinburne JE, Tozaki T. International Equine Gene Mapping Workshop Report: a comprehensive linkage map constructed with data from new markers and by merging four mapping resources. Cytogenet Genome Res 2005; 111:5-15. [PMID: 16093715 DOI: 10.1159/000085664] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Accepted: 08/26/2004] [Indexed: 11/19/2022] Open
Abstract
A comprehensive male linkage map was generated by adding 359 new, informative microsatellites to the International Equine Gene Map half-sibling reference families and by combining genotype data from three independent mapping resources: a full sibling family created at the Animal Health Trust in Newmarket, United Kingdom, eight half-sibling families from Sweden and two half-sibling families from the University of California, Davis. Because the combined data were derived primarily from half-sibling families, only autosomal markers were analyzed. The map was constructed from a total of 766 markers distributed on the 31 equine chromosomes. It has a higher marker density than that of previously reported maps, with 626 markers linearly ordered and 140 other markers assigned to a chromosomal region. Fifty-nine markers (7%) failed to meet the criteria for statistical evidence of linkage and remain unassigned. The map spans 3,740 cM with an average distance of 6.3 cM between markers. Fifty-five percent of the intervals are < or = 5 cM and only 3% > or = 20 cM. The present map demonstrates the cohesiveness of the different data sets and provides a single resource for genome scan analyses and integration with the radiation hybrid map.
Collapse
Affiliation(s)
- M C T Penedo
- School of Veterinary Medicine, University of California, Davis, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Gustafson-Seabury A, Raudsepp T, Goh G, Kata SR, Wagner ML, Tozaki T, Mickelson JR, Womack JE, Skow LC, Chowdhary BP. High-resolution RH map of horse chromosome 22 reveals a putative ancestral vertebrate chromosome. Genomics 2005; 85:188-200. [PMID: 15676277 DOI: 10.1016/j.ygeno.2004.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Accepted: 10/22/2004] [Indexed: 11/28/2022]
Abstract
High-resolution gene maps of individual equine chromosomes are essential to identify genes governing traits of economic importance in the horse. In pursuit of this goal we herein report the generation of a dense map of horse chromosome 22 (ECA22) comprising 83 markers, of which 52 represent specific genes and 31 are microsatellites. The map spans 831 cR over an estimated 64 Mb of physical length of the chromosome, thus providing markers at approximately 770 kb or 10 cR intervals. Overall, the resolution of the map is to date the densest in the horse and is the highest for any of the domesticated animal species for which annotated sequence data are not yet available. Comparative analysis showed that ECA22 shares remarkable conservation of gene order along the entire length of dog chromosome 24, something not yet found for an autosome in evolutionarily diverged species. Comparison with human, mouse, and rat homologues shows that ECA22 can be traced as two conserved linkage blocks, each related to individual arms of the human homologue-HSA20. Extending the comparison to the chicken genome showed that one of the ECA22 blocks that corresponds to HSA20q shares synteny conservation with chicken chromosome 20, suggesting the segment to be ancestral in mammals and birds.
Collapse
Affiliation(s)
- Ashley Gustafson-Seabury
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Raudsepp T, Santani A, Wallner B, Kata SR, Ren C, Zhang HB, Womack JE, Skow LC, Chowdhary BP. A detailed physical map of the horse Y chromosome. Proc Natl Acad Sci U S A 2004; 101:9321-6. [PMID: 15197257 PMCID: PMC438975 DOI: 10.1073/pnas.0403011101] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We herein report a detailed physical map of the horse Y chromosome. The euchromatic region of the chromosome comprises approximately 15 megabases (Mb) of the total 45- to 50-Mb size and lies in the distal one-third of the long arm, where the pseudoautosomal region (PAR) is located terminally. The rest of the chromosome is predominantly heterochromatic. Because of the unusual organization of the chromosome (common to all mammalian Y chromosomes), a number of approaches were used to crossvalidate the results. Analysis of the 5,000-rad horse x hamster radiation hybrid panel produced a map spanning 88 centirays with 8 genes and 15 sequence-tagged site (STS) markers. The map was verified by several fluorescence in situ hybridization approaches. Isolation of bacterial artificial chromosome (BAC) clones for the radiation hybrid-mapped markers, end sequencing of the BACs, STS development, and bidirectional chromosome walking yielded 109 markers (100 STS and 9 genes) contained in 73 BACs. STS content mapping grouped the BACs into seven physically ordered contigs (of which one is predominantly ampliconic) that were verified by metaphase-, interphase-, and fiber-fluorescence in situ hybridization and also BAC fingerprinting. The map spans almost the entire euchromatic region of the chromosome, of which 20-25% (approximately 4 Mb) is covered by isolated BACs. The map is presently the most informative among Y chromosome maps in domesticated species, third only to the human and mouse maps. The foundation laid through the map will be critical in obtaining complete sequence of the euchromatic region of the horse Y chromosome, with an aim to identify Y specific factors governing male infertility and phenotypic sex variation.
Collapse
Affiliation(s)
- Terje Raudsepp
- Department of Veterinary Anatomy and Public Health, Texas A&M University, College Station, 77843, USA
| | | | | | | | | | | | | | | | | |
Collapse
|