1
|
Albicoro FJ, Vacca C, Cafiero JH, Draghi WO, Martini MC, Goulian M, Lagares A, Del Papa MF. Comparative Proteomic Analysis Revealing ActJ-Regulated Proteins in Sinorhizobium meliloti. J Proteome Res 2023; 22:1682-1694. [PMID: 37017314 PMCID: PMC10834056 DOI: 10.1021/acs.jproteome.2c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
To adapt to different environmental conditions, Sinorhizobium meliloti relies on finely tuned regulatory networks, most of which are unexplored to date. We recently demonstrated that deletion of the two-component system ActJK renders an acid-vulnerable phenotype in S. meliloti and negatively impacts bacteroid development and nodule occupancy as well. To fully understand the role of ActJ in acid tolerance, S. meliloti wild-type and S. meliloti ΔactJ proteomes were compared in the presence or absence of acid stress by nanoflow ultrahigh-performance liquid chromatography coupled to mass spectrometry. The analysis demonstrated that proteins involved in the synthesis of exopolysaccharides (EPSs) were notably enriched in ΔactJ cells in acid pH. Total EPS quantification further revealed that although EPS production was augmented at pH 5.6 in both the ΔactJ and the parental strain, the lack of ActJ significantly enhanced this difference. Moreover, several efflux pumps were found to be downregulated in the ΔactJ strain. Promoter fusion assays suggested that ActJ positively modulated its own expression in an acid medium but not at under neutral conditions. The results presented here identify several ActJ-regulated genes in S. meliloti, highlighting key components associated with ActJK regulation that will contribute to a better understanding of rhizobia adaptation to acid stress.
Collapse
Affiliation(s)
- Francisco Javier Albicoro
- Instituto de Biotecnología y Biologia Molecular -CONICET CCT La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Carolina Vacca
- Instituto de Biotecnología y Biologia Molecular -CONICET CCT La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Juan Hilario Cafiero
- Instituto de Biotecnología y Biologia Molecular -CONICET CCT La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Walter Omar Draghi
- Instituto de Biotecnología y Biologia Molecular -CONICET CCT La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Carla Martini
- Instituto de Biotecnología y Biologia Molecular -CONICET CCT La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mark Goulian
- Department of Biology, University of Pennsylvania, Philadelphia, PA. USA
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA. USA
| | - Antonio Lagares
- Instituto de Biotecnología y Biologia Molecular -CONICET CCT La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Florencia Del Papa
- Instituto de Biotecnología y Biologia Molecular -CONICET CCT La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
2
|
Nilsson JF, Castellani LG, Draghi WO, Mogro EG, Wibberg D, Winkler A, Hansen LH, Schlüter A, Pühler A, Kalinowski J, Torres Tejerizo GA, Pistorio M. Global transcriptome analysis of Rhizobium favelukesii LPU83 in response to acid stress. FEMS Microbiol Ecol 2020; 97:5998221. [PMID: 33220679 DOI: 10.1093/femsec/fiaa235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022] Open
Abstract
Acidic environments naturally occur worldwide and inappropriate agricultural management may also cause acidification of soils. Low soil pH values are an important barrier in the plant-rhizobia interaction. Acidic conditions disturb the establishment of the efficient rhizobia usually used as biofertilizer. This negative effect on the rhizobia-legume symbiosis is mainly due to the low acid tolerance of the bacteria. Here, we describe the identification of relevant factors in the acid tolerance of Rhizobium favelukesii using transcriptome sequencing. A total of 1924 genes were differentially expressed under acidic conditions, with ∼60% underexpressed. Rhizobium favelukesii acid response mainly includes changes in the energy metabolism and protein turnover, as well as a combination of mechanisms that may contribute to this phenotype, including GABA and histidine metabolism, cell envelope modifications and reverse proton efflux. We confirmed the acid-sensitive phenotype of a mutant in the braD gene, which showed higher expression under acid stress. Remarkably, 60% of the coding sequences encoded in the symbiotic plasmid were underexpressed and we evidenced that a strain cured for this plasmid featured an improved performance under acidic conditions. Hence, this work provides relevant information in the characterization of genes associated with tolerance or adaptation to acidic stress of R. favelukesii.
Collapse
Affiliation(s)
- Juliet F Nilsson
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 49 y 115, 1900 La Plata, Argentina
| | - Lucas G Castellani
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 49 y 115, 1900 La Plata, Argentina
| | - Walter O Draghi
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 49 y 115, 1900 La Plata, Argentina
| | - Ezequiel G Mogro
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 49 y 115, 1900 La Plata, Argentina
| | - Daniel Wibberg
- CeBiTec, Bielefeld University, D-33615, Bielefeld, Germany
| | - Anika Winkler
- CeBiTec, Bielefeld University, D-33615, Bielefeld, Germany
| | - L H Hansen
- Section of Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | | | - Alfred Pühler
- CeBiTec, Bielefeld University, D-33615, Bielefeld, Germany
| | | | - Gonzalo A Torres Tejerizo
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 49 y 115, 1900 La Plata, Argentina
| | - Mariano Pistorio
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 49 y 115, 1900 La Plata, Argentina
| |
Collapse
|
3
|
Nilsson JF, Castellani LG, Draghi WO, Pérez-Giménez J, Torres Tejerizo GA, Pistorio M. Proteomic Analysis of Rhizobium favelukesii LPU83 in Response to Acid Stress. J Proteome Res 2019; 18:3615-3629. [PMID: 31432679 DOI: 10.1021/acs.jproteome.9b00275] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Acid soils constitute a severe problem for leguminous crops mainly through a disturbance in rhizobium-legume interactions. Rhizobium favelukesii-an acid-tolerant rhizobium able to nodulate alfalfa-is highly competitive for nodule occupation under acid conditions but inefficient for biologic nitrogen fixation. In this work, we obtained a general description of the acid-stress response of R. favelukesii LPU83 by means of proteomics by comparing the total proteome profiles in the presence or absence of acid stress by nanoflow ultrahigh-performance liquid chromatography coupled to mass spectrometry. Thus, a total of 336 proteins were identified with a significant differential expression, 136 of which species were significantly overexpressed and 200 underexpressed in acidity. An in silico functional characterization with those respective proteins revealed a complex and pleiotropic response by these rhizobia involving components of oxidative phosphorylation, glutamate metabolism, and peptidoglycan biosynthesis, among other pathways. Furthermore, a lower permeability was evidenced in the acid-stressed cells along with several overexpressed proteins related to γ-aminobutyric acid metabolism, such as the gene product of livK, which gene was mutated. This mutant exhibited an acid-sensitive phenotype in agreement with the proteomics results. We conclude that both the γ-aminobutyric acid metabolism and a modified cellular envelope could be relevant to acid tolerance in R. favelukesii.
Collapse
Affiliation(s)
- Juliet F Nilsson
- 1IBBM (Instituto de Biotecnologı́a y Biologı́a Molecular), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas , Universidad Nacional de La Plata , Calles 49 y 115 , (1900) La Plata , Argentina
| | - Lucas G Castellani
- 1IBBM (Instituto de Biotecnologı́a y Biologı́a Molecular), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas , Universidad Nacional de La Plata , Calles 49 y 115 , (1900) La Plata , Argentina
| | - Walter O Draghi
- 1IBBM (Instituto de Biotecnologı́a y Biologı́a Molecular), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas , Universidad Nacional de La Plata , Calles 49 y 115 , (1900) La Plata , Argentina
| | - Julieta Pérez-Giménez
- 1IBBM (Instituto de Biotecnologı́a y Biologı́a Molecular), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas , Universidad Nacional de La Plata , Calles 49 y 115 , (1900) La Plata , Argentina
| | - Gonzalo A Torres Tejerizo
- 1IBBM (Instituto de Biotecnologı́a y Biologı́a Molecular), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas , Universidad Nacional de La Plata , Calles 49 y 115 , (1900) La Plata , Argentina
| | - Mariano Pistorio
- 1IBBM (Instituto de Biotecnologı́a y Biologı́a Molecular), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas , Universidad Nacional de La Plata , Calles 49 y 115 , (1900) La Plata , Argentina
| |
Collapse
|
4
|
Osman WAM, van Berkum P, León-Barrios M, Velázquez E, Elia P, Tian R, Ardley J, Gollagher M, Seshadri R, Reddy TBK, Ivanova N, Woyke T, Pati A, Markowitz V, Baeshen MN, Baeshen NN, Kyrpides N, Reeve W. High-quality draft genome sequence of Ensifer meliloti Mlalz-1, a microsymbiont of Medicago laciniata (L.) miller collected in Lanzarote, Canary Islands, Spain. Stand Genomic Sci 2017; 12:58. [PMID: 28975015 PMCID: PMC5613336 DOI: 10.1186/s40793-017-0270-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/14/2017] [Indexed: 11/26/2022] Open
Abstract
10.1601/nm.1335 Mlalz-1 (INSDC = ATZD00000000) is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen-fixing nodule of Medicago laciniata (L.) Miller from a soil sample collected near the town of Guatiza on the island of Lanzarote, the Canary Islands, Spain. This strain nodulates and forms an effective symbiosis with the highly specific host M. laciniata. This rhizobial genome was sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) sequencing project. Here the features of 10.1601/nm.1335 Mlalz-1 are described, together with high-quality permanent draft genome sequence information and annotation. The 6,664,116 bp high-quality draft genome is arranged in 99 scaffolds of 100 contigs, containing 6314 protein-coding genes and 74 RNA-only encoding genes. Strain Mlalz-1 is closely related to 10.1601/nm.1335 10.1601/strainfinder?urlappend=%3Fid%3DIAM+12611 T, 10.1601/nm.1334 A 321T and 10.1601/nm.17831 10.1601/strainfinder?urlappend=%3Fid%3DORS+1407 T, based on 16S rRNA gene sequences. gANI values of ≥98.1% support the classification of strain Mlalz-1 as 10.1601/nm.1335. Nodulation of M. laciniata requires a specific nodC allele, and the nodC gene of strain Mlalz-1 shares ≥98% sequence identity with nodC of M. laciniata-nodulating 10.1601/nm.1328 strains, but ≤93% with nodC of 10.1601/nm.1328 strains that nodulate other Medicago species. Strain Mlalz-1 is unique among sequenced 10.1601/nm.1335 strains in possessing genes encoding components of a T2SS and in having two versions of the adaptive acid tolerance response lpiA-acvB operon. In 10.1601/nm.1334 strain 10.1601/strainfinder?urlappend=%3Fid%3DWSM+419, lpiA is essential for enhancing survival in lethal acid conditions. The second copy of the lpiA-acvB operon of strain Mlalz-1 has highest sequence identity (> 96%) with that of 10.1601/nm.1334 strains, which suggests genetic recombination between strain Mlalz-1 and 10.1601/nm.1334 and the horizontal gene transfer of lpiA-acvB.
Collapse
Affiliation(s)
| | - Peter van Berkum
- U.S. Department of Agriculture, Soybean Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, 10300 Baltimore Avenue, Bldg. 006, Beltsville, MD 20705 USA
| | - Milagros León-Barrios
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, Tenerife, Spain
| | - Encarna Velázquez
- Departamento de Microbiología y Genetica and Instituto Hispanoluso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Salamanca, Spain
| | - Patrick Elia
- U.S. Department of Agriculture, Soybean Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, 10300 Baltimore Avenue, Bldg. 006, Beltsville, MD 20705 USA
| | - Rui Tian
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA Australia
| | - Julie Ardley
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA Australia
| | - Margaret Gollagher
- Curtin University Sustainability Policy Institute, Curtin University, Bentley, WA Australia
| | | | | | | | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, CA USA
| | - Amrita Pati
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Victor Markowitz
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Mohamed N. Baeshen
- Department of Biology, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | | | | | - Wayne Reeve
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA Australia
| |
Collapse
|
5
|
Tang G, Wang S, Lu D, Huang L, Li N, Luo L. Two-component regulatory system ActS/ActR is required for Sinorhizobium meliloti adaptation to oxidative stress. Microbiol Res 2017; 198:1-7. [DOI: 10.1016/j.micres.2017.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/14/2017] [Accepted: 01/17/2017] [Indexed: 11/16/2022]
|
6
|
Draghi WO, Del Papa MF, Hellweg C, Watt SA, Watt TF, Barsch A, Lozano MJ, Lagares A, Salas ME, López JL, Albicoro FJ, Nilsson JF, Torres Tejerizo GA, Luna MF, Pistorio M, Boiardi JL, Pühler A, Weidner S, Niehaus K, Lagares A. A consolidated analysis of the physiologic and molecular responses induced under acid stress in the legume-symbiont model-soil bacterium Sinorhizobium meliloti. Sci Rep 2016; 6:29278. [PMID: 27404346 PMCID: PMC4941405 DOI: 10.1038/srep29278] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/14/2016] [Indexed: 01/30/2023] Open
Abstract
Abiotic stresses in general and extracellular acidity in particular disturb and limit nitrogen-fixing symbioses between rhizobia and their host legumes. Except for valuable molecular-biological studies on different rhizobia, no consolidated models have been formulated to describe the central physiologic changes that occur in acid-stressed bacteria. We present here an integrated analysis entailing the main cultural, metabolic, and molecular responses of the model bacterium Sinorhizobium meliloti growing under controlled acid stress in a chemostat. A stepwise extracellular acidification of the culture medium had indicated that S. meliloti stopped growing at ca. pH 6.0–6.1. Under such stress the rhizobia increased the O2 consumption per cell by more than 5-fold. This phenotype, together with an increase in the transcripts for several membrane cytochromes, entails a higher aerobic-respiration rate in the acid-stressed rhizobia. Multivariate analysis of global metabolome data served to unequivocally correlate specific-metabolite profiles with the extracellular pH, showing that at low pH the pentose-phosphate pathway exhibited increases in several transcripts, enzymes, and metabolites. Further analyses should be focused on the time course of the observed changes, its associated intracellular signaling, and on the comparison with the changes that operate during the sub lethal acid-adaptive response (ATR) in rhizobia.
Collapse
Affiliation(s)
- W O Draghi
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - M F Del Papa
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - C Hellweg
- CeBiTec - Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | - S A Watt
- CeBiTec - Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | - T F Watt
- CeBiTec - Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | - A Barsch
- CeBiTec - Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | - M J Lozano
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - A Lagares
- Laboratorio de Bioquímica, Microbiología e Interacciones Biológicas en el Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal B1876BXD, Buenos Aires, Argentina
| | - M E Salas
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - J L López
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - F J Albicoro
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - J F Nilsson
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - G A Torres Tejerizo
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - M F Luna
- CINDEFI - Centro de Investigación y Desarrollo en Fermentaciones Industriales, CONICET - Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - M Pistorio
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - J L Boiardi
- CINDEFI - Centro de Investigación y Desarrollo en Fermentaciones Industriales, CONICET - Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - A Pühler
- CeBiTec - Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | - S Weidner
- CeBiTec - Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | - K Niehaus
- CeBiTec - Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | - A Lagares
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| |
Collapse
|
7
|
Genes commonly involved in acid tolerance are not overexpressed in the plant microsymbiont Mesorhizobium loti MAFF303099 upon acidic shock. Appl Microbiol Biotechnol 2014; 98:7137-47. [DOI: 10.1007/s00253-014-5875-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/26/2014] [Accepted: 05/27/2014] [Indexed: 01/11/2023]
|
8
|
How Rhizobia Survive in the Absence of a Legume Host, a Stressful World Indeed. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2010. [DOI: 10.1007/978-90-481-9449-0_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
Slonczewski JL, Fujisawa M, Dopson M, Krulwich TA. Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Adv Microb Physiol 2009; 55:1-79, 317. [PMID: 19573695 DOI: 10.1016/s0065-2911(09)05501-5] [Citation(s) in RCA: 293] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Of all the molecular determinants for growth, the hydronium and hydroxide ions are found naturally in the widest concentration range, from acid mine drainage below pH 0 to soda lakes above pH 13. Most bacteria and archaea have mechanisms that maintain their internal, cytoplasmic pH within a narrower range than the pH outside the cell, termed "pH homeostasis." Some mechanisms of pH homeostasis are specific to particular species or groups of microorganisms while some common principles apply across the pH spectrum. The measurement of internal pH of microbes presents challenges, which are addressed by a range of techniques under varying growth conditions. This review compares and contrasts cytoplasmic pH homeostasis in acidophilic, neutralophilic, and alkaliphilic bacteria and archaea under conditions of growth, non-growth survival, and biofilms. We present diverse mechanisms of pH homeostasis including cell buffering, adaptations of membrane structure, active ion transport, and metabolic consumption of acids and bases.
Collapse
|
10
|
Hellweg C, Pühler A, Weidner S. The time course of the transcriptomic response of Sinorhizobium meliloti 1021 following a shift to acidic pH. BMC Microbiol 2009; 9:37. [PMID: 19216801 PMCID: PMC2651895 DOI: 10.1186/1471-2180-9-37] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Accepted: 02/15/2009] [Indexed: 11/21/2022] Open
Abstract
Background The symbiotic soil bacterium Sinorhizobium meliloti often has to face low pH in its natural habitats. To identify genes responding to pH stress a global transcriptional analysis of S. meliloti strain 1021 following a pH shift from pH 7.0 to pH 5.75 was carried out. In detail, oligo-based whole genome microarrays were used in a time course experiment. The monitoring period covered a time span of about one hour after the pH shift. The obtained microarray data was filtered and grouped by K-means clustering in order to obtain groups of genes behaving similarly concerning their expression levels throughout the time course. Results The results display a versatile response of S. meliloti 1021 represented by distinct expression profiles of subsets of genes with functional relation. The eight generated clusters could be subdivided into a group of four clusters containing genes that were up-regulated and another group of four clusters containing genes that were down-regulated in response to the acidic pH shift. The respective mean expression progression of the four up-regulated clusters could be described as (i) permanently and strong, (ii) permanently and intermediate, (iii) permanently and progressive, and (iv) transiently up-regulated. The expression profile of the four down-regulated clusters could be characterized as (i) permanently, (ii) permanently and progressive, (iii) transiently, and (iv) ultra short down-regulated. Genes coding for proteins with functional relation were mostly cumulated in the same cluster, pointing to a characteristic expression profile for distinct cellular functions. Among the strongest up-regulated genes lpiA, degP1, cah, exoV and exoH were found. The most striking functional groups responding to the shift to acidic pH were genes of the exopolysaccharide I biosynthesis as well as flagellar and chemotaxis genes. While the genes of the exopolysaccharide I biosynthesis (exoY, exoQ, exoW, exoV, exoT, exoH, exoK exoL, exoO, exoN, exoP) were up-regulated, the expression level of the flagellar and chemotaxis genes (visR, motA, flgF, flgB, flgC, fliE, flgG, flgE, flgL, flbT, mcpU) simultaneously decreased in response to acidic pH. Other responding functional groups of genes mainly belonged to nitrogen uptake and metabolism (amtB, nrtB, nirB, nirD), methionine metabolism (metA, metF, metH, metK, bmt and ahcY) as well as ion transport systems (sitABCD, phoCD). It is noteworthy, that several genes coding for hypothetical proteins of unknown function could be identified as up-regulated in response to the pH shift. Conclusion It was shown that the short term response to acidic pH stress does not result in a simple induction or repression of genes, but in a sequence of responses varying in their intensity over time. Obviously, the response to acidic pH is not based on a few specific genes, but involves whole sets of genes associated with various cellular functions.
Collapse
Affiliation(s)
- Christoph Hellweg
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Bielefeld, Germany.
| | | | | |
Collapse
|
11
|
Muglia CI, Grasso DH, Aguilar OM. Rhizobium tropici response to acidity involves activation of glutathione synthesis. MICROBIOLOGY-SGM 2007; 153:1286-1296. [PMID: 17379738 DOI: 10.1099/mic.0.2006/003483-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Rhizobium tropici CIAT899 displays intrinsic tolerance to acidity, and efficiently nodulates Phaseolus vulgaris at low pH. By characterizing a gshB mutant strain, glutathione has been previously demonstrated to be essential for R. tropici tolerance to acid stress. The wild-type gshB gene region has been cloned and its transcription profile has been characterized by using quantitative real-time PCR and transcriptional gene fusions. Activation of the gshB gene under acid-stress conditions was demonstrated. gshB is also induced by UV irradiation. Upstream from gshB a putative sigma(70) promoter element and an inverted repeat sequence were identified, which are proposed to be involved in expression under neutral and acidic conditions, respectively. Gel retardation assays indicate that transcription in acid conditions may involve protein binding to an upstream regulatory region.
Collapse
Affiliation(s)
- Cecilia I Muglia
- Instituto de Bioquímica y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900, La Plata, Argentina
| | - Daniel H Grasso
- Instituto de Bioquímica y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900, La Plata, Argentina
| | - O Mario Aguilar
- Instituto de Bioquímica y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900, La Plata, Argentina
| |
Collapse
|
12
|
New target genes controlled by the Bradyrhizobium japonicum two-component regulatory system RegSR. J Bacteriol 2007; 189:8928-43. [PMID: 17951393 DOI: 10.1128/jb.01088-07] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
RegSR-like proteins, members of the family of two-component regulatory systems, are present in a large number of proteobacteria in which they globally control gene expression mostly in a redox-responsive manner. The controlled target genes feature an enormous functional diversity. In Bradyrhizobium japonicum, the facultative root nodule symbiont of soybean, RegSR activate the transcription of the nitrogen fixation regulatory gene nifA, thus forming a RegSR-NifA cascade which is part of a complex regulatory network for gene regulation in response to changing oxygen concentrations. Whole-genome transcription profiling was performed here in order to assess the full regulatory scope of RegSR. The comparative analysis of wild-type and delta regR cells grown under oxic and microoxic conditions revealed that expression of almost 250 genes is dependent on RegR, a result that underscores the important contribution of RegR to oxygen- or redox-regulated gene expression in B. japonicum. Furthermore, transcription profiling of delta regR bacteroids compared with wild-type bacteroids revealed expression changes for about 1,200 genes in young and mature bacteroids. Incidentally, many of these were found to be induced in symbiosis when wild-type bacteroids were compared with free-living, culture-grown wild-type cells, and they appeared to encode diverse functions possibly related to symbiosis and nitrogen fixation. We demonstrated direct RegR-mediated control at promoter regions of several selected target genes by means of DNA binding experiments and in vitro transcription assays, which revealed six novel direct RegR target promoters.
Collapse
|
13
|
Reeve WG, Tiwari RP, Guerreiro N, Stubbs J, Dilworth MJ, Glenn AR, Rolfe BG, Djordjevic MA, Howieson JG. Probing for pH-regulated proteins in Sinorhizobium medicae using proteomic analysis. J Mol Microbiol Biotechnol 2004; 7:140-7. [PMID: 15263818 DOI: 10.1159/000078657] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
To elucidate the mechanisms of pH response in an acid-tolerant Sinorhizobium medicae strain we have identified acid-activated gene transcription and now complement this approach by using a proteomic analysis to identify the changes that occur following exposure to acidity. Protein profiles of persistently or transiently acid-stressed S. medicae cells were compared to those grown in pH neutral, buffered media. Fifty pH-regulated proteins were identified; N-terminal sequences for 15 of these were obtained using the Edman degradation. Transient acid exposure downregulated GlnA and GlnK and upregulated a hypothetical protein. Continuing acid exposure downregulated ClpP, an ABC transporter, a hypothetical protein, a lipoprotein, the Trp-like repressor WrbA1 and upregulated DegP, fructose bisphosphate aldolase, GroES, malate dehydrogenase and two hypothetical proteins. These findings implicate proteolytic, chaperone and transport processes as key components of pH response in S. medicae.
Collapse
Affiliation(s)
- Wayne G Reeve
- Centre for Rhizobium Studies, School of Biological Sciences and Biotechnology, Murdoch University, Murdoch, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|