1
|
Fastrès A, Roels E, Tutunaru AC, Bolen G, Merveille A, Day MJ, Garigliany M, Antoine N, Clercx C. Osteopontin and fibronectin in lung tissue, serum, and bronchoalveolar lavage fluid of dogs with idiopathic pulmonary fibrosis and control dogs. J Vet Intern Med 2023; 37:2468-2477. [PMID: 37853926 PMCID: PMC10658509 DOI: 10.1111/jvim.16870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/08/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) affects West Highland white terriers (WHWTs). Osteopontin (SPP1) and fibronectin (FN1) are associated with human IPF and are overexpressed by bronchoalveolar lavage fluid (BALF) macrophages in dogs with IPF. OBJECTIVE To investigate the value of these proteins as biomarkers of IPF. ANIMALS West Highland white terriers (WHWTs) with IPF, control WHWTs, and terriers. METHODS Cross-sectional observational study. Immunohistochemistry was used to localize SPP1 and FN1 in lung tissue. Serum and BALF SPP1 and FN1 concentrations were measured using canine ELISA kits and compared between groups. RESULTS Osteopontin stained ciliated epithelial cells, smooth muscular cells, and macrophages of all included dogs, and type-II pneumocytes and extracellular matrix of all 12 diseased WHWTs, 4/6 control WHWTs, and none of the 3 terriers. Osteopontin serum concentration was higher in diseased WHWTs (n = 22; 2.15 ng/mL [0.74-5.30]) compared with control WHWTs (n = 13; 0.63 ng/mL [0.41-1.63]; P = .005) and terriers (n = 15; 0.31 ng/mL [0.19-0.51]; P < .0001), and in control WHWTs compared with terriers (P = .005). Osteopontin BALF concentrations were higher in diseased (0.27 ng/mL [0.14-0.43]) and control WHWTs (0.25 ng/mL [0.14-0.40]), compared with terriers (0.02 ng/mL [0.01-0.08]; P < .0001 and P = .003, respectively). Fibronectin (FN1) serum concentrations were lower in diseased dogs (1.03 ng/mL [0.35-1.48]) and control WHWTs (0.61 ng/mL [0.24-0.65]) compared with terriers (2.72 ng/mL [0.15-5.21]; P < .0001 and P = .0001, respectively). There was no difference in FN1 immunostaining and FN1 BALF concentrations between groups. CONCLUSIONS Results suggest that SPP1 is involved in pathogenesis of IPF and could predispose that breed to the disease. Osteopontin serum concentration could serve as a diagnostic biomarker of IPF.
Collapse
Affiliation(s)
- Aline Fastrès
- Department of Clinical Sciences, FARAH, Faculty of Veterinary MedicineUniversity of LiègeLiègeBelgium
| | - Elodie Roels
- Department of Clinical Sciences, FARAH, Faculty of Veterinary MedicineUniversity of LiègeLiègeBelgium
| | - Alexandru C. Tutunaru
- Department of Clinical Sciences, FARAH, Faculty of Veterinary MedicineUniversity of LiègeLiègeBelgium
| | - Géraldine Bolen
- Department of Clinical Sciences, FARAH, Faculty of Veterinary MedicineUniversity of LiègeLiègeBelgium
| | - Anne‐Christine Merveille
- Department of Clinical Sciences, FARAH, Faculty of Veterinary MedicineUniversity of LiègeLiègeBelgium
| | - Michael J. Day
- School of Veterinary SciencesUniversity of BristolLangfordUnited Kingdom
| | - Mutien‐Marie Garigliany
- Department of Morphology and Pathology, FARAH, Faculty of Veterinary MedicineUniversity of LiègeLiègeBelgium
| | - Nadine Antoine
- Department of Morphology and Pathology, FARAH, Faculty of Veterinary MedicineUniversity of LiègeLiègeBelgium
| | - Cécile Clercx
- Department of Clinical Sciences, FARAH, Faculty of Veterinary MedicineUniversity of LiègeLiègeBelgium
| |
Collapse
|
2
|
Smith TD, Ruf I, DeLeon VB. Ontogenetic transformation of the cartilaginous nasal capsule in mammals, a review with new observations on bats. Anat Rec (Hoboken) 2023. [PMID: 36647334 DOI: 10.1002/ar.25152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023]
Abstract
The nasal capsule, as the most rostral part of the chondrocranium, is a critical point of connection with the facial skeleton. Its fate may influence facial form, and the varied fates of cartilage may be a vehicle contributing to morphological diversity. Here, we review ontogenetic changes in the cartilaginous nasal capsule of mammals, and make new observations on perinatal specimens of two chiropteran species of different suborders. Our observations reveal some commonalities between Rousettus leschenaultii and Desmodus rotundus, such as perinatal ossification of the first ethmoturbinal. However, in Rousettus, ossification of turbinals is demonstrated as either perichondrial or endochondral. In Desmodus, perichondrial and endochondral ossification of the posterior nasal cupula is observed at birth, a part of the nasal capsule previously shown to persist as cartilage into infancy in Rousettus. Combined with prior findings on cranial cartilages we identify several diverse transformational mechanisms by which cartilage as a tissue type may contribute to morphological diversity of the cranium. First, cartilage differentiates in an iterative fashion to increase nasal complexity, but still retains the capacity for later elaboration via de novo bone emanating outward before or after cartilage ossifies. Second, cartilage acts as a driver of growth at growth centers, or via interstitial growth (e.g., septal cartilage). Finally, cartilage as a tissue may influence the timing of ossification and union of the facial and basicranial skeleton. In particular, cartilage at certain points of ontogeny may "model" via selective resorption, showing some similarity to bone.
Collapse
Affiliation(s)
- Timothy D Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania, USA
| | - Irina Ruf
- Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Frankfurt am Main, Germany
- Institut für Geowissenschaften, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Valerie B DeLeon
- Department of Anthropology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
3
|
Castejón-González AC, Stefanovski D, Reiter AM. Etiology, Clinical Presentation, and Outcome of Mandibular Fractures in Immature Dogs Treated with non-Invasive or Minimally Invasive Techniques. J Vet Dent 2022; 39:78-88. [PMID: 35060787 DOI: 10.1177/08987564211072332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study was performed to report etiology, clinical presentation, and outcome of mandibular fractures in immature dogs treated with non-invasive or minimally invasive techniques. Immature dogs diagnosed with mandibular fractures from 2001 to 2016 were included in this study. Diagnosis of the mandibular fracture was achieved by oral examination and diagnostic imaging in the anesthetized dog. Twenty-nine immature dogs with 54 mandibular fractures were selected. Within the mandibular body, the regions of the developing permanent canine and first molar teeth were most commonly involved (46.4% and 35.0%, respectively). Within the mandibular ramus, 53.8% of the fractures were located in its ventral half, and 38.5% in the condylar process. Muzzling was applied in 72.4% of the dogs. All dogs had clinical healing with resolution of signs of pain and recovery of mandibular function. Mean time for clinical healing was 21 ± 9 days. Age of the dog and duration of muzzling were significantly associated with the time needed for clinical healing. In immature dogs, fractures of the mandibular body occur most commonly in the regions of the developing permanent canine and first molar teeth, while fractures of the mandibular ramus are most commonly found in its ventral half and the condylar process. Non-invasive or minimally invasive management of mandibular fractures in immature dogs carries a good prognosis regarding clinical healing and recovery of mandibular function. Dogs should be monitored for the development of dental abnormalities and/or skeletal malocclusion until permanent teeth have erupted and jaw growth is completed.
Collapse
Affiliation(s)
- Ana C Castejón-González
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Darko Stefanovski
- Department of Clinical Studies-New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander M Reiter
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
4
|
Grogan SP, Chen X, Sovani S, Taniguchi N, Colwell CW, Lotz MK, D'Lima DD. Influence of cartilage extracellular matrix molecules on cell phenotype and neocartilage formation. Tissue Eng Part A 2013; 20:264-74. [PMID: 23962090 DOI: 10.1089/ten.tea.2012.0618] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Interaction between chondrocytes and the cartilage extracellular matrix (ECM) is essential for maintaining the cartilage's role as a low-friction and load-bearing tissue. In this study, we examined the influence of cartilage zone-specific ECM on human articular chondrocytes (HAC) in two-dimensional and three-dimensional (3D) environments. Two culture systems were used. SYSTEM 1: HAC were cultured on cell-culture plates that had been precoated with the following ECM molecules for 7 days: decorin, biglycan, tenascin C (superficial zone), collagen type II, hyaluronan (HA) (middle and deep zones), and osteopontin (deep zone). Uncoated standard culture plates were used as controls. Expanded cells were examined for phenotypic changes using real-time polymerase chain reaction. In addition, expanded cells were placed into high-density pellet cultures for 14 days. Neocartilage formation was assessed via gene expression and histology evaluations. SYSTEM 2: HAC that were cultured on untreated plates and encapsulated in a 3D alginate scaffold were mixed with one of the zone-specific ECM molecules. Cell viability, gene expression, and histology assessments were conducted on 14-day-old tissues. In HAC monolayer culture, exposure to decorin, HA, and osteopontin increased COL2A1 and aggrecan messenger RNA (mRNA) levels compared with controls. Biglycan up-regulated aggrecan without a significant impact on COL2A1 expression; Tenascin C reduced COL2A1 expression. Neocartilage formed after preculture on tenascin C and collagen type II expressed higher COL2A1 mRNA compared with control pellets. Preculture of HAC on HA decreased both COL2A1 and aggrecan expression levels compared with controls, which was consistent with histology. Reduced proteoglycan 4 (PRG4) mRNA levels were observed in HAC pellets that had been precultured with biglycan and collagen type II. Exposing HAC to HA directly in 3D-alginate culture most effectively induced neocartilage formation, showing increased COL2A1 and aggrecan, and reduced COL1A1 compared with controls. Decorin treatments increased HAC COL2A1 mRNA levels. These data indicate that an appropriate exposure to cartilage-specific ECM proteins could be used to enhance cartilage formation and to even induce the formation of zone-specific phenotypes to improve cartilage regeneration.
Collapse
Affiliation(s)
- Shawn P Grogan
- 1 Shiley Center for Orthopaedic Research and Education , Scripps Clinic, La Jolla, California
| | | | | | | | | | | | | |
Collapse
|
5
|
Wu Y, Han X, Guo Y, Wu H, Ren J, Li J, Ai D, Wang L, Bai D. Response of immortalized murine cementoblast cells to hypoxia in vitro. Arch Oral Biol 2013; 58:1718-25. [PMID: 24112739 DOI: 10.1016/j.archoralbio.2013.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 06/13/2013] [Accepted: 08/02/2013] [Indexed: 02/05/2023]
Abstract
OBJECTIVES The aim of the study was to investigate the impact of hypoxia on proliferation, apoptosis and mineralization of cementoblast-like cells (OCCM-30) in vitro. METHODS The effects of different periods of hypoxia (2% O2) on proliferation, apoptosis, cementoblastic potential and root cementum resorption capability of OCCM-30 were evaluated, by using MTT, flow cytometry, alkaline phosphatase (ALP) activity assay, reverse transcription-polymerase chain reaction measurement, enzyme-linked immunosorbent assay and mineralization nodule formation assay. RESULTS OCCM-30 viability was significantly inhibited by hypoxia while the apoptosis ratio was enhanced in a time-dependent manner; hypoxia inducible factor-1α and vascular endothelial growth factor mRNA were induced by hypoxia in different manners; temporary hypoxia (<24 h) stimulated cementoblastic function of OCCM-30, while long-term hypoxia inhibited it, manifested by decreased mRNA level or release of ALP, osteocalcin, bone sialoprotein, osteopontin and osteoprotegerin. In addition, hypoxia affected mineralized nodule formation of OCCM-30 in a time-dependent fashion; moreover, root cementum resorption function was also induced by hypoxia, manifested by increased receptor activator of nuclear factor kappa B ligand mRNA and protein expression. CONCLUSION Temporary exposure of OCCM-30 to hypoxia inhibited proliferation, promoted apoptosis and mineralization, while longer duration of hypoxia could inhibit the cementoblast function. The findings may provide theoretical basis for developing novel therapeutics to prevent root resorption during orthodontic treatment.
Collapse
Affiliation(s)
- Yeke Wu
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Bond SR, Lau A, Penuela S, Sampaio AV, Underhill TM, Laird DW, Naus CC. Pannexin 3 is a novel target for Runx2, expressed by osteoblasts and mature growth plate chondrocytes. J Bone Miner Res 2011; 26:2911-22. [PMID: 21915903 DOI: 10.1002/jbmr.509] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pannexins are a class of chordate channel proteins identified by their homology to insect gap junction proteins. The pannexin family consists of three members, Panx1, Panx2, and Panx3, and the role each of these proteins plays in cellular processes is still under investigation. Previous reports of Panx3 expression indicate enrichment in skeletal tissues, so we have further investigated this distribution by surveying the developing mouse embryo with immunofluorescence. High levels of Panx3 were detected in intramembranous craniofacial flat bones, as well as long bones of the appendicular and axial skeleton. This distribution is the result of expression in both osteoblasts and hypertrophic chondrocytes. Furthermore, the Panx3 promoter contains putative binding sites for transcription factors involved in bone formation, and we show that the sequence between bases -275 and -283 is responsive to Runx2 activation. Taken together, our data suggests that Panx3 may serve an important role in bone development, and is a novel target for Runx2-dependent signaling.
Collapse
Affiliation(s)
- Stephen R Bond
- Department of Cellular and Physiological Science, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
7
|
Hinton RJ, Serrano M, So S. Differential gene expression in the perichondrium and cartilage of the neonatal mouse temporomandibular joint. Orthod Craniofac Res 2009; 12:168-77. [PMID: 19627518 DOI: 10.1111/j.1601-6343.2009.01450.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Our goal was to discover genes differentially expressed in the perichondrium (PC) of the mandibular condylar cartilage (MCC) that might enhance regenerative medicine or orthopaedic therapies directed at the tissues of the temporomandibular joint. We used targeted gene arrays (osteogenesis, stem cell) to identify genes preferentially expressed in the PC and the cartilaginous (C) portions of the MCC in 2-day-old mice. Genes with higher expression in the PC sample related to growth factor ligand-receptor interactions [FGF-13 (6.4x), FGF-18 (4x), NCAM (2x); PGDF receptors, transforming growth factor (TGF)-beta and IGF-1], the Notch isoforms (especially Notch 3 and 4) and their ligands or structural proteins/proteoglycans [collagen XIV (21x), collagen XVIII (4x), decorin (2.5x)]. Genes with higher expression in the C sample consisted mostly of known cartilage-specific genes [aggrecan (11x), procollagens X (33x), XI (14x), IX (4.5x), Sox 9 (4.4x) and Indian hedgehog (6.7x)]. However, the functional or structural roles of several genes that were expressed at higher levels in the PC sample are unclear [myogenic factor (Myf) 9 (9x), tooth-related genes such as tuftelin (2.5x) and dentin sialophosphoprotein (1.6x), VEGF-B (2x) and its receptors (3-4x) and sclerostin (1.7x)]. FGF, Notch and TGF-beta signalling may be important regulators of MCC proliferation and differentiation; the relatively high expression of genes such as Myf6 and VEGF-B and its receptors suggests a degree of unsuspected plasticity in PC cells.
Collapse
Affiliation(s)
- R J Hinton
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, TX 75246, USA.
| | | | | |
Collapse
|
8
|
Du XL, Jiang T, Sheng XG, Gao R, Li QS. Inhibition of osteopontin suppresses in vitro and in vivo angiogenesis in endometrial cancer. Gynecol Oncol 2009; 115:371-6. [PMID: 19783287 DOI: 10.1016/j.ygyno.2009.08.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 08/26/2009] [Accepted: 08/29/2009] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Osteopontin (OPN) has been found to play an important role in tumor angiogenesis in recent years. Our previous studies have shown that OPN is overexpressed in tumor-associated human endometrial endothelial cells (HEECs) isolated from tissue samples of patients with endometrial cancer. In the present study, we aimed to further determine the role of OPN in endometrial cancer-associated angiogenesis. METHODS We knock down OPN expression in HEECs and human endometrial cancer Ishikawa (ISK) cells using the small interference RNA method, and then evaluate the effects of OPN on endometrial cancer-associated angiogenesis by in vivo mouse studies and in vitro assays. RESULTS Our results revealed that proliferative activity of HEECs and ISK cells in vitro was not affected by transfection with the siOPN-RNA (P>0.05). Inhibition of OPN expression in HEECs reduced the cell migration, with the percentage of repaired area of 36.32+/-2.88 vs. 8.54+/-1.13 (P=0.007). HEEC/siOPN and ISK/siOPN demonstrated 67.4% and 51.2% decreased invasiveness compared with controls, respectively (P<0.05). The number of branched points per well was obviously lower in HEEC/siOPN than that in HEEC/Control (32.46+/-17.10 vs. 53.15+/-15.44, P=0.021). Furthermore, ISK cells transfected with OPN siRNA formed smaller tumor in mice and led to a lower microvessel density, i.e., angiogenesis, in transplanted tumors of mice than scrambled siRNA controls (12.88+/-7.14 vs. 28.42+/-9.69 vessels per HPF, P=0.019). CONCLUSION These data confirm the positive role of OPN in endometrial cancer-associated angiogenesis and might be of great benefit for finding rational approach in endometrial cancer therapy.
Collapse
Affiliation(s)
- Xue-lian Du
- Department of Gynecologic Oncology, Shandong Cancer Hospital & Institute, Jinan 250117, PR China
| | | | | | | | | |
Collapse
|
9
|
Abstract
Many of our current therapies are based on information obtained in cell cultures using substrates that have little in common with the substrates the cells will encounter in vivo. To produce materials that are clinically valuable, we must analyze more deeply how musculoskeletal cells interact with the physical features of their environments. An increasing body of information has examined the mechanisms by which osteoblasts interact with their substrate. The underlying substrate, particularly in bone, also has structural features that can alter the mechanical environment experienced by the cells. These structural features modulate the nature of cell attachment and the resulting cell shape, affecting cell proliferation and differentiation. The chemistry, surface energy, and microarchitecture of a material all influence the kinds of proteins that adsorb onto the surface, which in turn affects integrin-mediated attachment. Signaling via integrins initiates the transfer of information to the cell about the microenvironment. Cells can differentiate between crystallinities of the same chemistry and distinguish complex differences in surface structure. These differences in the in vitro response correspond to differences in clinical effectiveness. By designing biomaterials that maximally enhance mesenchymal cell attachment, migration, proliferation, and differentiation, the value of these materials for tissue repair will be markedly increased. The goal is to provide materials that are capable of supporting tissue regeneration in vivo, often at sites compromised by infection and loss of structure.
Collapse
Affiliation(s)
- Barbara D Boyan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech., Atlanta, GA, USA
| | | |
Collapse
|