1
|
Shui Y, Hu X, Hirano H, Tsukamoto H, Guo WZ, Hasumi K, Ijima F, Fujino M, Li XK. Combined phospholipids adjuvant augments anti-tumor immune responses through activated tumor-associated dendritic cells. Neoplasia 2023; 39:100893. [PMID: 36893559 PMCID: PMC10018555 DOI: 10.1016/j.neo.2023.100893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/28/2023] [Indexed: 03/09/2023]
Abstract
Dendritic cells (DCs) can initiate both naïve and memory T cell activation, as the most potent antigen-presenting cells. For efficient anti-tumor immunity, it is essential to enhance the anti-tumoral activity of tumor-associated DCs (TADCs) or to potently restrain TADCs so that they remain immuno-stimulating cells. Combined phospholipids (cPLs) adjuvant may act through the activation of DCs. This study demonstrated the potential mechanism of tumor growth inhibition of cPLs adjuvant, and confirmed that cPLs adjuvant could induce the maturation and activation (upregulation of MHC-II, CD80, CD40, IL-1β, IL-12, IL-6 expression) of BMDCs in vitro. Then we isolated tumor infiltrating lymphocytes (TILs) from solid tumor and analyzed the phenotype and cytokines of TILs. The examination of the TILs revealed that cPLs adjuvant upregulated the expression of co-stimulatory molecules (MHC-II, CD86), phosphatidylserine (PS) receptor (TIM-4) on TADCs and enhanced the cytotoxic effect (CD107a), as well as pro-inflammatory cytokine production (IFN-γ, TNF-α, IL-2) by the tumor-resident T cells. Taken together, cPLs adjuvant may be an immune-potentiating adjuvant for cancer immunotherapy. This reagent may lead to the development of new approaches in DC-targeted cancer immunotherapy.
Collapse
Affiliation(s)
- Yifang Shui
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Xin Hu
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hiroshi Hirano
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hirotake Tsukamoto
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Division of Clinical Immunology and Cancer Immunotherapy, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Japan
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | | | | | - Masayuki Fujino
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Xiao-Kang Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.
| |
Collapse
|
2
|
Nagy NA, de Haas AM, Geijtenbeek TBH, van Ree R, Tas SW, van Kooyk Y, de Jong EC. Therapeutic Liposomal Vaccines for Dendritic Cell Activation or Tolerance. Front Immunol 2021; 12:674048. [PMID: 34054859 PMCID: PMC8155586 DOI: 10.3389/fimmu.2021.674048] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells (DCs) are paramount in initiating and guiding immunity towards a state of activation or tolerance. This bidirectional capacity of DCs sets them at the center stage for treatment of cancer and autoimmune or allergic conditions. Accordingly, many clinical studies use ex vivo DC vaccination as a strategy to boost anti-tumor immunity or to suppress immunity by including vitamin D3, NF-κB inhibitors or retinoic acid to create tolerogenic DCs. As harvesting DCs from patients and differentiating these cells in vitro is a costly and cumbersome process, in vivo targeting of DCs has huge potential as nanoparticulate platforms equipped with activating or tolerogenic adjuvants can modulate DCs in their natural environment. There is a rapid expansion of the choices of nanoparticles and activation- or tolerance-promoting adjuvants for a therapeutic vaccine platform. In this review we highlight the most recent nanomedical approaches aimed at inducing immune activation or tolerance via targeting DCs, together with novel fundamental insights into the mechanisms inherent to fostering anti-tumor or tolerogenic immunity.
Collapse
Affiliation(s)
- Noémi Anna Nagy
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Aram M. de Haas
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Teunis B. H. Geijtenbeek
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Ronald van Ree
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
- Department of Otorhinolaryngology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Sander W. Tas
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Center, Amsterdam Rheumatology and Immunology Center, University of Amsterdam, Amsterdam, Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Esther C. de Jong
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
3
|
Walczak J, Bocian S, Trziszka T, Buszewski B. Hyphenated Analytical Methods in Determination of Biologically Active Compounds in Hen's Eggs. Crit Rev Anal Chem 2016; 46:201-12. [PMID: 26186292 DOI: 10.1080/10408347.2015.1023428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Hen's egg is a complete material needed for the development of the embryo; it is an important source of nutraceutical compounds, such as protein, fats, vitamins, trace metals, and minerals. Moreover, avian egg contains biologically active compounds that exhibit antibacterial and antimicrobial activities as well as antitumor, antiviral, antioxidant, immunomodulating, and therapeutic properties. Eggs are mostly very good sources of valuable, easily digestible proteins. This review focuses on the biologically active compounds from hen's egg and applications of these compounds in medicine and the pharmaceutical industry. Additionally, it gives an overview of the hyphenated separation techniques, including sample preparation, analysis, and identification, used in the proteomics and lipidomics analysis.
Collapse
Affiliation(s)
- Justyna Walczak
- a Department of Environmental Chemistry and Bioanalytics , Nicolaus Copernicus University , Torun , Poland
| | - Szymon Bocian
- a Department of Environmental Chemistry and Bioanalytics , Nicolaus Copernicus University , Torun , Poland
| | - Tadeusz Trziszka
- b Department of Animal Products Technology and Quality Management , Wroclaw University of Environmental and Life Sciences , Wroclaw , Poland
| | - Bogusław Buszewski
- a Department of Environmental Chemistry and Bioanalytics , Nicolaus Copernicus University , Torun , Poland
| |
Collapse
|
4
|
Powles L, Xiang SD, Selomulya C, Plebanski M. The Use of Synthetic Carriers in Malaria Vaccine Design. Vaccines (Basel) 2015; 3:894-929. [PMID: 26529028 PMCID: PMC4693224 DOI: 10.3390/vaccines3040894] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/28/2015] [Accepted: 10/16/2015] [Indexed: 11/29/2022] Open
Abstract
Malaria vaccine research has been ongoing since the 1980s with limited success. However, recent improvements in our understanding of the immune responses required to combat each stage of infection will allow for intelligent design of both antigens and their associated delivery vaccine vehicles/vectors. Synthetic carriers (also known as vectors) are usually particulate and have multiple properties, which can be varied to control how an associated vaccine interacts with the host, and consequently how the immune response develops. This review comprehensively analyzes both historical and recent studies in which synthetic carriers are used to deliver malaria vaccines. Furthermore, the requirements for a synthetic carrier, such as size, charge, and surface chemistry are reviewed in order to understand the design of effective particle-based vaccines against malaria, as well as providing general insights. Synthetic carriers have the ability to alter and direct the immune response, and a better control of particle properties will facilitate improved vaccine design in the near future.
Collapse
Affiliation(s)
- Liam Powles
- Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia.
| | - Sue D Xiang
- Department of Immunology and Pathology, Monash University, Melbourne, VIC 3004, Australia.
- Therapeutics and Regenerative Medicine Division, The Monash Institute of Medical Engineering (MIME), Monash University, Clayton, VIC 3800, Australia.
| | - Cordelia Selomulya
- Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia.
| | - Magdalena Plebanski
- Department of Immunology and Pathology, Monash University, Melbourne, VIC 3004, Australia.
- Therapeutics and Regenerative Medicine Division, The Monash Institute of Medical Engineering (MIME), Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
5
|
Watson DS, Endsley AN, Huang L. Design considerations for liposomal vaccines: influence of formulation parameters on antibody and cell-mediated immune responses to liposome associated antigens. Vaccine 2012; 30:2256-72. [PMID: 22306376 DOI: 10.1016/j.vaccine.2012.01.070] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/19/2012] [Accepted: 01/23/2012] [Indexed: 02/06/2023]
Abstract
Liposomes (phospholipid bilayer vesicles) are versatile and robust delivery systems for induction of antibody and T lymphocyte responses to associated subunit antigens. In the last 15 years, liposome vaccine technology has matured and now several vaccines containing liposome-based adjuvants have been approved for human use or have reached late stages of clinical evaluation. Given the intensifying interest in liposome-based vaccines, it is important to understand precisely how liposomes interact with the immune system and stimulate immunity. It has become clear that the physicochemical properties of liposomal vaccines - method of antigen attachment, lipid composition, bilayer fluidity, particle charge, and other properties - exert dramatic effects on the resulting immune response. Here, we present a comprehensive review of the physicochemical properties of liposomal vaccines and how they influence immune responses. A discussion of novel and emerging immunomodulators that are suitable for inclusion in liposomal vaccines is also presented. Through a comprehensive analysis of the body of liposomal vaccine literature, we enumerate a series of principles that can guide the rational design of liposomal vaccines to elicit immune responses of a desired magnitude and quality. We also identify major unanswered questions in the field, pointing the direction for future study.
Collapse
Affiliation(s)
- Douglas S Watson
- Biosciences Division, SRI International, 140 Research Drive, Harrisonburg, VA 22802, United States. [corrected]
| | | | | |
Collapse
|
6
|
De Temmerman ML, Rejman J, Demeester J, Irvine DJ, Gander B, De Smedt SC. Particulate vaccines: on the quest for optimal delivery and immune response. Drug Discov Today 2011; 16:569-82. [PMID: 21570475 DOI: 10.1016/j.drudis.2011.04.006] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 02/10/2011] [Accepted: 04/20/2011] [Indexed: 12/22/2022]
Abstract
Subunit vaccines offer a safer alternative to traditional organism-based vaccines, but their immunogenicity is impaired. This hurdle might be overcome by the use of micro- and nanodelivery systems carrying the antigen(s). This review discusses the rationale for the use of particulate vaccines and provides an overview of antigen-delivery vehicles currently under investigation. It further highlights the cellular uptake, antigen processing and the presentation by antigen-presenting cells because these processes are partially governed by particle characteristics and eventually determine the immunological outcome. Finally, we address the attractive concept of concomitant delivery of antigens and immunopotentiators. The condensed knowledge could be an asset for rationally designing antigen-delivery vehicles to obtain safe and efficacious vaccines.
Collapse
Affiliation(s)
- Marie-Luce De Temmerman
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
7
|
Dicaire CJ, Yu SH, Whitfield DM, Sprott GD. Isopranoid- and dipalmitoyl-aminophospholipid adjuvants impact differently on longevity of CTL immune responses. J Liposome Res 2010; 20:304-14. [PMID: 20148707 DOI: 10.3109/08982100903544151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The success of lipid membranes as cytotoxic T-cell (CTL) adjuvants requires targeted uptake by antigen-presenting cells (APCs) and delivery of the antigen cargo to the cytosol for processing. To target the phosphatidylserine (PS) receptor of APCs, we prepared antigen-loaded liposomes containing dipalmitoylphosphatidylserine and archaeal lipid liposomes (archaeosomes), containing an equivalent amount of archaetidylserine, and compared their ability to promote short and long-term CTL activity in animals. CTL responses were enhanced by the incorporation of PS into phosphatidylcholine/cholesterol liposomes and, to a lesser extent, into phosphatidylglycerol/cholesterol liposomes, that correlated to the amount of surface amino groups reactive with trinitrobenzoyl sulfonate. Archaeosomes contrasted to the liposome adjuvants by exhibiting higher amounts of surface amino groups and inducing superior shorter and, especially, longer-term CTL responses. The incorporation of dipalmitoyl lipids into archaeosomes induced instability and prevented long-term, but not short-term, CTL responses in mice. The importance of glycero-lipid cores (isopranoid versus dipalmitoyl) to the longevity of the CTL response achieved was shown further by incorporating dipalmitoyl phosphatidylethanolamine (DPPE) or equivalent amounts of synthetic archaetidylethanolamine (AE) into archaeosome adjuvants. Both DPPE and AE at equivalent (5 mol%) concentrations enhanced the rapidity of CTL responses in mice, indicating the importance of the head group in the short term. In the longer term, 5% of DPPE (but not 5% of AE) was detrimental. In addition to head-group effects critical to the potency of short-term CTL responses, the longer term CTL adjuvant properties of archaeosomes may be ascribed to stability imparted by the archaeal isopranoid core lipids.
Collapse
Affiliation(s)
- Chantal J Dicaire
- National Research Council, Institute for Biological Sciences, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
8
|
Abstract
Many preclinical and clinical results indicate that liposomal systems can serve as effective adjuvants to subunit vaccines by enabling the formulation and delivery of vaccine antigens and immunopotentiators. The adjuvant effect of liposomes usually depends on both the composition of the lipid vesicles and their physical association with the vaccine antigen. This chapter describes methods for the preparation and characterization of sterile small, mostly unilamellar, lipid vesicles and for their association with vaccine antigens. It gives also some recommendations for the optimization of liposomal vaccines in preclinical testing. The most common immunopotentiators used in liposomal adjuvants are also described.
Collapse
|