1
|
Erwin AA, Blumenstiel JP. Aging in the Drosophila ovary: contrasting changes in the expression of the piRNA machinery and mitochondria but no global release of transposable elements. BMC Genomics 2019; 20:305. [PMID: 31014230 PMCID: PMC6480902 DOI: 10.1186/s12864-019-5668-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/08/2019] [Indexed: 01/06/2023] Open
Abstract
Background Evolutionary theory indicates that the dynamics of aging in the soma and reproductive tissues may be distinct. This difference arises from the fact that only the germline lineage establishes future generations. In the soma, changes in the landscape of heterochromatin have been proposed to have an important role in aging. This is because redistribution of heterochromatin during aging has been linked to the derepression of transposable elements and an overall loss of somatic gene regulation. A role for changes in the chromatin landscape in the aging of reproductive tissues is less well established. Whether or not epigenetic factors, such as heterochromatin marks, are perturbed in aging reproductive tissues is of interest because, in special cases, epigenetic variation may be heritable. Using mRNA sequencing data from late-stage egg chambers in Drosophila melanogaster, we characterized the landscape of altered gene and transposable element expression in aged reproductive tissues. This allowed us to test the hypothesis that reproductive tissues may differ from somatic tissues in their response to aging. Results We show that age-related expression changes in late-stage egg chambers tend to occur in genes residing in heterochromatin, particularly on the largely heterochromatic 4th chromosome. However, these expression differences are seen as both decreases and increases during aging, inconsistent with a general loss of heterochromatic silencing. We also identify an increase in expression of the piRNA machinery, suggesting an age-related increased investment in the maintenance of genome stability. We further identify a strong age-related reduction in the expression of mitochondrial transcripts. However, we find no evidence for global TE derepression in reproductive tissues. Rather, the observed effects of aging on TEs are primarily strain and family specific. Conclusions These results identify unique responses in somatic versus reproductive tissue with regards to aging. As in somatic tissues, female reproductive tissues show reduced expression of mitochondrial genes. In contrast, the piRNA machinery shows increased expression during aging. Overall, these results also indicate that global loss of TE control observed in other studies may be unique to the soma and sensitive to genetic background and TE family. Electronic supplementary material The online version of this article (10.1186/s12864-019-5668-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexandra A Erwin
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA.
| | - Justin P Blumenstiel
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA.
| |
Collapse
|
2
|
A Small RNA-Based Immune System Defends Germ Cells against Mobile Genetic Elements. Stem Cells Int 2015; 2016:7595791. [PMID: 26681955 PMCID: PMC4670677 DOI: 10.1155/2016/7595791] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/11/2015] [Indexed: 11/17/2022] Open
Abstract
Transposons are mobile genetic elements that threaten the survival of species by destabilizing the germline genomes. Limiting the spread of these selfish elements is imperative. Germ cells employ specialized small regulatory RNA pathways to restrain transposon activity. PIWI proteins and Piwi-interacting RNAs (piRNAs) silence transposons at the transcriptional and posttranscriptional level with loss-of-function mutant animals universally exhibiting sterility often associated with germ cell defects. This short review aims to illustrate basic strategies of piRNA-guided defense against transposons. Mechanisms of piRNA silencing are most readily studied in Drosophila melanogaster, which serves as a model to delineate molecular concepts and as a reference for mammalian piRNA systems. PiRNA pathways utilize two major strategies to handle the challenges of transposon control: (1) the hard-wired molecular memory of prior transpositions enables recognition of mobile genetic elements and discriminates transposons from host genes; (2) a feed-forward adaptation mechanism shapes piRNA populations to selectively combat the immediate threat of transposon transcripts. In flies, maternally contributed PIWI-piRNA complexes bolster both of these lines of defense and ensure transgenerational immunity. While recent studies have provided a conceptual framework of what could be viewed as an ancient immune system, we are just beginning to appreciate its many molecular innovations.
Collapse
|
3
|
Lim RSM, Kai T. A piece of the pi(e): The diverse roles of animal piRNAs and their PIWI partners. Semin Cell Dev Biol 2015; 47-48:17-31. [PMID: 26582251 DOI: 10.1016/j.semcdb.2015.10.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Small non-coding RNAs are indispensable to many biological processes. A class of endogenous small RNAs, termed PIWI-interacting RNAs (piRNAs) because of their association with PIWI proteins, has known roles in safeguarding the genome against inordinate transposon mobilization, embryonic development, and stem cell regulation, among others. This review discusses the biogenesis of animal piRNAs and their diverse functions together with their PIWI protein partners, both in the germline and in somatic cells, and highlights the evolutionarily conserved aspects of these molecular players in animal biology.
Collapse
Affiliation(s)
- Robyn S M Lim
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| | - Toshie Kai
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
4
|
Grentzinger T, Chambeyron S. Fast and accurate method to purify small noncoding RNAs from Drosophila ovaries. Methods Mol Biol 2014; 1093:171-82. [PMID: 24178565 DOI: 10.1007/978-1-62703-694-8_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The recent development of High Throughput Sequencing technology has boosted the study of small regulatory RNA populations. A critical step prior to cloning and sequencing is purification of small RNA populations. Here, we report the optimization of an anion-exchange chromatography procedure in order to purify small regulatory RNAs bound on proteins. We developed this procedure to make it less time-consuming since our improved method no longer requires specific equipment and can easily be performed at the bench. We believe that our procedure will increase the robustness and accuracy of small RNA libraries in the future.
Collapse
|
5
|
Grentzinger T, Armenise C, Brun C, Mugat B, Serrano V, Pelisson A, Chambeyron S. piRNA-mediated transgenerational inheritance of an acquired trait. Genome Res 2012; 22:1877-88. [PMID: 22555593 PMCID: PMC3460183 DOI: 10.1101/gr.136614.111] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The maintenance of genome integrity is an essential trait to the successful transmission of genetic information. In animal germ cells, piRNAs guide PIWI proteins to silence transposable elements (TEs) in order to maintain genome integrity. In insects, most TE silencing in the germline is achieved by secondary piRNAs that are produced by a feed-forward loop (the ping-pong cycle), which requires the piRNA-directed cleavage of two types of RNAs: mRNAs of functional euchromatic TEs and heterochromatic transcripts that contain defective TE sequences. The first cleavage that initiates such an amplification loop remains poorly understood. Taking advantage of the existence of strains that are devoid of functional copies of the LINE-like I-element, we report here that in such Drosophila ovaries, the initiation of a ping-pong cycle is exclusively achieved by secondary I-element piRNAs that are produced in the ovary and deposited in the embryonic germline. This unusual secondary piRNA biogenesis, detected in the absence of functional I-element copies, results from the processing of sense and antisense transcripts of several different defective I-element. Once acquired, for instance after ancestor aging, this capacity to produce heterochromatic-only secondary piRNAs is partially transmitted through generations via maternal piRNAs. Furthermore, such piRNAs acting as ping-pong initiators in a chromatin-independent manner confer to the progeny a high capacity to repress the I-element mobility. Our study explains, at the molecular level, the basis for epigenetic memory of maternal immunity that protects females from hybrid dysgenesis caused by transposition of paternally inherited functional I-element.
Collapse
|
6
|
Pöyhönen M, de Vanssay A, Delmarre V, Hermant C, Todeschini AL, Teysset L, Ronsseray S. Homology-dependent silencing by an exogenous sequence in the Drosophila germline. G3 (BETHESDA, MD.) 2012; 2:331-8. [PMID: 22413086 PMCID: PMC3291502 DOI: 10.1534/g3.111.001925] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 12/24/2011] [Indexed: 11/25/2022]
Abstract
The study of P transposable element repression in Drosophila melanogaster led to the discovery of the trans-silencing effect (TSE), a homology-dependent repression mechanism by which a P-transgene inserted in subtelomeric heterochromatin (Telomeric Associated Sequences) represses in trans, in the female germline, a homologous P-lacZ transgene inserted in euchromatin. TSE shows variegation in ovaries and displays a maternal effect as well as epigenetic transmission through meiosis. In addition, TSE is highly sensitive to mutations affecting heterochromatin components (including HP1) and the Piwi-interacting RNA silencing pathway (piRNA), a homology-dependent silencing mechanism that functions in the germline. TSE appears thus to involve the piRNA-based silencing proposed to play a major role in P repression. Under this hypothesis, TSE may also be established when homology between the telomeric and target loci involves sequences other than P elements, including sequences exogenous to the D. melanogaster genome. We have tested whether TSE can be induced via lacZ sequence homology. We generated a piggyBac-otu-lacZ transgene in which lacZ is under the control of the germline ovarian tumor promoter, resulting in strong expression in nurse cells and the oocyte. We show that all piggyBac-otu-lacZ transgene insertions are strongly repressed by maternally inherited telomeric P-lacZ transgenes. This repression shows variegation between egg chambers when it is incomplete and presents a maternal effect, two of the signatures of TSE. Finally, this repression is sensitive to mutations affecting aubergine, a key player of the piRNA pathway. These data show that TSE can occur when silencer and target loci share solely a sequence exogenous to the D. melanogaster genome. This functionally supports the hypothesis that TSE represents a general repression mechanism which can be co-opted by new transposable elements to regulate their activity after a transfer to the D. melanogaster genome.
Collapse
Affiliation(s)
| | | | - Valérie Delmarre
- Laboratoire Biologie du Développement, UMR7622, CNRS–Université Pierre et Marie Curie, 9 quai Saint-Bernard, 75005 Paris, France
| | - Catherine Hermant
- Laboratoire Biologie du Développement, UMR7622, CNRS–Université Pierre et Marie Curie, 9 quai Saint-Bernard, 75005 Paris, France
| | | | - Laure Teysset
- Laboratoire Biologie du Développement, UMR7622, CNRS–Université Pierre et Marie Curie, 9 quai Saint-Bernard, 75005 Paris, France
| | - Stéphane Ronsseray
- Laboratoire Biologie du Développement, UMR7622, CNRS–Université Pierre et Marie Curie, 9 quai Saint-Bernard, 75005 Paris, France
| |
Collapse
|
7
|
Moschetti R, Dimitri P, Caizzi R, Junakovic N. Genomic instability of I elements of Drosophila melanogaster in absence of dysgenic crosses. PLoS One 2010; 5. [PMID: 20957225 PMCID: PMC2949383 DOI: 10.1371/journal.pone.0013142] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 08/10/2010] [Indexed: 11/18/2022] Open
Abstract
Retrotranspostion of I factors in the female germline of Drosophila melanogaster is responsible for the so called I-R hybrid dysgenesis, a phenomenon that produces a broad spectrum of genetic abnormalities including reduced fertility, increased frequency of mutations and chromosome loss. Transposition of I factor depends on cellular conditions that are established in the oocytes of the reactive females and transmitted to their daughters. The so-called reactivity is a cellular state that may exhibit variable levels of expression and represents a permissive condition for I transposition at high levels. Defective I elements have been proposed to be the genetic determinants of reactivity and, through their differential expression, to modulate transposition of active copies in somatic and/or germ line cells. Recently, control of transposable element activity in the germ line has been found to depend on pi-RNAs, small repressive RNAs interacting with Piwi-family proteins and derived from larger transposable elements (TE)-derived primary transcripts. In particular, maternally transmitted I-element piRNAs originating from the 42AB region of polytene chromosomes were found to be involved in control of I element mobility. In the present work, we use a combination of cytological and molecular approaches to study the activity of I elements in three sublines of the inducer y; cn bw; sp isogenic strain and in dysgenic and non-dysgenic genetic backgrounds. Overall, the results of FISH and Southern blotting experiments clearly show that I elements are highly unstable in the Montpellier subline in the absence of classical dysgenic conditions. Such instability appears to be correlated to the amount of 5' and 3' I element transcripts detected by quantitative and real-time RT-PCR. The results of this study indicate that I elements can be highly active in the absence of a dysgenic crosses. Moreover, in the light of our results caution should be taken to assimilate the genomic annotation data on transposable elements to all y; cn bw sp sublines.
Collapse
Affiliation(s)
- Roberta Moschetti
- Dipartimento di Genetica e Microbiologia, Università di Bari “Aldo Moro”, Bari, Italy
| | - Patrizio Dimitri
- Dipartimento di Genetica e Biologia Molecolare, Charles Darwin, Roma, Italy
- * E-mail:
| | - Ruggiero Caizzi
- Dipartimento di Genetica e Microbiologia, Università di Bari “Aldo Moro”, Bari, Italy
| | | |
Collapse
|
8
|
Malone CD, Hannon GJ. Molecular evolution of piRNA and transposon control pathways in Drosophila. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2010; 74:225-34. [PMID: 20453205 DOI: 10.1101/sqb.2009.74.052] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The mere prevalence and potential mobilization of transposable elements in eukaryotic genomes present challenges at both the organismal and population levels. Not only is transposition able to alter gene function and chromosomal structure, but loss of control over even a single active element in the germline can create an evolutionary dead end. Despite the dangers of coexistence, transposons and their activity have been shown to drive the evolution of gene function, chromosomal organization, and even population dynamics (Kazazian 2004). This implies that organisms have adopted elaborate means to balance both the positive and detrimental consequences of transposon activity. In this chapter, we focus on the fruit fly to explore some of the molecular clues into the long- and short-term adaptation to transposon colonization and persistence within eukaryotic genomes.
Collapse
Affiliation(s)
- C D Malone
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
9
|
Unique functions of repetitive transcriptomes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 285:115-88. [PMID: 21035099 DOI: 10.1016/b978-0-12-381047-2.00003-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Repetitive sequences occupy a huge fraction of essentially every eukaryotic genome. Repetitive sequences cover more than 50% of mammalian genomic DNAs, whereas gene exons and protein-coding sequences occupy only ~3% and 1%, respectively. Numerous genomic repeats include genes themselves. They generally encode "selfish" proteins necessary for the proliferation of transposable elements (TEs) in the host genome. The major part of evolutionary "older" TEs accumulated mutations over time and fails to encode functional proteins. However, repeats have important functions also on the RNA level. Repetitive transcripts may serve as multifunctional RNAs by participating in the antisense regulation of gene activity and by competing with the host-encoded transcripts for cellular factors. In addition, genomic repeats include regulatory sequences like promoters, enhancers, splice sites, polyadenylation signals, and insulators, which actively reshape cellular transcriptomes. TE expression is tightly controlled by the host cells, and some mechanisms of this regulation were recently decoded. Finally, capacity of TEs to proliferate in the host genome led to the development of multiple biotechnological applications.
Collapse
|
10
|
Suter CM, Martin DIK. Paramutation: the tip of an epigenetic iceberg? Trends Genet 2010; 26:9-14. [PMID: 19945764 PMCID: PMC3137459 DOI: 10.1016/j.tig.2009.11.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 11/04/2009] [Accepted: 11/04/2009] [Indexed: 11/21/2022]
Abstract
Paramutation describes the transfer of an acquired epigenetic state to an unlinked homologous locus, resulting in a meiotically heritable alteration in gene expression. Early investigations of paramutation characterized a mode of change and inheritance distinct from mendelian genetics, catalyzing the concept of the epigenome. Numerous examples of paramutation and paramutation-like phenomena have now emerged, with evidence that implicates small RNAs in the transfer and maintenance of epigenetic states. In animals Piwi-interacting RNA (piRNA)-mediated retrotransposon suppression seems to drive a vast system of epigenetic inheritance with paramutation-like characteristics. The classic examples of paramutation might be merely informative aberrations of pervasive and broadly conserved mechanisms that use RNA to sense homology and target epigenetic modification. When viewed in this context, paramutation is only one aspect of a common and broadly distributed form of inheritance based on epigenetic states.
Collapse
Affiliation(s)
- Catherine M Suter
- Victor Chang Cardiac Research Institute, 405 Liverpool St, Darlinghurst, Sydney, NSW 2010, Australia.
| | | |
Collapse
|
11
|
Hartig JV, Esslinger S, Böttcher R, Saito K, Förstemann K. Endo-siRNAs depend on a new isoform of loquacious and target artificially introduced, high-copy sequences. EMBO J 2009; 28:2932-44. [PMID: 19644447 DOI: 10.1038/emboj.2009.220] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 07/09/2009] [Indexed: 12/20/2022] Open
Abstract
Colonization of genomes by a new selfish genetic element is detrimental to the host species and must lead to an efficient, repressive response. In vertebrates as well as in Drosophila, piRNAs repress transposons in the germ line, whereas endogenous siRNAs take on this role in somatic cells. We show that their biogenesis depends on a new isoform of the Drosophila TRBP homologue loquacious, which arises by alternative polyadenylation and is distinct from the one that functions during the biogenesis of miRNAs. For endo-siRNAs and piRNAs, it is unclear how an efficient response can be initiated de novo. Our experiments establish that the endo-siRNA pathway will target artificially introduced sequences without the need for a pre-existing template in the genome. This response is also triggered in transiently transfected cells, thus genomic integration is not essential. Deep sequencing showed that corresponding endo-siRNAs are generated throughout the sequence, but preferentially from transcribed regions. One strand of the dsRNA precursor can come from spliced mRNA, whereas the opposite strand derives from independent transcripts in antisense orientation.
Collapse
Affiliation(s)
- Julia Verena Hartig
- Department of Chemistry and Biochemistry, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | | | |
Collapse
|
12
|
Brosnan CA, Voinnet O. The long and the short of noncoding RNAs. Curr Opin Cell Biol 2009; 21:416-25. [PMID: 19447594 DOI: 10.1016/j.ceb.2009.04.001] [Citation(s) in RCA: 275] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 04/06/2009] [Indexed: 12/27/2022]
Abstract
Controlling protein-coding gene expression can no longer be attributed purely to proteins involved in transcription, RNA processing, and translation. The role that noncoding RNAs (ncRNAs) play as potent and specific regulators of gene expression is now widely recognized in almost all species studied to date. Long ncRNAs can both upregulate and downregulate gene expression in both eukaryotes and prokaryotes and are essential in processes such as dosage compensation, genomic imprinting, developmental patterning and differentiation, and stress response. Small ncRNAs also play essential roles in diverse organisms, although are limited to eukaryotes. Different small RNA classes regulate diverse processes such as transposon and virus suppression, as well as many key developmental processes.
Collapse
Affiliation(s)
- Christopher A Brosnan
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357-Université de Strasbourg, Strasbourg, France
| | | |
Collapse
|
13
|
Brennecke J, Malone CD, Aravin AA, Sachidanandam R, Stark A, Hannon GJ. An epigenetic role for maternally inherited piRNAs in transposon silencing. Science 2008; 322:1387-92. [PMID: 19039138 DOI: 10.1126/science.1165171] [Citation(s) in RCA: 547] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In plants and mammals, small RNAs indirectly mediate epigenetic inheritance by specifying cytosine methylation. We found that small RNAs themselves serve as vectors for epigenetic information. Crosses between Drosophila strains that differ in the presence of a particular transposon can produce sterile progeny, a phenomenon called hybrid dysgenesis. This phenotype manifests itself only if the transposon is paternally inherited, suggesting maternal transmission of a factor that maintains fertility. In both P- and I-element-mediated hybrid dysgenesis models, daughters show a markedly different content of Piwi-interacting RNAs (piRNAs) targeting each element, depending on their parents of origin. Such differences persist from fertilization through adulthood. This indicates that maternally deposited piRNAs are important for mounting an effective silencing response and that a lack of maternal piRNA inheritance underlies hybrid dysgenesis.
Collapse
Affiliation(s)
- Julius Brennecke
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory (CSHL), 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | | | |
Collapse
|
14
|
piRNA-mediated nuclear accumulation of retrotransposon transcripts in the Drosophila female germline. Proc Natl Acad Sci U S A 2008; 105:14964-9. [PMID: 18809914 DOI: 10.1073/pnas.0805943105] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Germline silencing of transposable elements is essential for the maintenance of genome integrity. Recent results indicate that this repression is largely achieved through a RNA silencing pathway that involves Piwi-interacting RNAs (piRNAs). However the repressive mechanisms are not well understood. To address this question, we used the possibility to disrupt the repression of the Drosophila I element retrotransposon by hybrid dysgenesis. We show here that the repression of the functional I elements that are located in euchromatin requires proteins of the piRNA pathway, and that the amount of ovarian I element piRNAs correlates with the strength of the repression in the female germline. Antisense RNAs, which are likely used to produce antisense piRNAs, are transcribed by heterochromatic defective I elements, but efficient production of these antisense small RNAs requires the presence in the genome of euchromatic functional I elements. Finally, we demonstrate that the piRNA-induced silencing of the functional I elements is at least partially posttranscriptional. In a repressive background, these elements are still transcribed, but some of their sense transcripts are kept in nurse cell nuclear foci together with those of the Doc retrotransposon. In the absence of I element piRNAs, either in dysgenic females or in mutants of the piRNA silencing pathway, sense I element transcripts are transported toward the oocyte where retrotransposition occurs. Our results indicate that piRNAs are involved in a posttranscriptional gene-silencing mechanism resulting in RNA nuclear accumulation.
Collapse
|
15
|
Rebollo R, Lerat E, Kleine LL, Biémont C, Vieira C. Losing helena: the extinction of a drosophila line-like element. BMC Genomics 2008; 9:149. [PMID: 18377637 PMCID: PMC2330053 DOI: 10.1186/1471-2164-9-149] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 03/31/2008] [Indexed: 11/25/2022] Open
Abstract
Background Transposable elements (TEs) are major players in evolution. We know that they play an essential role in genome size determination, but we still have an incomplete understanding of the processes involved in their amplification and elimination from genomes and populations. Taking advantage of differences in the amount and distribution of the Long Interspersed Nuclear Element (LINE), helena in Drosophila melanogaster and D. simulans, we analyzed the DNA sequences of copies of this element in samples of various natural populations of these two species. Results In situ hybridization experiments revealed that helena is absent from the chromosome arms of D. melanogaster, while it is present in the chromosome arms of D. simulans, which is an unusual feature for a TE in these species. Molecular analyses showed that the helena sequences detected in D. melanogaster were all deleted copies, which diverged from the canonical element. Natural populations of D. simulans have several copies, a few of them full-length, but most of them internally deleted. Conclusion Overall, our data suggest that a mechanism that induces internal deletions in the helena sequences is active in the D. simulans genome.
Collapse
Affiliation(s)
- Rita Rebollo
- Université de Lyon; Université Lyon 1; CNRS; UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne F-69622, France.
| | | | | | | | | |
Collapse
|
16
|
Gasior SL, Wakeman TP, Xu B, Deininger PL. The human LINE-1 retrotransposon creates DNA double-strand breaks. J Mol Biol 2006; 357:1383-93. [PMID: 16490214 PMCID: PMC4136747 DOI: 10.1016/j.jmb.2006.01.089] [Citation(s) in RCA: 350] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 01/25/2006] [Accepted: 01/26/2006] [Indexed: 11/28/2022]
Abstract
Long interspersed element-1 (L1) is an autonomous retroelement that is active in the human genome. The proposed mechanism of insertion for L1 suggests that cleavage of both strands of genomic DNA is required. We demonstrate that L1 expression leads to a high level of double-strand break (DSB) formation in DNA using immunolocalization of gamma-H2AX foci and the COMET assay. Similar to its role in mediating DSB repair in response to radiation, ATM is required for L1-induced gamma-H2AX foci and for L1 retrotransposition. This is the first characterization of a DNA repair response from expression of a non-long terminal repeat (non-LTR) retrotransposon in mammalian cells as well as the first demonstration that a host DNA repair gene is required for successful integration. Notably, the number of L1-induced DSBs is greater than the predicted numbers of successful insertions, suggesting a significant degree of inefficiency during the integration process. This result suggests that the endonuclease activity of endogenously expressed L1 elements could contribute to DSB formation in germ-line and somatic tissues.
Collapse
Affiliation(s)
- Stephen L. Gasior
- Tulane Cancer Center and Department of Epidemiology Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112 USA
| | - Timothy P. Wakeman
- Stanley S. Scott Cancer Center and Department of Genetics Louisiana State University Health Sciences Center, 533 Bolivar Street, Room 406 New Orleans, LA 70112, USA
| | - Bo Xu
- Stanley S. Scott Cancer Center and Department of Genetics Louisiana State University Health Sciences Center, 533 Bolivar Street, Room 406 New Orleans, LA 70112, USA
| | - Prescott L. Deininger
- Tulane Cancer Center and Department of Epidemiology Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112 USA
- Corresponding author
| |
Collapse
|
17
|
Dimitri P, Bucheton A. I element distribution in mitotic heterochromatin of Drosophila melanogaster reactive strains: identification of a specific site which is correlated with the reactivity levels. Cytogenet Genome Res 2005; 110:160-4. [PMID: 16093668 DOI: 10.1159/000084948] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2003] [Accepted: 11/24/2003] [Indexed: 11/19/2022] Open
Abstract
The I factor is a Drosophila melanogaster LINE-like element that efficiently transposes in the genetic system of I-R hybrid dysgenesis. It has been suggested that some of the I-related sequences located in the heterochromatin of D. melanogaster are involved in the regulation of I factor activity. In this work we have performed fluorescent in situ hybridization (FISH) mapping of I element sequences in mitotic heterochromatin of nine differentially reactive D. melanogaster strains. The results of our analysis showed that a single hybridization site mapping to region h28 of the distal heterochromatin of the X chromosome is present in three strains with low or intermediate levels of reactivity, while it is undetectable in six highly reactive strains. Together, these observations suggest a negative correlation between I sequences located at h28 and the level of reactivity. To this regard, it is intriguing that flamenco and COM, two loci that regulate the activity of D. melanogaster endogenous retroviruses also map to the distal heterochromatin of the X chromosome. Our data represent the first experimental evidence in favour of a silencing effect exerted by naturally occurring I element sequences located in pericentromeric heterochromatin.
Collapse
Affiliation(s)
- P Dimitri
- Dipartimento di Genetica e Biologia Molecolare, Università La Sapienza, Rome, Italy.
| | | |
Collapse
|
18
|
Dimitri P, Corradini N, Rossi F, Mei E, Zhimulev IF, Vernì F. Transposable elements as artisans of the heterochromatic genome in Drosophila melanogaster. Cytogenet Genome Res 2005; 110:165-72. [PMID: 16093669 DOI: 10.1159/000084949] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Accepted: 11/24/2003] [Indexed: 10/25/2022] Open
Abstract
Over 50 years ago Barbara McClintock discovered that maize contains mobile genetic elements, but her findings were at first considered nothing more than anomalies. Today it is widely recognized that transposable elements have colonized all eukaryotic genomes and represent a major force driving evolution of organisms. Our contribution to this special issue deals with the theme of transposable element-host genome interactions. We bring together published and unpublished work to provide a picture of the contribution of transposable elements to the evolution of the heterochromatic genome in Drosophila melanogaster. In particular, we discuss data on 1) colonization of constitutive heterochromatin by transposable elements, 2) instability of constitutive heterochromatin induced by the I factor, and 3) evolution of constitutive heterochromatin and heterochromatic genes driven by transposable elements. Drawing attention to these topics may have direct implications on important aspects of genome organization and gene expression.
Collapse
Affiliation(s)
- P Dimitri
- Dipartimento di Genetica e Biologia Molecolare, Università La Sapienza, Rome, Italy.
| | | | | | | | | | | |
Collapse
|