1
|
Zheng X, Lu X, Li Q, Gong S, Chen B, Xie Q, Yan F, Li J, Su Z, Liu Y, Guo Z, Chen J, Li Y. Discovery of 2,8-dihydroxyadenine in HUA patients with uroliths and biomarkers for its associated nephropathy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167051. [PMID: 38336103 DOI: 10.1016/j.bbadis.2024.167051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Currently, it is acknowledged that gout is caused by uric acid (UA). However, some studies have revealed no correlation between gout and UA levels, and growing evidence suggests that 2,8-dihydroxyadenine (2,8-DHA), whose structural formula is similar to UA but is less soluble, may induce gout. Hence, we hypothesized that uroliths from hyperuricemia (HUA) patients, which is closely associated with gout, may contain 2,8-DHA. In this study, 2,8-DHA in uroliths and serum of HUA patients were determined using HPLC. Moreover, bioinformatics was used to investigate the pathogenic mechanisms of 2,8-DHA nephropathy. Subsequently, a mouse model of 2,8-DHA nephropathy established by the gavage administration of adenine, as well as a model of injured HK-2 cells induced by 2,8-DHA were used to explore the pathogenesis of 2,8-DHA nephropathy. Interestingly, 2,8-DHA could readily deposit in the cortex of the renal tubules, and was found in the majority of these HUA patients. Additionally, the differentially expressed genes between 2,8-DHA nephropathy mice and control mice were found to be involved in inflammatory reactions. Importantly, CCL2 and IL-1β genes had the maximum degree, closeness, and betweenness centrality scores. The expressions of CCL2 and IL-1β genes were significantly increased in the serum of 24 HUA patients with uroliths, indicating that they may be significant factors for 2,8-DHA nephropathy. Further analysis illustrated that oxidative damage and inflammation were the crucial processes of 2,8-DHA renal injury, and CCL2 and IL-1β genes were verified to be essential biomarkers for 2,8-DHA nephropathy. These findings revealed further insights into 2,8-DHA nephropathy, and provided new ideas for its diagnosis and treatment.
Collapse
Affiliation(s)
- Xiaohong Zheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, China
| | - Xiaowei Lu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, China
| | - Qiuxian Li
- Clinical Laboratory Department, Guangzhou Panyu Central Hospital, Guangzhou 511486, China
| | - Shiting Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Baoyi Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Qingfeng Xie
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, China; Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Fang Yan
- The Second Clinical College Guangdong University of Chinese Medicine, Guangzhou 510120, China
| | - Jincan Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhonghui Guo
- Clinical Laboratory Department, Guangzhou Panyu Central Hospital, Guangzhou 511486, China.
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, China.
| | - Yucui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, China.
| |
Collapse
|
2
|
Miyazawa K, Nakai D, Nakamura Y, Tatsuno T, Inoue S, Nakazawa Y, Ishigaki Y. Effects of the xanthine oxidase inhibitor, febuxostat, on the expression of monocyte chemoattractant protein-1 and synchronous genes in MDCK cells treated with calcium oxalate monohydrate crystals. Int J Urol 2021; 28:339-345. [PMID: 33393162 DOI: 10.1111/iju.14450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/03/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To examine the effects of the selective xanthine oxidase inhibitor febuxostat on the expression of inflammation-related genes involved in stone formation. METHODS Madin-Darby canine kidney cells were exposed to febuxostat, followed by calcium oxalate monohydrate crystals. Monocyte chemoattractant protein-1 messenger ribonucleic acid expression levels were determined by real-time reverse transcription polymerase chain reaction analysis. Deoxyribonucleic acid microarray analysis was utilized to evaluate gene expression. RESULTS Calcium oxalate monohydrate crystals activated monocyte chemoattractant protein-1 messenger ribonucleic acid expression in a time- and concentration-dependent manner. Febuxostat suppressed monocyte chemoattractant protein-1 expression. The expression levels of a group of inflammatory genes, including interleukin-8 and chemokine (C-X-C motif) ligand 10, which are downstream of reactive oxygen species, fluctuated similarly to the observed monocyte chemoattractant protein-1 fluctuations and were reduced by febuxostat pretreatment. CONCLUSIONS Febuxostat exerts preventive effects against reactive oxygen species production and oxidative stress, and might represent a potential treatment for calcium oxalate stones. In the present study, febuxostat downregulated the calcium oxalate monohydrate crystal-induced monocyte chemoattractant protein-1 messenger ribonucleic acid expression.
Collapse
Affiliation(s)
- Katsuhito Miyazawa
- Department of Urology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Dan Nakai
- Department of Urology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Yuka Nakamura
- Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Takanori Tatsuno
- Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Shinya Inoue
- Department of Urology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Yusuke Nakazawa
- Department of Urology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Yasuhito Ishigaki
- Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| |
Collapse
|
3
|
Lin H, Zhu X, Long J, Chen Y, Xie Y, Liao M, Chen J, Tian J, Huang S, Tang R, Xian X, Wei S, Wang Q, Mo Z. HIPK2 polymorphisms rs2058265, rs6464214, and rs7456421 were associated with kidney stone disease in Chinese males not females. Gene 2018; 653:51-56. [PMID: 29428801 DOI: 10.1016/j.gene.2018.02.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/05/2018] [Accepted: 02/07/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND AIM Recent studies have shown that genetic factors are involved in the development of kidney stone disease (KSD). A case-control association analysis was performed to investigate the association between homeodomain-interacting protein kinase 2 (HIPK2; OMIM *606868) polymorphisms and KSD. METHODS A total of 890 KSD patients and 920 healthy subjects were analyzed. Polymorphisms were genotyped using SNPscanTM high-throughput SNP classification technology. The genotypic and allelic frequencies in KSD patients and healthy individuals were analyzed using a Chi-square test. RESULTS The genotype and allele distributions of the three polymorphisms (rs2058265, rs6464214, and rs7456421 in HIPK2) displayed strong associations with KSD in males (rs2058265: odds ratio [OR] 2.480,95%confidence interval [CI] 1.205-5.106, p = 0.014; rs6464214: OR 2.466, 95%CI 1.198-5.078, p = 0.014; rs7456421: OR 2.846, 95%CI 1.362-5.947, p = 0.005; perallele: r2058265T, OR 1.357, 95%CI 1.073-1.715, p = 0.011; rs6464214G, OR 1.340, 95%CI 1.060-1.693, p = 0.014; rs7456421C, OR 1.356, 95%CI 1.073-1.713, p = 0.011). Patients carrying the T allele of rs2058265, the G allele of rs6464214, or the C allele of rs7456421 showed higher systolic blood pressure, creatinine, and uric acid levels compared with wild-genotype individuals after adjusting for age, gender, and body mass index (p < 0.005). CONCLUSION The association of HIPK2 gene polymorphisms with KSD was only observed in males but not in females. HIPK2 gene polymorphisms were also involved in the changes of KSD-related metabolic traits.
Collapse
Affiliation(s)
- Haisong Lin
- Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Xiujuan Zhu
- Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Jun Long
- Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Yang Chen
- Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Yuanliang Xie
- Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, China; Department of Urology, Guangxi Medical University Kaiyuan Langdong Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Ming Liao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Jianxin Chen
- Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, China; Department of Urology, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Jiarong Tian
- Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Shengzhu Huang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Ruiqiang Tang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Xiaoying Xian
- Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, China; Department of Paediatrics, The Maternal & Child Health Hospital, The Children's Hospital, The Obstetrics & Gynecology Hospital of Guangxi Zhuang Autonomous Region, 530021, China
| | - Suchun Wei
- Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Qiuyan Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, China.
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, China.
| |
Collapse
|
4
|
Besenhofer LM, Cain MC, Dunning C, McMartin KE. Aluminum citrate prevents renal injury from calcium oxalate crystal deposition. J Am Soc Nephrol 2012; 23:2024-33. [PMID: 23138489 DOI: 10.1681/asn.2012040357] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Calcium oxalate monohydrate crystals are responsible for the kidney injury associated with exposure to ethylene glycol or severe hyperoxaluria. Current treatment strategies target the formation of calcium oxalate but not its interaction with kidney tissue. Because aluminum citrate blocks calcium oxalate binding and toxicity in human kidney cells, it may provide a different therapeutic approach to calcium oxalate-induced injury. Here, we tested the effects of aluminum citrate and sodium citrate in a Wistar rat model of acute high-dose ethylene glycol exposure. Aluminum citrate, but not sodium citrate, attenuated increases in urea nitrogen, creatinine, and the ratio of kidney to body weight in ethylene glycol-treated rats. Compared with ethylene glycol alone, the addition of aluminum citrate significantly increased the urinary excretion of both crystalline calcium and crystalline oxalate and decreased the deposition of crystals in renal tissue. In vitro, aluminum citrate interacted directly with oxalate crystals to inhibit their uptake by proximal tubule cells. These results suggest that treating with aluminum citrate attenuates renal injury in rats with severe ethylene glycol toxicity, apparently by inhibiting calcium oxalate's interaction with, and retention by, the kidney epithelium.
Collapse
Affiliation(s)
- Lauren M Besenhofer
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | | | | | | |
Collapse
|
5
|
Miyazawa K, Takahashi Y, Morita N, Moriyama MT, Kosaka T, Nishio M, Yoshimoto T, Suzuki K. Cyclooxygenase 2 and prostaglandin E2 regulate the attachment of calcium oxalate crystals to renal epithelial cells. Int J Urol 2012; 19:936-43. [PMID: 22640700 DOI: 10.1111/j.1442-2042.2012.03060.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To determine the roles of endogenous cyclooxygenase 2 and prostaglandin E(2) in crystal-cell binding, which is considered to be an important step in the development of intratubular nephrocalcinosis. METHODS An expression plasmid for human cyclooxygenase 2 was introduced into Madin-Darby canine kidney cells using the lipofection method. Cyclooxygenase activity was measured using thin-layer chromatography, and the prostaglandin E(2) concentration was determined with an enzyme immunoassay. In addition, crystal attachment was evaluated with a liquid scintillation counter using [(14)C] calcium oxalate monohydrate crystals, and immunohistochemistry and an enzyme immunoassay were used to analyze and quantify the expression of hyaluronan, a crystal-binding molecule. RESULTS Cyclooxygenase 2-overexpressing Madin-Darby canine kidney cells produced about 10-fold more prostaglandin E(2) than wild-type Madin-Darby canine kidney cells, and their hyaluronan production was also upregulated. The attachment of calcium oxalate monohydrate crystals to cyclooxygenase 2-overexpressing Madin-Darby canine kidney cells was significantly reduced compared with their attachment to wild-type and mock-transfected Madin-Darby canine kidney cells. Pre-incubation of the cyclooxygenase 2-overexpressing cells, as well as the mock-transfected and wild-type cells with the cyclooxygenase 2 selective inhibitor etodolac, increased the cellular attachment of calcium oxalate monohydrate crystals in a dose-dependent manner. CONCLUSIONS These findings suggest that cyclooxygenase 2 expression and the resultant increase in endogenous prostaglandin E(2), leading to increased hyaluronan production, help to prevent nephrocalcinosis by inhibiting the attachment of calcium oxalate monohydrate crystals to the surface of renal epithelial cells.
Collapse
Affiliation(s)
- Katsuhito Miyazawa
- Department of Urology, Kanazawa Medical University, Uchinada, Ishikawa, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Anti-inflammatory Proteins in Kidney Stone Matrix. Urolithiasis 2012. [DOI: 10.1007/978-1-4471-4387-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Stratta P, Fogazzi GB, Canavese C, Airoldi A, Fenoglio R, Bozzola C, Ceballos-Picot I, Bollée G, Daudon M. Decreased kidney function and crystal deposition in the tubules after kidney transplant. Am J Kidney Dis 2010; 56:585-90. [PMID: 20303634 DOI: 10.1053/j.ajkd.2009.12.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 12/15/2009] [Indexed: 02/06/2023]
Abstract
Adenine phosphoribosyltransferase (APRT) deficiency is an autosomal recessive purine enzyme defect that results in the inability to utilize adenine, which consequently is oxidized by xanthine dehydrogenase to 2,8-dihydroxyadenine (2,8-DHA), an extremely insoluble substance eventually leading to crystalluria, nephrolithiasis, and kidney injury. We describe a case of APRT deficiency not diagnosed until the evaluation of a poorly functioning kidney transplant in a 67-year-old white woman. After the transplant, there was delayed transplant function, urine specimens showed crystals with unusual appearance, and the transplant biopsy specimen showed intratubular obstruction by crystals identified as 2,8-DHA using infrared spectroscopy. APRT enzymatic activity was undetectable in red blood cell lysates, and analysis of the APRT gene showed 1 heterozygous sequence variant, a duplication of T at position 1832. The patient was treated with allopurinol, 300 mg/d, and transplant function progressively normalized. Because patients with undiagnosed APRT deficiency who undergo kidney transplant may risk losing the transplant because of an otherwise treatable disease, increased physician awareness may hasten the diagnosis and limit the morbidity associated with this disease.
Collapse
Affiliation(s)
- Piero Stratta
- Department of Clinical and Experimental Medicine, Nephrology and Transplantation and International Research Centre Autoimmune Disease (IRCAD), Maggiore Hospital of Novara, and Department of Medical Science, Amedeo Avogadro University, Novara, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Chen S, Gao X, Sun Y, Xu C, Wang L, Zhou T. Analysis of HK-2 cells exposed to oxalate and calcium oxalate crystals: proteomic insights into the molecular mechanisms of renal injury and stone formation. ACTA ACUST UNITED AC 2009; 38:7-15. [DOI: 10.1007/s00240-009-0226-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 10/06/2009] [Indexed: 11/30/2022]
|
9
|
Huang HS, Ma MC, Chen J. Low-vitamin E diet exacerbates calcium oxalate crystal formation via enhanced oxidative stress in rat hyperoxaluric kidney. Am J Physiol Renal Physiol 2008; 296:F34-45. [PMID: 18799548 DOI: 10.1152/ajprenal.90309.2008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vitamin E was previously reported to reduce calcium oxalate (CaOx) crystal formation. This study explored whether vitamin E deficiency affects intrarenal oxidative stress and accelerates crystal deposition in hyperoxaluria. The control (C) group of rats received a standard diet and drinking water, while the experimental groups received 0.75% ethylene glycol (EG) in drinking water for 42 days. Of the latter, one group received a standard diet (EG group), one received a low-vitamin E (LE) diet (EG+LE group), and the last received an LE diet with vitamin E supplement (4 mg) (EG+LE+E group). The C+LE and C+LE+E groups were the specific controls for the last two experimental groups, respectively. In a separate experiment, EG and EG+LE rats were studied on days 3-42 to examine the temporal relationship between oxidative change and crystal formation. Urinary biochemistry and activity/levels of antioxidative and oxidative enzymes in glomeruli and tubulointerstitial specimens (TIS) were examined. In EG rats, CaOx crystal accumulation was associated with low antioxidative enzyme activity in TIS and with increased oxidative enzyme expression in glomeruli. In the EG+LE group, marked changes in antioxidative and oxidative enzyme levels were seen and correlated with massive CaOx deposition and tubular damage. The increased oxidative stress seen with EG+LE treatment was largely reversed by vitamin E supplementation. A temporal study showed that decrease in antioxidative defense and increased free radical formation in the EG+LE group occurred before crystal deposition. This study shows that low vitamin E disrupts the redox balance and causes cell death, thereby favoring crystal formation.
Collapse
Affiliation(s)
- Ho-Shiang Huang
- Dept. of Urology, National Taiwan Univ. Hospital, Yun-Lin Branch #582, Section 2, Yun-Lin Road, Douliou City, Taiwan
| | | | | |
Collapse
|
10
|
Liang L, Deng L, Nguyen SC, Zhao X, Maulion CD, Shao C, Tischfield JA. Human DNA ligases I and III, but not ligase IV, are required for microhomology-mediated end joining of DNA double-strand breaks. Nucleic Acids Res 2008; 36:3297-310. [PMID: 18440984 PMCID: PMC2425475 DOI: 10.1093/nar/gkn184] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
DNA nonhomologous end-joining (NHEJ) and homologous recombination are two distinct pathways of DNA double-strand break repair in mammalian cells. Biochemical and genetic studies showed that DNA ends can also be joined via microhomology-mediated end joining (MHEJ), especially when proteins responsible for NHEJ, such as Ku, are reduced or absent. While it has been known that Ku-dependent NHEJ requires DNA ligase IV, it is unclear which DNA ligase(s) is required for Ku-independent MHEJ. In this study, we used a cell-free assay to determine the roles of DNA ligases I, III and IV in MHEJ and NHEJ. We found that siRNA mediated down-regulation of DNA ligase I or ligase III in human HTD114 cells led to impaired end joining that was mediated by 2-, 3- or 10-bp microhomology. In addition, nuclear extract from human fibroblasts harboring a mutation in DNA ligase I displayed reduced MHEJ activity. Furthermore, treatment of HTD114 nuclear extracts with an antibody against DNA ligase I or III also significantly reduced MHEJ. These data indicate that DNA ligases I and III are required in MHEJ. DNA ligase IV, on the contrary, is not required in MHEJ but facilitates Ku-dependent NHEJ. Therefore, MHEJ and NHEJ require different DNA ligases.
Collapse
Affiliation(s)
- Li Liang
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Liang L, Mendonca MS, Deng L, Nguyen SC, Shao C, Tischfield JA. Reduced apoptosis and increased deletion mutations at Aprt locus in vivo in mice exposed to repeated ionizing radiation. Cancer Res 2007; 67:1910-7. [PMID: 17332317 DOI: 10.1158/0008-5472.can-06-1476] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Exposure to ionizing radiation (IR) is a risk factor for carcinogenesis because it is a mutagen. However, a single 4-Gy whole body X-ray exposure only induced a modest increase of mutations at the Aprt reporter gene locus in mouse T cells. Intriguingly, when the same dose of IR was given in a fractionated protocol (1 Gy x 4 at weekly intervals), there was a strong induction of Aprt mutations in T cells. Many of these were mutations that arose via interstitial deletions inclusive of Aprt or by intragenic deletions. We hypothesized that the weekly fractionated X-ray exposures select for somatic cells with reduced p53 expression and/or reduced apoptosis, which, in turn, may have facilitated the accumulation of interstitial deletions, as in p53-deficient mice. We indeed found that splenocytes of mice with three previous exposures (1 Gy x 4 in total) were more resistant to X-ray-induced apoptosis than those of mice exposed to X-rays for the first time (1 Gy total). Thus, repeated X-ray radiation selects for reduced apoptosis in vivo. However, this reduced apoptosis is p53-independent, because p53 induction and the up-regulation of genes downstream of p53, such as Bax and p21, were similar between the 1-Gy and 1 Gy x 4 groups. Reduced apoptosis probably allows the generation of more mutations, particularly deletion mutations. Because both reduced apoptosis and increased somatic mutation are risk factors for carcinogenesis, they may contribute to the paradigm in which different radiation exposure schemes are varied in their efficiency in inducing lymphomagenesis.
Collapse
Affiliation(s)
- Li Liang
- Department of Genetics, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|