1
|
Hildebrand T, Ma Q, Loca D, Rubenis K, Locs J, Nogueira LP, Haugen HJ. Improved visualisation of ACP-engineered osteoblastic spheroids: a comparative study of contrast-enhanced micro-CT and traditional imaging techniques. Biofabrication 2024; 17:015016. [PMID: 39467387 DOI: 10.1088/1758-5090/ad8bf5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/28/2024] [Indexed: 10/30/2024]
Abstract
This study investigates osteoblastic cell spheroid cultivation methods, exploring flat-bottom, U-bottom, and rotary flask techniques with and without amorphous calcium phosphate (ACP) supplementation to replicate the 3D bone tissue microenvironment. ACP particles derived from eggshell waste exhibit enhanced osteogenic activity in 3D models. However, representative imaging of intricate 3D tissue-engineered constructs poses challenges in conventional imaging techniques due to notable scattering and absorption effects in light microscopy, and hence limited penetration depth. We investigated contrast-enhanced micro-CT as a methodological approach for comprehensive morphological 3D-analysis of thein-vitromodel and compared the technique with confocal laser scanning microscopy, scanning electron microscopy and classical histology. Phosphotungstic acid and iodine-based contrast agents were employed for micro-CT imaging in laboratory and synchrotron micro-CT imaging. Results revealed spheroid shape variations and structural integrity influenced by cultivation methods and ACP particles. The study underscores the advantage of 3D spheroid models over traditional 2D cultures in mimicking bone tissue architecture and cellular interactions, emphasising the growing demand for novel imaging techniques to visualise 3D tissue-engineered models. Contrast-enhanced micro-CT emerges as a promising non-invasive imaging method for tissue-engineered constructs containing ACP particles, offering insights into sample morphology, enabling virtual histology before further analysis.
Collapse
Affiliation(s)
- Torben Hildebrand
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo 0317, Norway
- Oral Research Laboratory, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo 0317, Norway
| | - Qianli Ma
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo 0317, Norway
| | - Dagnija Loca
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka 3, Riga LV-1007, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Kristaps Rubenis
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka 3, Riga LV-1007, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Janis Locs
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka 3, Riga LV-1007, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Liebert Parreiras Nogueira
- Oral Research Laboratory, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo 0317, Norway
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo 0317, Norway
| |
Collapse
|
2
|
Meesuk L, Suwanprateeb J, Thammarakcharoen F, Tantrawatpan C, Kheolamai P, Palang I, Tantikanlayaporn D, Manochantr S. Osteogenic differentiation and proliferation potentials of human bone marrow and umbilical cord-derived mesenchymal stem cells on the 3D-printed hydroxyapatite scaffolds. Sci Rep 2022; 12:19509. [PMID: 36376498 PMCID: PMC9663507 DOI: 10.1038/s41598-022-24160-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are a promising candidate for bone repair. However, the maintenance of MSCs injected into the bone injury site remains inefficient. A potential approach is to develop a bone-liked platform that incorporates MSCs into a biocompatible 3D scaffold to facilitate bone grafting into the desired location. Bone tissue engineering is a multistep process that requires optimizing several variables, including the source of cells, osteogenic stimulation factors, and scaffold properties. This study aims to evaluate the proliferation and osteogenic differentiation potentials of MSCs cultured on 2 types of 3D-printed hydroxyapatite, including a 3D-printed HA and biomimetic calcium phosphate-coated 3D-printed HA. MSCs from bone marrow (BM-MSCs) and umbilical cord (UC-MSCs) were cultured on the 3D-printed HA and coated 3D-printed HA. Scanning electron microscopy and immunofluorescence staining were used to examine the characteristics and the attachment of MSCs to the scaffolds. Additionally, the cell proliferation was monitored, and the ability of cells to differentiate into osteoblast was assessed using alkaline phosphatase (ALP) activity and osteogenic gene expression. The BM-MSCs and UC-MSCs attached to a plastic culture plate with a spindle-shaped morphology exhibited an immunophenotype consistent with the characteristics of MSCs. Both MSC types could attach and survive on the 3D-printed HA and coated 3D-printed HA scaffolds. The MSCs cultured on these scaffolds displayed sufficient osteoblastic differentiation capacity, as evidenced by increased ALP activity and the expression of osteogenic genes and proteins compared to the control. Interestingly, MSCs grown on coated 3D-printed HA exhibited a higher ALP activity and osteogenic gene expression than those cultured on the 3D-printed HA. The finding indicated that BM-MSCs and UC-MSCs cultured on the 3D-printed HA and coated 3D-printed HA scaffolds could proliferate and differentiate into osteoblasts. Thus, the HA scaffolds could provide a suitable and favorable environment for the 3D culture of MSCs in bone tissue engineering. Additionally, biomimetic coating with octacalcium phosphate may improve the biocompatibility of the bone regeneration scaffold.
Collapse
Affiliation(s)
- Ladda Meesuk
- grid.412434.40000 0004 1937 1127Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120 Thailand
| | - Jintamai Suwanprateeb
- grid.425537.20000 0001 2191 4408Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120 Thailand
| | - Faungchat Thammarakcharoen
- grid.425537.20000 0001 2191 4408Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120 Thailand
| | - Chairat Tantrawatpan
- grid.412434.40000 0004 1937 1127Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120 Thailand ,grid.412434.40000 0004 1937 1127Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120 Thailand
| | - Pakpoom Kheolamai
- grid.412434.40000 0004 1937 1127Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120 Thailand ,grid.412434.40000 0004 1937 1127Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120 Thailand
| | - Iyapa Palang
- grid.412434.40000 0004 1937 1127Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120 Thailand
| | - Duangrat Tantikanlayaporn
- grid.412434.40000 0004 1937 1127Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120 Thailand ,grid.412434.40000 0004 1937 1127Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120 Thailand
| | - Sirikul Manochantr
- grid.412434.40000 0004 1937 1127Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120 Thailand ,grid.412434.40000 0004 1937 1127Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120 Thailand
| |
Collapse
|
3
|
Zhang Y, Shu T, Wang S, Liu Z, Cheng Y, Li A, Pei D. The Osteoinductivity of Calcium Phosphate-Based Biomaterials: A Tight Interaction With Bone Healing. Front Bioeng Biotechnol 2022; 10:911180. [PMID: 35651546 PMCID: PMC9149242 DOI: 10.3389/fbioe.2022.911180] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Calcium phosphate (CaP)-based bioceramics are the most widely used synthetic biomaterials for reconstructing damaged bone. Accompanied by bone healing process, implanted materials are gradually degraded while bone ultimately returns to its original geometry and function. In this progress report, we reviewed the complex and tight relationship between the bone healing response and CaP-based biomaterials, with the emphasis on the in vivo degradation mechanisms of such material and their osteoinductive properties mediated by immune responses, osteoclastogenesis and osteoblasts. A deep understanding of the interaction between biological healing process and biomaterials will optimize the design of CaP-based biomaterials, and further translate into effective strategies for biomaterials customization.
Collapse
Affiliation(s)
- Yuchen Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Tianyu Shu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Silin Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Zhongbo Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Yilong Cheng
- School of Chemistry, Xi’an Jiaotong University, Xi’an, China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Ang Li, ; Dandan Pei,
| | - Dandan Pei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Ang Li, ; Dandan Pei,
| |
Collapse
|
4
|
Luchman NA, Megat Abdul Wahab R, Zainal Ariffin SH, Nasruddin NS, Lau SF, Yazid F. Comparison between hydroxyapatite and polycaprolactone in inducing osteogenic differentiation and augmenting maxillary bone regeneration in rats. PeerJ 2022; 10:e13356. [PMID: 35529494 PMCID: PMC9070322 DOI: 10.7717/peerj.13356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/08/2022] [Indexed: 01/13/2023] Open
Abstract
Background The selection of appropriate scaffold plays an important role in ensuring the success of bone regeneration. The use of scaffolds with different materials and their effect on the osteogenic performance of cells is not well studied and this can affect the selection of suitable scaffolds for transplantation. Hence, this study aimed to investigate the comparative ability of two different synthetic scaffolds, mainly hydroxyapatite (HA) and polycaprolactone (PCL) scaffolds in promoting in vitro and in vivo bone regeneration. Method In vitro cell viability, morphology, and alkaline phosphatase (ALP) activity of MC3T3-E1 cells on HA and PCL scaffolds were determined in comparison to the accepted model outlined for two-dimensional systems. An in vivo study involving the transplantation of MC3T3-E1 cells with scaffolds into an artificial bone defect of 4 mm length and 1.5 mm depth in the rat's left maxilla was conducted. Three-dimensional analysis using micro-computed tomography (micro-CT), hematoxylin and eosin (H&E), and immunohistochemistry analyses evaluation were performed after six weeks of transplantation. Results MC3T3-E1 cells on the HA scaffold showed the highest cell viability. The cell viability on both scaffolds decreased after 14 days of culture, which reflects the dominant occurrence of osteoblast differentiation. An early sign of osteoblast differentiation can be detected on the PCL scaffold. However, cells on the HA scaffold showed more prominent results with intense mineralized nodules and significantly (p < 0.05) high levels of ALP activity with prolonged osteoblast induction. Micro-CT and H&E analyses confirmed the in vitro results with bone formation were significantly (p < 0.05) greater in HA scaffold and was supported by IHC analysis which confirmed stronger expression of osteogenic markers ALP and osteocalcin. Conclusion Different scaffold materials of HA and PCL might have influenced the bone regeneration ability of MC3T3-E1. Regardless, in vitro and in vivo bone regeneration was better in the HA scaffold which indicates its great potential for application in bone regeneration.
Collapse
Affiliation(s)
- Nur Atmaliya Luchman
- Department of Family Oral Health, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rohaya Megat Abdul Wahab
- Department of Family Oral Health, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shahrul Hisham Zainal Ariffin
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Nurrul Shaqinah Nasruddin
- Department of Craniofacial Diagnostic and Bioscience, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Seng Fong Lau
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Farinawati Yazid
- Department of Family Oral Health, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Signaling Pathway and Transcriptional Regulation in Osteoblasts during Bone Healing: Direct Involvement of Hydroxyapatite as a Biomaterial. Pharmaceuticals (Basel) 2021; 14:ph14070615. [PMID: 34206843 PMCID: PMC8308723 DOI: 10.3390/ph14070615] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Bone defects and periodontal disease are pathological conditions that may become neglected diseases if not treated properly. Hydroxyapatite (HA), along with tricalcium phosphate and bioglass ceramic, is a biomaterial widely applied to orthopedic and dental uses. The in vivo performance of HA is determined by the interaction between HA particles with bone cells, particularly the bone mineralizing cells osteoblasts. It has been reported that HA-induced osteoblastic differentiation by increasing the expression of osteogenic transcription factors. However, the pathway involved and the events that occur in the cell membrane have not been well understood and remain controversial. Advances in gene editing and the discovery of pharmacologic inhibitors assist researchers to better understand osteoblastic differentiation. This review summarizes the involvement of extracellular signal-regulated kinase (ERK), p38, Wnt, and bone morphogenetic protein 2 (BMP2) in osteoblastic cellular regulation induced by HA. These advances enhance the current understanding of the molecular mechanism of HA as a biomaterial. Moreover, they provide a better strategy for the design of HA to be utilized in bone engineering.
Collapse
|
6
|
Ambrożewicz E, Tokajuk G, Muszyńska M, Zaręba I, Skrzydlewska E. Cross talk between redox signalling and metabolic activity of osteoblasts and fibroblasts in the presence of hydroxyapatite-based biomaterials influences bone regeneration. J Appl Biomed 2019; 17:125-135. [DOI: 10.32725/jab.2019.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/23/2019] [Indexed: 01/27/2023] Open
|
7
|
Chang PC, Chang HC, Lin TC, Tai WC. Preclinical alveolar ridge preservation using small-sized particles of bone replacement graft in combination with a gelatin cryogel scaffold. J Periodontol 2018; 89:1221-1229. [DOI: 10.1002/jper.17-0629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/29/2018] [Accepted: 05/06/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Po-Chun Chang
- Graduate Institute of Clinical Dentistry; School of Dentistry; National Taiwan University; Taipei Taiwan
- Department of Dentistry; National Taiwan University Hospital; Taipei Taiwan
| | - Hao-Chieh Chang
- Graduate Institute of Clinical Dentistry; School of Dentistry; National Taiwan University; Taipei Taiwan
- Department of Dentistry; National Taiwan University Hospital; Taipei Taiwan
| | - Tzu-Chiao Lin
- Graduate Institute of Clinical Dentistry; School of Dentistry; National Taiwan University; Taipei Taiwan
| | - Wei-Chiu Tai
- Graduate Institute of Clinical Dentistry; School of Dentistry; National Taiwan University; Taipei Taiwan
| |
Collapse
|
8
|
López-Álvarez M, Vigo E, Rodríguez-Valencia C, Outeiriño-Iglesias V, González P, Serra J. In vivo evaluation of shark teeth-derived bioapatites. Clin Oral Implants Res 2016; 28:e91-e100. [PMID: 27492736 DOI: 10.1111/clr.12934] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2016] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The present work proposes the shark teeth as a new source of bioapatites for bone filler applications in maxillary sinus elevation, periodontal regeneration or implants placement. This abundant fishing by-product provides an improved hydroxyapatite (HA) with fluorine contributions. The in vivo evaluation of osteointegration and bone mineral density levels promoted by these marine bioapatites was the main objective. MATERIALS AND METHODS Marine bioapatite granules of two sizes (1 mm, <20 μm) were obtained and characterized (XRD, SEM, ICP-OES) to determine morphology and composition. In vivo evaluation was performed, after bioapatites implantation in critical defects of parietal bone of 25 rats, for 3 weeks. Commercial synthetic HA/βTCP (60/40%) material and unfilled defects were used as controls. Radiology, micro-CT, histology and quantification of bone mineral density are presented. RESULTS These marine bioapatites presented a globular porous morphology. A biphasic composition ~70% apatitic (HA, apatite-CaF, fluorapatite) and ~30% non-apatitic phase (whitlockite, tricalcium bis(orthophosphate)), with contributions of F (1.0 ± 0.5%wt), Na (0.9 ± 0.2%wt) and Mg (0.65 ± 0.04%wt) was confirmed. After implantation period, higher osteointegration of 1-mm marine bioapatites than commercial synthetic granules was observed, together with bone formation from the defect surroundings but also at central area (potential osteoinductive properties). New bone cells penetrated inside pores and inter-granular cavities. Higher bone mineral density, in both 1-mm and <20-μm granules, than on commercial synthetic graft was determined, being significant in 1-mm bioapatites (a P < 0.05). CONCLUSION Shark teeth bioapatites were successfully validated as new functionally efficient bone filler in rat model, promoting significantly increased bone mineral density than synthetic control.
Collapse
Affiliation(s)
- Miriam López-Álvarez
- New Materials Group, Applied Physics Department, Institute of Biomedical Research (IBI), University of Vigo, Vigo, Spain
| | - Eva Vigo
- Laboratory of Endocrinology, Department of Functional Biology and Health Sciences, Center for Biomedical Research CINBIO, University of Vigo, Vigo, Spain
| | - Cosme Rodríguez-Valencia
- New Materials Group, Applied Physics Department, Institute of Biomedical Research (IBI), University of Vigo, Vigo, Spain
| | - Verónica Outeiriño-Iglesias
- Laboratory of Endocrinology, Department of Functional Biology and Health Sciences, Center for Biomedical Research CINBIO, University of Vigo, Vigo, Spain
| | - Pío González
- New Materials Group, Applied Physics Department, Institute of Biomedical Research (IBI), University of Vigo, Vigo, Spain
| | - Julia Serra
- New Materials Group, Applied Physics Department, Institute of Biomedical Research (IBI), University of Vigo, Vigo, Spain
| |
Collapse
|
9
|
Barbeck M, Dard M, Kokkinopoulou M, Markl J, Booms P, Sader RA, Kirkpatrick CJ, Ghanaati S. Small-sized granules of biphasic bone substitutes support fast implant bed vascularization. BIOMATTER 2015; 5:e1056943. [PMID: 26083163 PMCID: PMC4581126 DOI: 10.1080/21592535.2015.1056943] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The present study investigated the influence of granule size of 2 biphasic bone substitutes (BoneCeramic® 400–700 μm and 500–1000 μm) on the induction of multinucleated giant cells (MNGCs) and implant bed vascularization in a subcutaneous implantation model in rats. Furthermore, degradation mechanisms and particle phagocytosis of both materials were examined by transmission electron microscopy (TEM). Both granule types induced tissue reactions involving primarily mononuclear cells and only small numbers of MNGCs. Higher numbers of MNGCs were detected in the group with small granules starting on day 30, while higher vascularization was observed only at day 10 in this group. TEM analysis revealed that both mono- and multinucleated cells were involved in the phagocytosis of the materials. Additionally, the results allowed recognition of the MNGCs as the foreign body giant cell phenotype. Histomorphometrical analysis of the size of phagocytosed particles showed no differences between the 2 granule types. The results indicate that granule size seems to have impact on early implant bed vascularization and also on the induction of MNGCs in the late phase of the tissue reaction. Furthermore, the results revealed that a synthetic bone substitute material can induce tissue reactions similar to those of some xenogeneic materials, thus pointing to a need to elucidate their “ideal” physical characteristics. The results also show that granule size in the range studied did not alter phagocytosis by mononuclear cells. Finally, the investigation substantiates the differentiation of material-induced MNGCs, which are of the foreign body giant cell type.
Collapse
Affiliation(s)
- M Barbeck
- a Institute of Pathology; Repair-Lab ; University Medical Center of the Johannes Gutenberg University ; Mainz , Germany
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kim BS, Yang SS, Yoon JH, Lee J. Enhanced bone regeneration by silicon-substituted hydroxyapatite derived from cuttlefish bone. Clin Oral Implants Res 2015; 28:49-56. [PMID: 26073102 DOI: 10.1111/clr.12613] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2015] [Indexed: 01/12/2023]
Abstract
OBJECTIVE There is growing interest in the use of cuttlefish bone (CB) as a bone graft material. Silicon (Si) plays an important role in bone formation and calcification. This study aimed to prepare Si-substituted CB-derived hydroxyapatite (Si-CB-HAp) using a natural CB to improve the bioactivity for bone formation. MATERIALS AND METHODS We prepared Si-HAp from CB (Si-CB-HAp) using a hydrothermal and solvothermal method. The microstructure and chemical composition were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and energy dispersive X-ray spectrometer (EDS). The bioactivity of the Si-CB-HAp was evaluated using human mesenchymal stem cells. Furthermore, the in vivo bone regeneration efficiency was evaluated using a rabbit calvarial defect model. RESULTS Our results show that the Si content was 0.77 wt% in Si-CB-HAp, and its original microstructure was conserved. The presence of Si was shown to enhance cell proliferation and early cellular attachment of human mesenchymal stem cells. Additionally, results of alkaline phosphatase activity and real-time PCR for osteoblast marker genes show that Si substitution into CB-HAp enhanced osteoblast differentiation. In addition, in vivo bone defect healing experiments show that the formation of bone with Si-CB-HAp is higher than that with CB-HAp. CONCLUSION These results indicate that Si-CB-HAp may potentially be used as a bone graft material to enhance bone healing.
Collapse
Affiliation(s)
- Beom-Su Kim
- Wonkwang Bone Regeneration Research Institute, Wonkwang University, Iksan, Korea.,Bonecell Biotech Inc., Dunsan-dong, Seo-gu, Daejeon, Korea
| | - Sun-Sik Yang
- Department of Dentistry, Oral and Maxillofacial, Wonkwang University, Iksan, Korea
| | - Jung-Hoon Yoon
- Department of Oral & Maxillofacial Pathology, Daejeon Dental Hospital, Wonkwang University, Daejeon, Korea
| | - Jun Lee
- Wonkwang Bone Regeneration Research Institute, Wonkwang University, Iksan, Korea.,Department of Dentistry, Oral and Maxillofacial, Wonkwang University, Iksan, Korea
| |
Collapse
|
11
|
Kim BS, Kang HJ, Yang SS, Lee J. Comparison of in vitro and in vivo bioactivity: cuttlefish-bone-derived hydroxyapatite and synthetic hydroxyapatite granules as a bone graft substitute. Biomed Mater 2014; 9:025004. [PMID: 24487123 DOI: 10.1088/1748-6041/9/2/025004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bone reconstruction in clinical settings often requires bone substitutes. Hydroxyapatite (HAp) is a widely used bone substitute due to its osteoconductive properties and bone bonding ability. The aim of this study was to evaluate HAp granules derived from cuttlefish bone (CB-HAp) as a substitute biomaterial for bone grafts. In this study, HAp granules were prepared from raw CB by using a hydrothermal reaction. The formation of HAp from CB was confirmed by scanning electron microscopy and x-ray diffraction analysis. The bioactivity of the CB-HAp granules was evaluated both in vitro and in vivo. Our results show that CB-HAp is non-toxic and that CB-HAp granules supported improved cell adhesion, proliferation and differentiation compared to stoichiometric synthetic HAp granules. Furthermore, in vivo bone defect healing experiments show that the formation of bone with CB-HAp is higher than that with pure HAp. These results show that CB-HAp granules have excellent potential for use as a bone graft material.
Collapse
Affiliation(s)
- Beom-Su Kim
- Wonkwang Bone Regeneration Research Institute, Wonkwang University, Iksan 570-749, Korea. Bonecell Biotech, Inc., 77, Dunsan-ro, Seo-gu, Daejeon 302-830, Korea
| | | | | | | |
Collapse
|
12
|
Dahl M, Jørgensen NR, Hørberg M, Pinholt EM. Carriers in mesenchymal stem cell osteoblast mineralization—State-of-the-art. J Craniomaxillofac Surg 2014; 42:41-7. [DOI: 10.1016/j.jcms.2013.01.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 01/28/2013] [Accepted: 01/29/2013] [Indexed: 12/21/2022] Open
|
13
|
Dahl M, Syberg S, Jørgensen NR, Pinholt EM. Adipose derived mesenchymal stem cells – Their osteogenicity and osteoblast in vitro mineralization on titanium granule carriers. J Craniomaxillofac Surg 2013; 41:e213-20. [DOI: 10.1016/j.jcms.2013.01.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 12/21/2012] [Accepted: 01/09/2013] [Indexed: 11/28/2022] Open
|
14
|
Coathup MJ, Cai Q, Campion C, Buckland T, Blunn GW. The effect of particle size on the osteointegration of injectable silicate-substituted calcium phosphate bone substitute materials. J Biomed Mater Res B Appl Biomater 2013; 101:902-10. [PMID: 23362131 PMCID: PMC4166705 DOI: 10.1002/jbm.b.32895] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 11/20/2012] [Accepted: 12/20/2012] [Indexed: 12/12/2022]
Abstract
Calcium phosphate (CaP) particles as a carrier in an injectable bone filler allows less invasive treatment of bony defects. The effect of changing granule size within a poloxamer filler on the osteointegration of silicate-substituted calcium phosphate (SiCaP) bone substitute materials was investigated in an ovine critical-sized femoral condyle defect model. Treatment group (TG) 1 consisted of SiCaP granules sized 1000-2000 μm in diameter (100 vol %). TG2 investigated a granule size of 250-500 μm (75 vol %), TG3 a granule size of 90-125 μm (75 vol %) and TG4 a granule size of 90-125 μm (50 vol %). Following a 4 and 8 week in vivo period, bone area, bone-implant contact, and remaining implant area were quantified within each defect. At 4 weeks, significantly increased bone formation was measured in TG2 (13.32% ± 1.38%) when compared with all other groups (p = 0.021 in all cases). Bone in contact with the bone substitute surface was also significantly higher in TG2. At 8 weeks most new bone was associated within defects containing the smallest granule size investigated (at the lower volume) (TG4) (42.78 ± 3.36%) however this group was also associated with higher amounts of fragmented SiCaP. These smaller particles were phagocytosed by macrophages and did not appear to have a negative influence on healing. In conclusion, SiCaP granules of 250-500 μm in size may be a more suitable scaffold when used as an injectable bone filler and may be a convenient method for treating bony defects.
Collapse
Affiliation(s)
- Melanie J Coathup
- Division of Surgery and Interventional Science, John Scales Centre for Biomedical Engineering, Institute of Orthopaedics and Musculoskeletal Science, University College London, The Royal National Orthopaedic Hospital, Brockley Hill, Stanmore Middlesex, HA7 4LP, UK.
| | | | | | | | | |
Collapse
|
15
|
Sadat-Shojai M, Khorasani MT, Dinpanah-Khoshdargi E, Jamshidi A. Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater 2013; 9:7591-621. [PMID: 23583646 DOI: 10.1016/j.actbio.2013.04.012] [Citation(s) in RCA: 516] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 04/02/2013] [Accepted: 04/04/2013] [Indexed: 01/15/2023]
Abstract
Hydroxyapatite (HAp) is the major mineral constituent of vertebrate bones and teeth. It has been well documented that HAp nanoparticles can significantly increase the biocompatibility and bioactivity of man-made biomaterials. Over the past decade, HAp nanoparticles have therefore increasingly been in demand, and extensive efforts have been devoted to develop many synthetic routes, involving both scientifically and economically new features. Several investigations have also been made to determine how critical properties of HAp can be effectively controlled by varying the processing parameters. With such a wide variety of methods for the preparation of HAp nanoparticles, choosing a specific procedure to synthesize a well-defined powder can be laborious; accordingly, in the present review, we have summarized all the available information on the preparation methodologies of HAp, and highlighted the inherent advantages and disadvantages involved in each method. This article is focused on nanosized HAp, although recent articles on microsized particles, especially those assembled from nanoparticles and/or nanocrystals, have also been reviewed for comparison. We have also provided several scientific figures and discussed a number of critical issues and challenges which require further research and development.
Collapse
|
16
|
Farzin A, Ahmadian M, Fathi MH. Comparative evaluation of biocompatibility of dense nanostructured and microstructured Hydroxyapatite/Titania composites. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:2251-7. [PMID: 23498255 DOI: 10.1016/j.msec.2013.01.053] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 12/15/2012] [Accepted: 01/22/2013] [Indexed: 11/17/2022]
Abstract
This work deals with the biocompatibility of dense nano- and micro-structured Hydroxyapatite/Titania composites prepared by two step and conventional sintering, respectively. By application of two step sintering, it was shown that the final grain size of HA-15 wt.% TiO2 is maintained lower than 100 nm while by the application of conventional sintering it reaches higher than 100 nm. Biocompatibility of the dense bulks was evaluated by cell attachment and proliferation experiments. Cell morphology, and viability on each nano- and micro-structured Hydroxyapatite/Titania composites were examined at different time points. The nanostructured HA/Titania dense bulk exhibited higher cell viability than a microstructured one. In addition, the effects of ionic products from nano- and micro-structured bulk dissolution on osteoblasts were studied. The MTT test confirmed that the products from nanostructured HA/Titania dense bulk significantly promoted osteoblast proliferation within a certain concentration range.
Collapse
Affiliation(s)
- A Farzin
- Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran.
| | | | | |
Collapse
|
17
|
García-Gareta E, Hua J, Knowles JC, Blunn GW. Comparison of mesenchymal stem cell proliferation and differentiation between biomimetic and electrochemical coatings on different topographic surfaces. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:199-210. [PMID: 23053816 DOI: 10.1007/s10856-012-4789-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 10/03/2012] [Indexed: 06/01/2023]
Abstract
The hypothesis for this study was that there is no difference in mesenchymal stem cells (MSCs) proliferation and osteogenic differentiation between calcium-phosphate (CaP) coatings with different crystal size deposited on different topographic surfaces of metal discs. Polished (P) and sand-blasted (SB) tantalum and TiAl6V4 discs were CaP coated by three methods-biomimetic (BioM), electrochemical at 20 mA/cm(2) and at 6.5 mA/cm(2)-and cultured with MSCs. At days 4, 7 and 14, cell proliferation-alamarBlue(®) activity and DNA quantification-and differentiation down the osteogenic lineage-ALP activity normalised per amount of DNA and SEM (morphology)-were analysed. Results showed that MSCs proliferated more when cultured on the nano-sized BioM coatings compared to uncoated and electrochemically coated discs. MSCs also proliferated more on P surfaces than on SB and or electrochemical coatings. All the coatings induced osteogenic differentiation, which was greater on electrochemical coatings and SB discs.
Collapse
Affiliation(s)
- Elena García-Gareta
- John Scales Centre for Biomedical Engineering, Institute of Orthopaedics and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, UK.
| | | | | | | |
Collapse
|
18
|
Beşkardeş IG, Demirtaş TT, Durukan MD, Gümüşderelioğlu M. Microwave-assisted fabrication of chitosan-hydroxyapatite superporous hydrogel composites as bone scaffolds. J Tissue Eng Regen Med 2012; 9:1233-46. [DOI: 10.1002/term.1677] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/31/2012] [Accepted: 11/07/2012] [Indexed: 01/05/2023]
Affiliation(s)
| | | | | | - Menemşe Gümüşderelioğlu
- Department of Chemical Engineering; Hacettepe University; Ankara Turkey
- Department of Bioengineering; Hacettepe University; Ankara Turkey
| |
Collapse
|
19
|
Li HW, Sun JY. Effects of Dicalcium Silicate Coating Ionic Dissolution Products on Human Mesenchymal Stem-Cell Proliferation and Osteogenic Differentiation. J Int Med Res 2011; 39:112-28. [PMID: 21672314 DOI: 10.1177/147323001103900114] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study investigated the effects of ionic dissolution products released from dicalcium silicate (DS) coatings on human mesenchymal stem cells (hMSC), cultured in the presence or absence of the dissolution products, with or without osteogenic supplements (OS). DS+ medium promoted cell proliferation during the first 4 days, but then inhibited proliferation. DS+OS− medium increased alkaline phosphatase (ALP) activity on day 14, and upregulated runt-related transcription factor 2 and osteonectin mRNA on days 7 and 14, respectively. The addition of osteogenic supplements (DS+OS+) led to a significant increase in ALP activity from days 7 to 21, upregulation of osteogenic markers on day 14, and formation of more mineralized nodules on day 28. The results demonstrated that the ionic dissolution products from DS coating alone can partly induce osteogenic differentiation of hMSC, and that the addition of osteogenic supplements further enhances osteoblast-specific gene expression and mineralization in hMSC.
Collapse
Affiliation(s)
- H-W Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - J-Y Sun
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
20
|
Liu Y, Wang G, Cai Y, Ji H, Zhou G, Zhao X, Tang R, Zhang M. In vitro effects of nanophase hydroxyapatite particles on proliferation and osteogenic differentiation of bone marrow-derived mesenchymal stem cells. J Biomed Mater Res A 2009; 90:1083-91. [PMID: 18671263 DOI: 10.1002/jbm.a.32192] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Coculturing scaffolds with seeded cells in vitro is an indispensable process for construction of engineered tissues. It is essential to understand effects of the constituent particles of scaffold on seeded cells. In this study, we investigated the influence of nano-sized hydroxyapatite (nHAP) particles on the proliferation and osteogenic differentiation of bone marrow-derived mesenchymal stem cells (MSCs). nHAP particles were cocultured with MSCs separated from rabbit. Cellular effects of particles were determined by cell counts, Vonkossa stains, and reverse transcription-polymerase chain reaction (RT-PCR) examinations. Results showed that nHAP particles could promote the MSCs growth when particle concentrations were lower than 20 microg/10(4) cells. This effect disappeared when the particles and the cells were cocultured in serum-free media. Higher particle concentrations could significantly inhibit the cell growth. Under the standard culture condition, the only effect of nHAP particles on osteogenic differentiation of MSCs was to enhance the expression of collagen I. Under the osteogenic-inductive culture condition, nHAP particles could inhibit mineralization of cells but promote their osteogenic differentiation. These cellular effects of particles still existed when the particles and the cells were cultured in indirect coculture system. nHAP particles could decrease calcium and phosphate concentrations of culture media, which possibly contributed to the cellular effects of nHAP particles.
Collapse
Affiliation(s)
- YuKan Liu
- Institute of Cell Biology and Genetics, College of Life Science, Zhejiang University, HangZhou, China 310058
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Li J, Dou Y, Yang J, Yin Y, Zhang H, Yao F, Wang H, Yao K. Surface characterization and biocompatibility of micro- and nano-hydroxyapatite/chitosan-gelatin network films. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2009. [DOI: 10.1016/j.msec.2008.09.038] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Abstract
This article examines each class of bone grafting material based on some of the studies in each of the following categories: safety, animal research, periodontal and maxillofacial applications, skeletal grafting, and attempts to qualify the efficacy of each class of material. The article also examines some of the research being done in "tissue engineering" to get a sense of the future of bone grafting.
Collapse
Affiliation(s)
- Harry V Precheur
- Department of Oral and Maxillofacial Surgery and Pathology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, USA.
| |
Collapse
|
23
|
Pripatnanont P, Nuntanaranont T, Vongvatcharanon S, Limlertmongkol S. Osteoconductive Effects of 3 Heat-Treated Hydroxyapatites in Rabbit Calvarial Defects. J Oral Maxillofac Surg 2007; 65:2418-24. [DOI: 10.1016/j.joms.2007.06.619] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 01/11/2007] [Accepted: 06/07/2007] [Indexed: 10/22/2022]
|
24
|
Carvalho AL, Faria PEP, Grisi MFM, Souza SLS, Taba MJ, Palioto DB, Novaes ABJ, Fraga AF, Ozyegin LS, Oktar FN, Salata LA. Effects of granule size on the osteoconductivity of bovine and synthetic hydroxyapatite: a histologic and histometric study in dogs. J ORAL IMPLANTOL 2007; 33:267-76. [PMID: 17987858 DOI: 10.1563/1548-1336(2007)33[267:eogsot]2.0.co;2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two bovine hydroxyapatites (BHAs), one with granule size of 150 to 200 microm and one with granule size of 300 to 329 micro, and 2 synthetic hydroxyapatites (SHAs), with granule size of 150 and 300 microm, respectively, were compared for effectiveness in repairing circumferential bone defects in dogs. The hydroxyapatites (HAs) were characterized through powder x-ray diffraction (XRD) analysis and scanning electron microscopy (SEM). Three trephined bone defects (5.0 mm wide x 4 mm long) were created in the humeruses of 8 dogs. In a random manner, the defects on each side were treated with either BHA with small granules (BHA[s]), BHA with large granules (BHA[L]), SHA with small granules (SHA[s]), SHA with large granules (SHA[L]), or left to heal unaided (bilateral control). Four dogs were sacrificed after 6 and 12 postoperative weeks, respectively. Ground sections of each defect were submitted to histologic and histomorphometric analysis (percentage of area occupied by bone, bone marrow, and biomaterial). As a rule, the HA granules exhibited direct bone contact, regardless of the origin and the size of the granules. Control sites were related and had an increased amount of connective tissue infiltration. At 12 weeks, BHA(s) exhibited improved bone formation compared with SHA(s) and SHA(L). The SHA(s) delivered reduced amounts of bone compared with the remaining groups (control included). The area of bone measured in BHA(s) sites was significantly higher at 12 weeks than 6 weeks. The XRD revealed the tested HA samples to be highly crystalline, while BHA appeared with rougher surface at SEM analysis. The BHA(s) performed better than the SHA(s) and SHA(L), as assessed by the amount of bone measured in both implantation sites at 12 weeks. The BHA's material characteristic itself rather than granules size accounted for the distinctive biological behavior. The increased roughness of the BHAs' surface, as assessed through SEM, seemed to benefit the osteoconduction process.
Collapse
Affiliation(s)
- Alexandre L Carvalho
- Department of Oral and Maxillofacial Surgery and Periodontics, Faculty of Dentistry of Ribeirão Preto, The University of São Paulo at Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|