1
|
The Role of microRNAs in Pulp Inflammation. Cells 2021; 10:cells10082142. [PMID: 34440911 PMCID: PMC8391605 DOI: 10.3390/cells10082142] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
The dental pulp can be affected by thermal, physical, chemical, and bacterial phenomena that stimulate the inflammatory response. The pulp tissue produces an immunological, cellular, and vascular reaction in an attempt to defend itself and resolve the affected tissue. The expression of different microRNAs during pulp inflammation has been previously documented. MicroRNAs (miRNAs) are endogenous small molecules involved in the transcription of genes that regulate the immune system and the inflammatory response. They are present in cellular and physiological functions, as well as in the pathogenesis of human diseases, becoming potential biomarkers for diagnosis, prognosis, monitoring, and safety. Previous studies have evidenced the different roles played by miRNAs in proinflammatory, anti-inflammatory, and immunological phenomena in the dental pulp, highlighting specific key functions of pulp pathology. This systematized review aims to provide an understanding of the role of the different microRNAs detected in the pulp and their effects on the expression of the different target genes that are involved during pulp inflammation.
Collapse
|
2
|
Sahan-Firat S, Temiz-Resitoglu M, Guden DS, Kucukkavruk SP, Tunctan B, Sari AN, Kocak Z, Malik KU. Protection by mTOR Inhibition on Zymosan-Induced Systemic Inflammatory Response and Oxidative/Nitrosative Stress: Contribution of mTOR/MEK1/ERK1/2/IKKβ/IκB-α/NF-κB Signalling Pathway. Inflammation 2018; 41:276-298. [PMID: 29110153 DOI: 10.1007/s10753-017-0686-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mammalian target of rapamycin (mTOR), a serine/threonine kinase regulate variety of cellular functions including cell growth, differentiation, cell survival, metabolism, and stress response, is now appreciated to be a central regulator of immune responses. Because mTOR inhibitors enhanced the anti-inflammatory activities of regulatory T cells and decreased the production of proinflammatory cytokines by macrophages, mTOR has been a pharmacological target for inflammatory diseases. In this study, we examined the role of mTOR in the production of proinflammatory and vasodilator mediators in zymosan-induced non-septic shock model in rats. To elucidate the mechanism by which mTOR contributes to non-septic shock, we have examined the activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system caused by mTOR/mitogen-activated protein kinase kinase (MEK1)/extracellular signal-regulated kinase (ERK1/2)/inhibitor κB kinase (IKKβ)/inhibitor of κB (IκB-α)/nuclear factor-κB (NF-κB) signalling pathway activation. After 1 h of zymosan (500 mg/kg, i.p.) administration to rats, mean arterial blood pressure (MAP) was decreased and heart rate (HR) was increased. These changes were associated with increased expression and/or activities of ribosomal protein S6, MEK1, ERK1/2, IKKβ, IκB-α and NF-κB p65, and NADPH oxidase system activity in cardiovascular and renal tissues. Rapamycin (1 mg/kg, i.p.), a selective mTOR inhibitor, reversed these zymosan-induced changes in these tissues. These observations suggest that activation of mTOR/MEK1/ERK1/2/IKKβ/IκB-α/NF-κB signalling pathway with proinflammatory and vasodilator mediator formation and NADPH oxidase system activity contributes to systemic inflammation in zymosan-induced non-septic shock. Thus, mTOR may be an optimal target for the treatment of the diseases characterized by the severe systemic inflammatory response.
Collapse
Affiliation(s)
- Seyhan Sahan-Firat
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey.
| | - Meryem Temiz-Resitoglu
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey
| | - Demet Sinem Guden
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey
| | - Sefika Pinar Kucukkavruk
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey
| | - Bahar Tunctan
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey
| | - Ayse Nihal Sari
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey
| | - Zumrut Kocak
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey
| | - Kafait U Malik
- Department of Pharmacology, College of Medicine, University of Tennessee, Center for Health Sciences, Memphis, TN, USA
| |
Collapse
|
3
|
5,14-HEDGE, a 20-HETE mimetic, reverses hypotension and improves survival in a rodent model of septic shock: contribution of soluble epoxide hydrolase, CYP2C23, MEK1/ERK1/2/IKKβ/IκB-α/NF-κB pathway, and proinflammatory cytokine formation. Prostaglandins Other Lipid Mediat 2013; 102-103:31-41. [PMID: 23454652 DOI: 10.1016/j.prostaglandins.2013.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/11/2013] [Accepted: 01/29/2013] [Indexed: 01/05/2023]
Abstract
We have previously demonstrated that a stable synthetic analog of 20-HETE, N-[20-hydroxyeicosa-5(Z),14(Z)-dienoyl]glycine (5,14-HEDGE), restores vascular reactivity, blood pressure, and heart rate in endotoxemic rats. The aim of this study was to determine whether decreased renal expression and activity of soluble epoxide hydrolase (sEH), MEK1, ERK1/2, IKKβ, IκB-α, and NF-κB as well as systemic and renal proinflammatory cytokine production associated with increased expression and activity of CYP2C23 contributes to the effect of 5,14-HEDGE to prevent hypotension, tachycardia, inflammation, and mortality in response to systemic administration of lipopolysaccharide (LPS). Blood pressure fell by 33 mmHg and heart rate rose by 57 beats/min in LPS (10 mg/kg, i.p.)-treated rats. Administration of LPS also increased mRNA and protein expression of sEH associated with a decrease in CYP2C23 mRNA and protein expression. Increased activity of sEH and p-MEK1, p-ERK1/2, p-IκB-α, NF-κB, and p-NF-κB protein levels as well as TNF-α and IL-8 production by LPS were also associated with a decreased activity of AA epoxygenases. These effects of LPS were prevented by 5,14-HEDGE (30 mg/kg, s.c.; 1 h after LPS). Treatment of endotoxemic mice with 5,14-HEDGE also raised the survival rate of animals from 84% to 98%. A competitive antagonist of vasoconstrictor effects of 20-HETE, 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid, 20-HEDE (30 mg/kg, s.c.; 1 h after LPS) prevented the effects of 5,14-HEDGE on blood pressure, heart rate, expression and/or activity of sEH, CYP2C23, and ERK1/2 as well as TNF-α and IL-8 levels in rats treated with LPS. These results suggest that decreased expression and/or activity of sEH and MEK1/ERK1/2/IKKβ/IκB-α/NF-κB pathway as well as proinflammatory cytokine production associated with increased CYP2C23 expression and antiinflammatory mediator formation participate in the protective effect of 5,14-HEDGE against hypotension, tachycardia, inflammation, and mortality in the rodent model of septic shock.
Collapse
|
4
|
Korkmaz B, Buharalioglu K, Sahan-Firat S, Cuez T, Tuncay Demiryurek A, Tunctan B. Activation of MEK1/ERK1/2/iNOS/sGC/PKG pathway associated with peroxynitrite formation contributes to hypotension and vascular hyporeactivity in endotoxemic rats. Nitric Oxide 2011; 24:160-72. [DOI: 10.1016/j.niox.2011.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 12/11/2010] [Accepted: 02/20/2011] [Indexed: 01/09/2023]
|
5
|
A 20-hydroxyeicosatetraenoic acid agonist, N-[20-hydroxyeicosa-5(Z),14(Z)-dienoyl]glycine, opposes the fall in blood pressure and vascular reactivity in endotoxin-treated rats. Shock 2008; 30:329-35. [PMID: 18323740 DOI: 10.1097/shk.0b013e31816471c6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Endotoxic shock is a systemic inflammatory response that is associated with an increase in nitric oxide production and a decrease in the formation of 20-hydroxyeicosatetraenoic acid (20-HETE), which may contribute to the fall in blood pressure and vascular reactivity. The present study examined the effects of a synthetic analogue of 20-HETE, N-[20-hydroxyeicosa-5(Z),14(Z)-dienoyl]glycine (5,14-HEDGE), on the fall in blood pressure and vascular responsiveness to vasoscontrictors and acetylcholine in rats treated with endotoxin. The MAP fell by 31 mmHg, and the heart rate rose by 90 beats/min in male Wistar rats treated with endotoxin (10 mg/kg, intraperitoneally). The fall in MAP was associated with a decrease in the vasoconstrictor response to norepinephrine in isolated aorta and superior mesenteric artery and increased levels of nitrite in the serum, kidney, heart, and vascular tissues. The effects of endotoxin were prevented by 5,14-HEDGE (30 mg/kg, s.c.) given 1 h after injection of endotoxin. Furthermore, a competitive antagonist of vasoconstrictor effects of 20-HETE, 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid (30 mg/kg, s.c.), prevented the beneficial effects of 5,14-HEDGE on MAP and vascular tone in rats treated with endotoxin. These data are consistent with the view that a fall in the production of 20-HETE contributes to the fall in MAP and vascular reactivity in rats treated with endotoxin, and that 5,14-HEDGE has a beneficial effect.
Collapse
|
6
|
Brownbill P, McKeeman GC, Brockelsby JC, Crocker IP, Sibley CP. Vasoactive and permeability effects of vascular endothelial growth factor-165 in the term in vitro dually perfused human placental lobule. Endocrinology 2007; 148:4734-44. [PMID: 17640983 DOI: 10.1210/en.2007-0180] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Vascular endothelial growth factor (VEGF) is an important vasodilator and effector of permeability in systemic blood vessels. Molecular and tissue culture techniques have provided evidence for its placental synthesis and release. Using an in vitro dual-perfusion model of the term placental lobule from normal pregnancy, we report here the relative secretion of total VEGF, soluble VEGF receptor (VEGFR)-1, and free VEGF into the maternal and fetoplacental circulations of the placenta. We tested the hypothesis that VEGF has vasomotor and permeability effects in the fetoplacental circulation of the human placenta, and we examined the broad intracellular pathways involved in the vasodilatory effect that we found. We show that total VEGF is released into the fetal and maternal circulations in a bipolar fashion, with a bias toward maternal side output. Soluble VEGFR-1 was also secreted into both circulations with bias toward the maternal side. Consequently, free VEGF (12.8 +/- 2.4 pg/ml, mean +/- se) was found only in the fetoplacental circulation. VEGF-165 was found to be a potent vasodilator of the fetoplacental circulation (maximum response: 77% of previous steady-state fetal-side inflow hydrostatic pressure after preconstriction with U46619; EC(50) = 71 pm). This vasodilatory effect was mediated by the VEGFR-2 receptor and nitric oxide in a manner-independent of the involvement of prostacyclin and the src-family tyrosine kinases. However, nitric oxide could explain only 50% of the vasodilatory effect. Finally, we measured the permeability of the perfused placenta to inert hydrophilic tracers and found no difference in the presence and absence of VEGF.
Collapse
Affiliation(s)
- P Brownbill
- University Research Floor, St. Mary's Hospital, Hathersage Road, Manchester, United Kingdom.
| | | | | | | | | |
Collapse
|
7
|
Alcaraz A, Iyú D, Atucha NM, García-Estañ J, Ortiz MC. Vitamin E supplementation reverses renal altered vascular reactivity in chronic bile duct-ligated rats. Am J Physiol Regul Integr Comp Physiol 2006; 292:R1486-93. [PMID: 17158269 DOI: 10.1152/ajpregu.00309.2006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
An altered vascular reactivity is an important manifestation of the hemodynamic and renal dysfunction during liver cirrhosis. Oxidative stress-derived substances and nitric oxide (NO) have been shown to be involved in those alterations. In fact, both can affect vascular contractile function, directly or by influencing intracellular signaling pathways. Nevertheless, it is unknown whether oxidative stress contributes to the impaired systemic and renal vascular reactivity observed in cirrhosis. To test this, we evaluated the effect of vitamin E supplementation (5,000 IU/kg diet) on the vasoconstrictor and vasodilator responses of isolated perfused kidneys and aortic rings of rats with cirrhosis induced by bile duct ligation (BDL), and on the expression of renal and aortic phospho-extracellular regulated kinase 1/2 (p-ERK1/2). BDL induced a blunted renal vascular response to phenylephrine and ACh, while BDL aortic rings responded less to phenylephrine but normally to ACh. Cirrhotic rats had higher levels of oxidative stress-derived substances [measured as thiobarbituric acid-reactive substances (TBARS)] and NO (measured as urinary nitrite excretion) than controls. Vitamin E supplementation normalized the renal hyporesponse to phenylephrine and ACh in BDL, although failed to modify it in aortic rings. Furthermore, vitamin E decreased levels of TBARS, increased levels of NO, and normalized the increased kidney expression of p-ERK1/2 of the BDL rats. In conclusion, BDL rats showed a blunted vascular reactivity to phenylephrine and ACh, more pronounced in the kidney and reversed by vitamin E pretreatment, suggesting a role for oxidative stress in those abnormalities.
Collapse
Affiliation(s)
- A Alcaraz
- Departamento de Fisiología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | | | | | | | | |
Collapse
|