1
|
Almeman AA. Major CYP450 polymorphism Among Saudi Patients. Drug Metab Lett 2020; 14:17-24. [PMID: 32703145 DOI: 10.2174/1872312814666200722122232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND Cytochrome P450 (CYP) contributes to a huge collection of medicinal products' Phase I metabolization. We aimed to summarize and investigate the current evidence regarding the frequency of CYP2D6, CYP2C9, CYP2C19, MDR1 in Saudi Arabia. METHODS A computerized search in four databases was done using the relevant keywords. Screening process was done in two steps; title and abstract screening and full-text screening. Data of demographic and characteristics of included studies and patients was extracted and tabulated. RESULTS Ten studies were eligible for our criteria and were included in this systematic review. Age of participants ranged between 17-65 years. Only two subjects showed PM phenotype of CYP2C19 in Saudi population. The most frequent alleles were CYP2C19*1 (62.9%), CYP2C19*2 (11.2%-32%), and CYP2C19*17 (25.7%). The CYP2C19m1 was observed in 97 cases of extensive metabolizing (EM) phenotype CYP2C19. Concerning the CYP2C9, the most frequent alleles were CYP2C9*1 and CYP2C9*2, and the most frequent genotype was CYP2C9*1*1. The CYP2D6*41 allele and C1236T MDR1 were the most frequent allele in this population. CONCLUSION The current evidence suggests that Saudi Arabians resembled European in the frequency of CYP2C19, Caucasians in both the incidence of CYP2C9 and CYP2C19m1 and absence of CYP2C19m2. The CYP2D6*41 allele frequency in Saudi Arabians is relatively high. We recommend a further research to evaluate the basic and clinical relevance of gene polymorphism in such ethnicity.
Collapse
Affiliation(s)
- Ahmad Abdulrahman Almeman
- Clinical pharmacology and therapeutics Department, Qassim University, Buraydah, Qassim. Saudi Arabia
| |
Collapse
|
2
|
Al-Eitan LN, Almasri AY, Khasawneh RH. Impact of CYP2C9 and VKORC1 Polymorphisms on Warfarin Sensitivity and Responsiveness in Jordanian Cardiovascular Patients during the Initiation Therapy. Genes (Basel) 2018; 9:genes9120578. [PMID: 30486437 PMCID: PMC6316567 DOI: 10.3390/genes9120578] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 01/31/2023] Open
Abstract
Warfarin is an oral anticoagulant frequently used in the treatment of different cardiovascular diseases. Genetic polymorphisms in the CYP2C9 and VKORC1 genes have produced variants with altered catalytic properties. A total of 212 cardiovascular patients were genotyped for 17 Single Nucleotide Polymorphisms (SNPs) within the CYP2C9 and VKORC1 genes. This study confirmed a genetic association of the CYP2C9*3 and VKORC1 rs10871454, rs8050894, rs9934438, and rs17708472 SNPs with warfarin sensitivity. This study also found an association between CYP2C9 and VKORC1 genetic haplotype blocks and warfarin sensitivity. The initial warfarin dose was significantly related to the CYP2C9*3 polymorphism and the four VKORC1 SNPs (p < 0.001). There were significant associations between rs4086116 SNP and TAT haplotype within CYP2C9 gene and rs17708472 SNP and CCGG haplotype within VKORC1 gene and warfarin responsiveness. However, possessing a VKORC1 variant allele was found to affect the international normalized ratio (INR) outcomes during initiation of warfarin therapy. In contrast, there was a loose association between the CYP2C9 variant and INR measurements. These findings can enhance the current understanding of the great variability in response to warfarin treatment in Arabs.
Collapse
Affiliation(s)
- Laith N Al-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan.
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Ayah Y Almasri
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Rame H Khasawneh
- Department of Hematopathology, King Hussein Medical Center (KHMC), Jordan Royal Medical Services (RMS), Amman 11118, Jordan.
| |
Collapse
|
3
|
Sivadas A, Scaria V. Pharmacogenomic survey of Qatari populations using whole-genome and exome sequences. THE PHARMACOGENOMICS JOURNAL 2018; 18:590-600. [PMID: 29720721 DOI: 10.1038/s41397-018-0022-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/25/2017] [Accepted: 02/12/2018] [Indexed: 12/19/2022]
Abstract
The Arabs represent one of the most genetically heterogeneous populations characterized by a high prevalence of Mendelian disorders due to consanguinity. Population-scale genomic datasets provide a unique opportunity to understand the epidemiology of variants associated with differential therapeutic response. We analyzed publicly available genomic data for 1005 Qatari individuals encompassing five subpopulations. The frequencies of known and novel pharmacogenetic variants were compared with global populations. Impact of genetic substructure on the pharmacogenetic landscape of the population was studied. We report an average of three clinically actionable pharmacogenetic variants with FDA-recommended genetic testing per Qatari individual regardless of their genetic ancestry. We observed extensive differences in the frequencies of clinically actionable pharmacogenetic variants among the Qatari subpopulations. Our analysis revealed 3579 deleterious pharmacogenetic variants potentially altering the function of 1163 genes associated with 1565 drugs. This study has thus compiled the first comprehensive landscape of pharmacogenetic variants for any Arab population.
Collapse
Affiliation(s)
- Ambily Sivadas
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mathura Road, Delhi, 110020, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India
| | - Vinod Scaria
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mathura Road, Delhi, 110020, India. .,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India.
| |
Collapse
|
4
|
Dagenais R, Wilby KJ, Elewa H, Ensom MHH. Impact of Genetic Polymorphisms on Phenytoin Pharmacokinetics and Clinical Outcomes in the Middle East and North Africa Region. Drugs R D 2017; 17:341-361. [PMID: 28748348 PMCID: PMC5629135 DOI: 10.1007/s40268-017-0195-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Genetic polymorphisms are known to influence outcomes with phenytoin yet effects in the Middle East and North Africa region are poorly understood. OBJECTIVES The objective of this systematic review was to evaluate the impact of genetic polymorphisms on phenytoin pharmacokinetics and clinical outcomes in populations originating from the Middle East and North Africa region, and to characterize genotypic and allelic frequencies within the region for genetic polymorphisms assessed. METHODS MEDLINE (1946-3 May, 2017), EMBASE (1974-3 May, 2017), Pharmacogenomics Knowledge Base, and Public Health Genomics Knowledge Base online databases were searched. Studies were included if genotyping and analyses of phenytoin pharmacokinetics were performed in patients of the Middle East and North Africa region. Study quality was assessed using a National Institutes of Health assessment tool. A secondary search identified studies reporting genotypic and allelic frequencies of assessed genetic polymorphisms within the Middle East and North Africa region. RESULTS Five studies met the inclusion criteria. CYP2C9, CYP2C19, and multidrug resistance protein 1 C3435T variants were evaluated. While CYP2C9*2 and *3 variants significantly reduced phenytoin metabolism, the impacts of CYP2C19*2 and *3 variants were unclear. The multidrug resistance protein 1 CC genotype was associated with drug-resistant epilepsy, but reported impacts on phenytoin pharmacokinetics were conflicting. Appreciable variability in minor allele frequencies existed both between and within countries of the Middle East and North Africa region. CONCLUSIONS CYP2C9 decrease-of-function alleles altered phenytoin pharmacokinetics in patients originating from the Middle East and North Africa region. The impacts of CYP2C19 and multidrug resistance protein 1 C3435T variants on phenytoin pharmacokinetic and clinical outcomes are unclear and require further investigation. Future research should focus on the clinical outcomes associated with phenytoin therapy. PROSPERO 2017: CRD42017057850.
Collapse
Affiliation(s)
- Renée Dagenais
- Faculty of Pharmaceutical Sciences, Pharmaceutical Sciences Building, University of British Columbia, Vancouver, BC, Canada
| | - Kyle John Wilby
- College of Pharmacy, Qatar University, PO Box 2713, Doha, Qatar.
| | - Hazem Elewa
- College of Pharmacy, Qatar University, PO Box 2713, Doha, Qatar
| | - Mary H H Ensom
- Faculty of Pharmaceutical Sciences, Pharmaceutical Sciences Building, University of British Columbia, Vancouver, BC, Canada
- Department of Pharmacy, Children's and Women's Health Centre of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Sivadas A, Sharma P, Scaria V. Landscape of warfarin and clopidogrel pharmacogenetic variants in Qatari population from whole exome datasets. Pharmacogenomics 2016; 17:1891-1901. [PMID: 27767380 DOI: 10.2217/pgs-2016-0130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
AIM Pharmacogenetic landscapes of commonly used antiplatelet drugs, warfarin and clopidogrel have been studied in-depth in many countries. However, there is a paucity of data to understand their patterns in the Arab populations. MATERIALS & METHODS We analyzed the whole exome sequencing datasets of 100 Qatar individuals available in public domain with this perspective. RESULTS We characterized the allelic distribution of variants routinely tested for warfarin and clopidogrel. We additionally evaluated the population stratification and its effect on allele frequency distribution. Our analysis points to ethnic differences in the frequency distribution even for the small population studied. CONCLUSION This is one of the first and most comprehensive pharmacogenetic maps of variants associated with warfarin and clopidogrel for an Arab population, which can help tailor the drug dosage to the population.
Collapse
Affiliation(s)
- Ambily Sivadas
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics & Integrative Biology, Mathura Road, New Delhi 110025, India.,Academy of Scientific & Innovative Research (AcSIR), New Delhi 110025, India
| | - Parul Sharma
- Center for Computational Biology, Indraprastha Institute of Information Technology Delhi (IIIT-Delhi), Okhla Industrial Estate, Phase III, New Delhi 110020, India
| | - Vinod Scaria
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics & Integrative Biology, Mathura Road, New Delhi 110025, India.,Academy of Scientific & Innovative Research (AcSIR), New Delhi 110025, India.,Center for Computational Biology, Indraprastha Institute of Information Technology Delhi (IIIT-Delhi), Okhla Industrial Estate, Phase III, New Delhi 110020, India
| |
Collapse
|
6
|
Alrashid MH, Al-Serri A, Alshemmari SH, Koshi P, Al-Bustan SA. Association of Genetic Polymorphisms in the VKORC1 and CYP2C9 Genes with Warfarin Dosage in a Group of Kuwaiti Individuals. Mol Diagn Ther 2016; 20:183-90. [DOI: 10.1007/s40291-016-0190-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Abu-Elmagd M, Assidi M, Schulten HJ, Dallol A, Pushparaj PN, Ahmed F, Scherer SW, Al-Qahtani M. Individualized medicine enabled by genomics in Saudi Arabia. BMC Med Genomics 2015; 8 Suppl 1:S3. [PMID: 25951871 PMCID: PMC4315314 DOI: 10.1186/1755-8794-8-s1-s3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The biomedical research sector in Saudi Arabia has recently received special attention from the government, which is currently supporting research aimed at improving the understanding and treatment of common diseases afflicting Saudi Arabian society. To build capacity for research and training, a number of centres of excellence were established in different areas of the country. Among these, is the Centre of Excellence in Genomic Medicine Research (CEGMR) at King Abdulaziz University, Jeddah, with its internationally ranked and highly productive team performing translational research in the area of individualized medicine. Here, we present a panorama of the recent trends in different areas of biomedical research in Saudi Arabia drawing from our vision of where genomics will have maximal impact in the Kingdom of Saudi Arabia. We describe advances in a number of research areas including; congenital malformations, infertility, consanguinity and pre-implantation genetic diagnosis, cancer and genomic classifications in Saudi Arabia, epigenetic explanations of idiopathic disease, and pharmacogenomics and personalized medicine. We conclude that CEGMR will continue to play a pivotal role in advances in the field of genomics and research in this area is facing a number of challenges including generating high quality control data from Saudi population and policies for using these data need to comply with the international set up.
Collapse
Affiliation(s)
- Muhammad Abu-Elmagd
- Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, P.O. Box: 80216 Jeddah 21589, KSA
- KACST Technology Innovation Centre in Personalized Medicine at King Abdulaziz University (CIPM), P.O. Box: 80216 Jeddah 21589, KSA
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
- Zoology Department, Faculty of Science, Minia University, Minia, P.O. Box 61519, Egypt
| | - Mourad Assidi
- Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, P.O. Box: 80216 Jeddah 21589, KSA
- KACST Technology Innovation Centre in Personalized Medicine at King Abdulaziz University (CIPM), P.O. Box: 80216 Jeddah 21589, KSA
| | - Hans-Juergen Schulten
- Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, P.O. Box: 80216 Jeddah 21589, KSA
| | - Ashraf Dallol
- Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, P.O. Box: 80216 Jeddah 21589, KSA
- KACST Technology Innovation Centre in Personalized Medicine at King Abdulaziz University (CIPM), P.O. Box: 80216 Jeddah 21589, KSA
| | - Peter Natesan Pushparaj
- Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, P.O. Box: 80216 Jeddah 21589, KSA
| | - Farid Ahmed
- Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, P.O. Box: 80216 Jeddah 21589, KSA
| | - Stephen W Scherer
- Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, P.O. Box: 80216 Jeddah 21589, KSA
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, the Hospital for Sick Children, Toronto, Ontario, Canada
- McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Mohammed Al-Qahtani
- Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, P.O. Box: 80216 Jeddah 21589, KSA
| |
Collapse
|
8
|
Association of polymorphism in cytochrome P450 2C9 with susceptibility to head and neck cancer and treatment outcome. Appl Transl Genom 2013; 3:8-13. [PMID: 27275407 PMCID: PMC4881805 DOI: 10.1016/j.atg.2013.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/23/2013] [Accepted: 07/25/2013] [Indexed: 02/03/2023]
Abstract
The present case–control study involving 750 cases and equal number of healthy controls investigates the association of polymorphism in cytochrome P450 2C9 (CYP2C9) with head and neck squamous cell carcinoma (HNSCC) and response in patients receiving chemotherapy or combination of radio-chemotherapy. The frequency of heterozygous or homozygous genotypes of CYP2C9*2 & CYP2C9*3, which leads to the poor metabolizer (PM) genotype was significantly higher in HNSCC cases when compared to the healthy controls resulting in significantly increased risk in the cases. Tobacco use in the form of tobacco smoking or tobacco chewing was found to increase the risk several fold in cases when compared to the non-tobacco users. Likewise, alcohol intake in cases with variant genotypes of CYP2C9*2 or CYP2C9*3 also significantly increased the HNSCC risk in cases when compared to non-alcohol users. Further, majority of the cases carrying variant alleles of both CYP2C9*2 or CYP2C9*3 were found to respond poorly to the chemotherapy or combination of radio-chemotherapy. The data suggests a significant association of the CYP2C9 polymorphism with HNSCC and treatment outcome.
Collapse
|
9
|
Bazan NS, Sabry NA, Rizk A, Mokhtar S, Badary OA. Factors affecting warfarin dose requirements and quality of anticoagulation in adult Egyptian patients: role of gene polymorphism. Ir J Med Sci 2013; 183:161-72. [DOI: 10.1007/s11845-013-0978-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/11/2013] [Indexed: 12/22/2022]
|
10
|
Genotyping of CYP2C9 and VKORC1 in the Arabic population of Al-Ahsa, Saudi Arabia. BIOMED RESEARCH INTERNATIONAL 2013; 2013:315980. [PMID: 23586031 PMCID: PMC3613048 DOI: 10.1155/2013/315980] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Revised: 01/17/2013] [Accepted: 02/03/2013] [Indexed: 11/17/2022]
Abstract
Polymorphisms in the genes encoding CYP2C9 enzyme and VKORC1 reductase significantly influence the dose variability of coumarinic oral anticoagulants (COAs). Substantial inter- and intraethnic variability exists in the frequencies of CYP2C9*2 and *3 and VKORC1 -1639A alleles. However, the prevalence of CYP2C9 and VKORC1 genetic variants is less characterized in Arab populations. A total of 131 healthy adult subjects from the Al-Ahsa region of Saudi Arabia were genotyped for the CYP2C9 *2 and *3 and VKORC1 -1639G>A polymorphisms by PCR-RFLP method. The frequencies of the CYP2C9 *2 and *3 and VKORC1 -1639A alleles were 13.3%, 2.3%, and 42.4%, respectively, with no subjects carrying 2 defective alleles. The frequencies of the CYP2C9 *3 and VKORC1 -1639A alleles were significantly lower than those reported in different Arabian populations. None of the subjects with the VKORC1 -1639AA genotype were carriers of CYP2C9 *1/*3 genotypes that lead to sensitivity to COAs therapy. The low frequency of the CYP2C9 *3 allele combined with the absence of subjects carrying 2 defective CYP2C9 alleles suggests that, in this specific population, pharmacogenetic COAs dosing may mostly rely upon VKORC1 genotyping.
Collapse
|
11
|
Jorgensen AL, FitzGerald RJ, Oyee J, Pirmohamed M, Williamson PR. Influence of CYP2C9 and VKORC1 on patient response to warfarin: a systematic review and meta-analysis. PLoS One 2012; 7:e44064. [PMID: 22952875 PMCID: PMC3430615 DOI: 10.1371/journal.pone.0044064] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 07/30/2012] [Indexed: 01/13/2023] Open
Abstract
Background Warfarin is a highly effective anticoagulant however its effectiveness relies on maintaining INR in therapeutic range. Finding the correct dose is difficult due to large inter-individual variability. Two genes, CYP2C9 and VKORC1, have been associated with this variability, leading to genotype-guided dosing tables in warfarin labeling. Nonetheless, it remains unclear how genotypic information should be used in practice. Navigating the literature to determine how genotype will influence warfarin response in a particular patient is difficult, due to significant variation in patient ethnicity, outcomes investigated, study design, and methodological rigor. Our systematic review was conducted to enable fair and accurate interpretation of which variants affect which outcomes, in which patients, and to what extent. Methodology/Principal Findings A comprehensive search strategy was applied and 117 studies included. Primary outcomes were stable dose, time to stable dose and bleeding events. Methodological quality was assessed using criteria of Jorgensen and Williamson and data synthesized in meta-analyses using advanced methods. Pooled effect estimates were significant in most ethnic groups for CYP2C9*3 and stable dose (mutant types requiring between 1.1(0.7–1.5) and 2.3 (1.6–3.0)mg/day). Effect estimates were also significant for VKORC1 and stable dose for most ethnicities, although direction differed between asians and non-asians (mutant types requiring between 0.8(0.4–1.3) and 1.5(1.1–1.8)mg/day more in asians and between 1.5(0.7–2.2) and 3.1(2.7–3.6)mg/day less in non-asians). Several studies were excluded due to inadequate data reporting. Assessing study quality highlighted significant variability in methodological rigor. Notably, there was significant evidence of selective reporting, of outcomes and analysis approaches. Conclusions/Significance Genetic associations with warfarin response vary between ethnicities. In order to achieve unbiased estimates in different populations, a high level of methodological rigor must be maintained and studies should report sufficient data to enable inclusion in meta-analyses. We propose minimum reporting requirements, suggest methodological guidelines and provide recommendations for reducing the risk of selective reporting.
Collapse
Affiliation(s)
- Andrea L Jorgensen
- Department of Biostatistics, Shelley's Cottage, University of Liverpool, Liverpool, United Kingdom.
| | | | | | | | | |
Collapse
|
12
|
El Din MS, Amin DG, Ragab SB, Ashour EE, Mohamed MH, Mohamed AM. Frequency of VKORC1 (C1173T) and CYP2C9 genetic polymorphisms in Egyptians and their influence on warfarin maintenance dose: proposal for a new dosing regimen. Int J Lab Hematol 2012; 34:517-24. [PMID: 22533669 DOI: 10.1111/j.1751-553x.2012.01426.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Warfarin is one of the most widely used anticoagulants, yet interindividual differences in drug response, a narrow therapeutic range and a high risk of bleeding or stroke complicate its use. We aimed to determine the allele and genotype frequency of VKORC1 1173 C>T, CYP2C9*2 and CYP2C9*3 variant polymorphisms in the Egyptian population and to evaluate their influence on the interindividual differences in warfarin dosage. METHODS A total of 154 unrelated healthy adult patients and 46 warfarin-treated patients were included. SYBR Green-based real-time polymerase chain reaction (PCR) assay was used for studying VKORC1 (C1173T) and CYP2C9*3 polymorphisms. Mutagenically separated PCR assay was used to detect the CYP2C9*2 allele. RESULTS VKORC1 genotype frequencies were 11%, 24% and 65% for CC, CT and TT, respectively. The prevalence of CYP2C9 haplotypes was 81% (*1\*1), 3.3% (*1\*2), 9.7% (*1\*3), 4.5% (*2\*2) and 0.65% (2\*3 and *3\*3). VKORC1 TT and CYP2C9*2\*2 were associated with a significantly lower warfarin dose. VKORC1 and CYP2C9 accounted for 31.7% and 15.6% of warfarin dose variability, respectively, and together with clinical factors explained 61.3% of total variability. CONCLUSION VKORC1-TT and CYP2C9 *1/*1 are the most prevalent genotypes among Egyptians. Patients with VKORC1-TT genotype required a lower warfarin dose.
Collapse
Affiliation(s)
- M S El Din
- Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | | | | | | | | |
Collapse
|
13
|
Pathare AV, Zadjali SA, Misquith R, Alkindi SS, Panjwani V, Lapoumeroulie C, Pravin S, Paldi A, Krishnamoorthy R. Warfarin Pharmacogenetics: Polymorphisms of theCYP2C9, CYP4F2, and VKORC1Loci in a Genetically Admixed Omani Population. Hum Biol 2012; 84:67-77. [DOI: 10.3378/027.084.0103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Hashemi-Soteh SMB, Shahabi-Majd N, Gholizadeh AR, Shiran MR. Allele and genotype frequencies of CYP2C9 within an Iranian population (Mazandaran). Genet Test Mol Biomarkers 2012; 16:817-21. [PMID: 22288731 DOI: 10.1089/gtmb.2011.0301] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cytochrome P450 2C9 (CYP2C9) is a polymorphic enzyme responsible for the metabolism of different drugs, some with low therapeutic index. The frequency of functionally important mutations and alleles of the gene coding for CYP2C9 shows wide ethnic variations. The present study aimed to determine the prevalence of the most common allelic variants of the CYP2C9 enzyme and to predict the genotype frequency in the Mazandarani ethnic group among the Iranian population. Genotyping of CYP2C9 allelic variants was carried out in 103 unrelated subjects by polymerase chain reaction and restriction fragment length pattern analysis. The frequencies for CYP2C9 alleles *1, *2, and *3 were 78%, 12%, and 10%, respectively. No subjects were found carrying the CYP2C19*11 allele. The frequencies of CYP2C9 genotypes *1/*1, *1/*2, *1/*3, *2/*2, *2/*3, and *3/*3 were 61%, 19%, 16%, 1.5%, 2.5%, and 0.0%, respectively. The result of the present study showed that the two inactive alleles of CYP2C9 accounted for 22% of CYP2C9 alleles in our sample versus 1.5%-29% reported in other populations. The frequencies of the studied alleles resulted in significant differences between our sample and African and Eastern Asian populations.
Collapse
|
15
|
Mirghani RA, Chowdhary G, Elghazali G. Distribution of the major cytochrome P450 (CYP) 2C9 genetic variants in a Saudi population. Basic Clin Pharmacol Toxicol 2011; 109:111-4. [PMID: 21371265 DOI: 10.1111/j.1742-7843.2011.00692.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytochrome P450 (CYP) 2C9 is responsible for the metabolism of a number of widely used drugs such as oral anticoagulants, oral antidiabetics and non-steroidal anti-inflammatory drugs. The CYP2C9 is a genetically polymorphic enzyme. The most common allele is CYP2C9*1, while CYP2C9*2 and CYP2C9*3 are the less-frequent variants. The activity of the enzyme encoded by either CYP2C9 *2 or *3 variant is lower compared with that of the CYP2C9*1. The metabolism of most of the CYP2C9 substrates decreases in varying degrees in subjects carrying the CYP2C9 *2 or *3 allele. The aim of this study was to investigate the frequencies of the major variants of the CYP2C9 in Saudi Arabians.
Collapse
Affiliation(s)
- Rajaa A Mirghani
- King Saud Bin Abdulaziz University for Health Sciences, King Fahad Medical City, Riyadh, Saudi Arabia.
| | | | | |
Collapse
|
16
|
Mahajan P, Meyer KS, Wall GC, Price HJ. Clinical applications of pharmacogenomics guided warfarin dosing. Int J Clin Pharm 2011; 33:10-9. [PMID: 21365388 DOI: 10.1007/s11096-011-9486-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 10/11/2010] [Indexed: 12/26/2022]
Abstract
AIM OF THE REVIEW To assess the state of the literature concerning pharmacogenomic testing in patients requiring vitamin K antagonists, specifically warfarin. METHOD We conducted a literature search of MEDLINE and International Pharmaceutical Abstracts using the following words: warfarin, pharmacogenetic, and pharmacogenomic. The search results were reviewed by the authors and papers concerning pharmacogenomic testing in warfarin dosing were procured and reviewed. Additionally bibliographies of papers procured were also examined for other studies. The authors focused on clinical trials concerning the use of pharmacogenomic testing in warfarin dosing. RESULTS Although numerous studies have demonstrated that a significant portion of warfarin dosing variability can be explained by genetic polymorphisms, few prospective studies have been conducted that examine the integration of this information in practical dosing situations. Those that have, have shown that using pharmacogenomic information improves initial dosing estimates and decreases the need for frequent clinic visits and laboratory testing. Data showing a reduction in serious bleeding events is sparse. Cost-effectiveness analyses have generally shown a small but positive effect with pharmacogenomic testing in patients receiving warfarin. CONCLUSION Several studies have shown that pharmacogenomic testing for warfarin dosing is more accurate that other dosing schemes. Pharmacogenomic testing improves time to a therapeutic international normalized ratio while requiring fewer dosing adjustments. Patients who require higher or lower than usual doses seem to benefit the most. The cost-effectiveness of pharmacogenomic testing as well as preventing of outcomes such as bleeding or thrombosis are not yet elucidated. Pharmacists, especially those in a community setting can play a role in this new technology by educating prescribers and patients concerning pharmacogenomic testing, and by developing and using dosing protocols that incorporate its use.
Collapse
Affiliation(s)
- Pramod Mahajan
- College of Pharmacy and Health Sciences, Drake University, 2507 University Ave, Des Moines, IA 50310, USA
| | | | | | | |
Collapse
|
17
|
Mahajan P, Meyer KS, Wall GC, Price HJ. Clinical applications of pharmacogenomics guided warfarin dosing. Int J Clin Pharm 2010; 35:359-68. [DOI: 10.1007/s11096-010-9448-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 10/11/2010] [Indexed: 12/28/2022]
|
18
|
Namazi S, Azarpira N, Hendijani F, Khorshid MB, Vessal G, Mehdipour AR. The impact of genetic polymorphisms and patient characteristics on warfarin dose requirements: A cross-sectional study in Iran. Clin Ther 2010; 32:1050-60. [DOI: 10.1016/j.clinthera.2010.06.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2010] [Indexed: 11/29/2022]
|
19
|
Zhou SF, Zhou ZW, Huang M. Polymorphisms of human cytochrome P450 2C9 and the functional relevance. Toxicology 2009; 278:165-88. [PMID: 19715737 DOI: 10.1016/j.tox.2009.08.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 08/18/2009] [Accepted: 08/21/2009] [Indexed: 12/19/2022]
Abstract
Human cytochrome P450 2C9 (CYP2C9) accounts for ∼20% of hepatic total CYP content and metabolizes ~15% clinical drugs such as phenytoin, S-warfarin, tolbutamide, losartan, and many nonsteroidal anti-inflammatory agents (NSAIDs). CYP2C9 is highly polymorphic, with at least 33 variants of CYP2C9 (*1B through *34) being identified so far. CYP2C9*2 is frequent among Caucasians with ~1% of the population being homozygous carriers and 22% are heterozygous. The corresponding figures for the CYP2C9*3 allele are 0.4% and 15%, respectively. There are a number of clinical studies addressing the impact of CYP2C9 polymorphisms on the clearance and/or therapeutic response of therapeutic drugs. These studies have highlighted the importance of the CYP2C9*2 and *3 alleles as a determining factor for drug clearance and drug response. The CYP2C9 polymorphisms are relevant for the efficacy and adverse effects of numerous NSAIDs, sulfonylurea antidiabetic drugs and, most critically, oral anticoagulants belonging to the class of vitamin K epoxide reductase inhibitors. Warfarin has served as a practical example of how pharmacogenetics can be utilized to achieve maximum efficacy and minimum toxicity. For many of these drugs, a clear gene-dose and gene-effect relationship has been observed in patients. In this regard, CYP2C9 alleles can be considered as a useful biomarker in monitoring drug response and adverse effects. Genetic testing of CYP2C9 is expected to play a role in predicting drug clearance and conducting individualized pharmacotherapy. However, prospective clinical studies with large samples are warranted to establish gene-dose and gene-effect relationships for CYP2C9 and its substrate drugs.
Collapse
Affiliation(s)
- Shu-Feng Zhou
- School of Health Sciences, RMIT University, Victoria 3083, Australia.
| | | | | |
Collapse
|
20
|
Lindh JD, Holm L, Andersson ML, Rane A. Influence of CYP2C9 genotype on warfarin dose requirements--a systematic review and meta-analysis. Eur J Clin Pharmacol 2008; 65:365-75. [PMID: 19031075 DOI: 10.1007/s00228-008-0584-5] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 10/23/2008] [Indexed: 01/30/2023]
Abstract
PURPOSE To quantify the influence of common cytochrome P450 2C9 (CYP2C9) polymorphisms on warfarin dose requirements. METHODS A systematic review and a meta-analysis, calculating the warfarin dose reduction associated with the five most common variant CYP2C9 genotypes. RESULTS Thirty-nine studies (7,907 patients) were included in the meta-analysis. Compared to the CYP2C9*1/*1 genotype, the CYP2C9*1/*2, CYP2C9*1/*3, CYP2C9*2/*2, CYP2C9*2/*3, and CYP2C9*3/*3 required warfarin doses that were 19.6 (95% confidence interval 17.4, 21.9), 33.7 (29.4, 38.1), 36.0 (29.9, 42.0), 56.7 (49.1, 64.3), and 78.1% (72.0, 84.3) lower, respectively. The impact of CYP2C9 genotype tended to be larger in patients without interacting drugs. CONCLUSIONS Previous studies have rarely been powered to determine the quantitative influence of specific CYP2C9 genotypes on warfarin dose requirements. The results from our pooled analysis are likely to be the most accurate to date and the methodology could serve as a model for future pharmacogenetic meta-analyses.
Collapse
Affiliation(s)
- Jonatan D Lindh
- Division of Clinical Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | |
Collapse
|
21
|
Impact of BRAF, MLH1 on the incidence of microsatellite instability high colorectal cancer in populations based study. Mol Cancer 2008; 7:68. [PMID: 18718023 PMCID: PMC2551625 DOI: 10.1186/1476-4598-7-68] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 08/21/2008] [Indexed: 01/05/2023] Open
Abstract
We have identified an alternative pathway of tumorigenesis in sporadic colon cancer, involving microsatellite instability due to mismatched repair methylation, which may be driven by mutations in the BRAF gene (V600E). Colorectal cancer (CRC) is the most common cancer in the world, and African Americans show a higher incidence than other populations in the United States. We analyzed sporadic CRCs in Omani (of African origin, N = 61), Iranian (of Caucasian origin, N = 53) and African American (N = 95) patients for microsatellite instability, expression status of mismatched repair genes (hMLH1, hMSH2) and presence of the BRAF (V600E) mutation. In the Omani group, all tumors with BRAF mutations were located in the left side of the colon, and for African Americans, 88% [7] of tumors with BRAF mutations were found in the right side of the colon. In African Americans, 31% of tumors displayed microsatellite instability at two or more markers (MSI-H), while this rate was 26% and 13% for tumors in the Iranian and Omani groups, respectively. A majority of these MSI-H tumors were located in the proximal colon (right side) in African American and Iranian subjects, whereas most were located in the distal colon (left side) in Omani subjects. Defects in hMLH1 gene expression were found in 77% of MSI-H tumors in both African Americans and Iranians and in 38% of tumors in Omanis. BRAF mutations were observed in all subjects: 10% of tumors in African Americans (8/82), 2% of tumors in Iranians (1/53), and 19% of tumors in Omanis (11/59). Our findings suggest that CRC occurs at a younger age in Omani and Iranian patients, and these groups showed a lower occurrence of MSI-H than did African American patients. Our multivariate model suggests an important and significant role of hMLH1 expression and BRAF mutation in MSI-H CRC in these populations. The high occurrence of MSI-H tumors in African Americans may have significant implications for treatment, since patients with MSI-H lesions display a different response to chemotherapeutic agents such as 5-fluorouracil.
Collapse
|
22
|
Wang JF, Wei DQ, Li L, Zheng SY, Li YX, Chou KC. 3D structure modeling of cytochrome P450 2C19 and its implication for personalized drug design. Biochem Biophys Res Commun 2007; 355:513-9. [PMID: 17307149 DOI: 10.1016/j.bbrc.2007.01.185] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 01/31/2007] [Indexed: 11/15/2022]
Abstract
Cytochrome P450 2C19 (CYP2C19) is a member of the cytochrome P-450 enzyme superfamily and plays an important role in the metabolism of drugs. In order to gain insights for developing personalized drugs, the 3D (dimensional) structure of CYP2C19 has been developed based on the crystal structure of CYP2C9 (PDB code 1R90), and its structure-activity relationship with the ligands of CEC, Fluvoxamine, Lescol, and Ticlopidine investigated through the structure-activity relationship approach. By means of a series of docking studies, the binding pockets of CYP2C19 for the four compounds are explicitly defined that will be very useful for conducting mutagenesis studies, providing insights into personalization of drug treatments and stimulating novel strategies for finding desired personalized drugs.
Collapse
Affiliation(s)
- Jing-Fang Wang
- College of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
| | | | | | | | | | | |
Collapse
|