1
|
Guo T, Sperber AM, Krieger IV, Duan Y, Chemelewski VR, Sacchettini JC, Herman JK. Bacillus subtilis YisK possesses oxaloacetate decarboxylase activity and exhibits Mbl-dependent localization. J Bacteriol 2024; 206:e0020223. [PMID: 38047707 PMCID: PMC10810218 DOI: 10.1128/jb.00202-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023] Open
Abstract
YisK is an uncharacterized protein in Bacillus subtilis previously shown to interact genetically with the elongasome protein Mbl. YisK overexpression leads to cell widening and lysis, phenotypes that are dependent on mbl and suppressed by mbl mutations. In the present work, we characterize YisK's localization, structure, and enzymatic activity. We show that YisK localizes as puncta that depend on Mbl. YisK belongs to the fumarylacetoacetate hydrolase (FAH) superfamily, and crystal structures revealed close structural similarity to two oxaloacetate (OAA) decarboxylases: human mitochondrial FAHD1 and Corynebacterium glutamicum Cg1458. We demonstrate that YisK can also catalyze the decarboxylation of OAA (K m = 134 µM, K cat = 31 min-1). A catalytic dead variant (YisK E148A, E150A) retains wild-type localization and still widens cells following overexpression, indicating these activities are not dependent on YisK catalysis. Conversely, a non-localizing variant (YisK E30A) retains wild-type enzymatic activity in vitro but localizes diffusely and no longer widens cells following overexpression. Together, these results suggest that YisK may be subject to spatial regulation that depends on the cell envelope synthesis machinery. IMPORTANCE The elongasome is a multiprotein complex that guides lengthwise growth in some bacteria. We previously showed that, in B. subtilis, overexpression of an uncharacterized putative enzyme (YisK) perturbed function of the actin-like elongasome protein Mbl. Here, we show that YisK exhibits Mbl-dependent localization. Through biochemical and structural characterization, we demonstrate that, like its mitochondrial homolog FAHD1, YisK can catalyze the decarboxylation of the oxaloacetate to pyruvate and CO2. YisK is the first example of an enzyme implicated in central carbon metabolism with subcellular localization that depends on Mbl.
Collapse
Affiliation(s)
- Tingfeng Guo
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Anthony M. Sperber
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Inna V. Krieger
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Yi Duan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Veronica R. Chemelewski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - James C. Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Jennifer K. Herman
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
2
|
Sidiq KR, Chow MW, Zhao Z, Daniel RA. Alanine metabolism in Bacillus subtilis. Mol Microbiol 2020; 115:739-757. [PMID: 33155333 DOI: 10.1111/mmi.14640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/30/2022]
Abstract
Both isomeric forms of alanine play a crucial role in bacterial growth and viability; the L-isomer of this amino acid is one of the building blocks for protein synthesis, and the D-isomer is incorporated into the bacterial cell wall. Despite a long history of genetic manipulation of Bacillus subtilis using auxotrophic markers, the genes involved in alanine metabolism have not been characterized fully. In this work, we genetically characterized the major enzymes involved in B. subtilis alanine biosynthesis and identified an alanine permease, AlaP (YtnA), which we show has a major role in the assimilation of D-alanine from the environment. Our results provide explanations for the puzzling fact that growth of B. subtilis does not result in the significant accumulation of extracellular D-alanine. Interestingly, we find that in B. subtilis, unlike E. coli where multiple enzymes have a biochemical activity that can generate alanine, the primary synthetic enzyme for alanine is encoded by alaT, although a second gene, dat, can support slow growth of an L-alanine auxotroph. However, our results also show that Dat mediates the synthesis of D-alanine and its activity is influenced by the abundance of L-alanine. This work provides valuable insights into alanine metabolism that suggests that the relative abundance of D- and L-alanine might be linked with cytosolic pool of D and L-glutamate, thereby coupling protein and cell envelope synthesis with the metabolic status of the cell. The results also suggest that, although some of the purified enzymes involved in alanine biosynthesis have been shown to catalyze reversible reactions in vitro, most of them function unidirectionally in vivo.
Collapse
Affiliation(s)
- Karzan R Sidiq
- Centre for Bacterial Cell Biology, Biosciences Institute, Medical Faculty, Newcastle University, Newcastle Upon Tyne, UK
| | - Man W Chow
- Centre for Bacterial Cell Biology, Biosciences Institute, Medical Faculty, Newcastle University, Newcastle Upon Tyne, UK
| | - Zhao Zhao
- Centre for Bacterial Cell Biology, Biosciences Institute, Medical Faculty, Newcastle University, Newcastle Upon Tyne, UK
| | - Richard A Daniel
- Centre for Bacterial Cell Biology, Biosciences Institute, Medical Faculty, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
3
|
Gingichashvili S, Duanis-Assaf D, Shemesh M, Featherstone JDB, Feuerstein O, Steinberg D. The Adaptive Morphology of Bacillus subtilis Biofilms: A Defense Mechanism against Bacterial Starvation. Microorganisms 2019; 8:microorganisms8010062. [PMID: 31905847 PMCID: PMC7023499 DOI: 10.3390/microorganisms8010062] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/25/2019] [Accepted: 12/28/2019] [Indexed: 12/20/2022] Open
Abstract
Biofilms are commonly defined as accumulations of microbes, embedded in a self-secreted, polysaccharide-rich extra-cellular matrix. This study aimed to characterize specific morphological changes that occur in Bacillus subtilis biofilms under nutrient-limiting growth conditions. Under varying levels of nutrient depletion, colony-type biofilms were found to exhibit different rates of spatial expansion and green fluorescent protein production. Specifically, colony-type biofilms grown on media with decreased lysogeny broth content exhibited increased spatial expansion and more stable GFP production over the entire growth period. By modeling the surface morphology of colony-type biofilms using confocal and multiphoton microscopy, we analyzed the appearance of distinctive folds or "wrinkles" that form as a result of lysogeny broth content reduction in the solid agar growth media. When subjected to varying nutritional conditions, the channel-like folds were shown to alter their morphology; growth on nutrient-depleted media was found to trigger the formation of large and straight wrinkles connecting the colony core to its periphery. To test a possible functional role of the formed channels, a fluorescent analogue of glucose was used to demonstrate preferential native uptake of the molecules into the channels' interiors which supports their possible role in the transport of molecules throughout biofilm structures.
Collapse
Affiliation(s)
- Sarah Gingichashvili
- Biofilm Research Laboratory, Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University-Hadassah, Jerusalem 9112001, Israel; (D.D.-A.); (D.S.)
- Faculty of Dental Medicine, Department of Prosthodontics, Hebrew University-Hadassah, Jerusalem 9112001, Israel;
- Correspondence:
| | - Danielle Duanis-Assaf
- Biofilm Research Laboratory, Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University-Hadassah, Jerusalem 9112001, Israel; (D.D.-A.); (D.S.)
- Department of Food Quality and Safety, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZion 7528809, Israel;
| | - Moshe Shemesh
- Department of Food Quality and Safety, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZion 7528809, Israel;
| | | | - Osnat Feuerstein
- Faculty of Dental Medicine, Department of Prosthodontics, Hebrew University-Hadassah, Jerusalem 9112001, Israel;
| | - Doron Steinberg
- Biofilm Research Laboratory, Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University-Hadassah, Jerusalem 9112001, Israel; (D.D.-A.); (D.S.)
| |
Collapse
|
4
|
Peng Q, Wang G, Liu G, Zhang J, Song F. Identification of metabolism pathways directly regulated by sigma(54) factor in Bacillus thuringiensis. Front Microbiol 2015; 6:407. [PMID: 26029175 PMCID: PMC4428206 DOI: 10.3389/fmicb.2015.00407] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/19/2015] [Indexed: 11/13/2022] Open
Abstract
Sigma(54) (σ(54)) regulates nitrogen and carbon utilization in bacteria. Promoters that are σ(54)-dependent are highly conserved and contain short sequences located at the -24 and -12 positions upstream of the transcription initiation site. σ(54) requires regulatory proteins known as bacterial enhancer-binding proteins (bEBPs) to activate gene transcription. We show that σ(54) regulates the capacity to grow on various nitrogen sources using a Bacillus thuringiensis HD73 mutant lacking the sigL gene encoding σ(54) (ΔsigL). A 2-fold-change cutoff and a false discovery rate cutoff of P < 0.05 were used to analyze the DNA microarray data, which revealed 255 genes that were downregulated and 121 that were upregulated in the ΔsigL mutant relative to the wild-type HD73 strain. The σ(54) regulon (stationary phase) was characterized by DNA microarray, bioinformatics, and functional assay; 16 operons containing 47 genes were identified whose promoter regions contain the conserved -12/-24 element and whose transcriptional activities were abolished or reduced in the ΔsigL mutant. Eight σ(54)-dependent transcriptional bEBPs were found in the Bt HD73 genome, and they regulated nine σ(54)-dependent promoters. The metabolic pathways activated by σ(54) in this process have yet to be identified in Bacillus thuringiensis; nonetheless, the present analysis of the σ(54) regulon provides a better understanding of the physiological roles of σ factors in bacteria.
Collapse
Affiliation(s)
- Qi Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing, China
| | - Guannan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing, China
| | - Guiming Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences Beijing, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing, China
| | - Fuping Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing, China
| |
Collapse
|
5
|
Voigt B, Schroeter R, Schweder T, Jürgen B, Albrecht D, van Dijl JM, Maurer KH, Hecker M. A proteomic view of cell physiology of the industrial workhorse Bacillus licheniformis. J Biotechnol 2014; 191:139-49. [DOI: 10.1016/j.jbiotec.2014.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/26/2014] [Accepted: 06/03/2014] [Indexed: 11/16/2022]
|
6
|
Identification of the enzyme responsible for N-acetylation of norfloxacin by Microbacterium sp. Strain 4N2-2. Appl Environ Microbiol 2012; 79:314-21. [PMID: 23104417 DOI: 10.1128/aem.02347-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Microbacterium sp. 4N2-2, isolated from a wastewater treatment plant, converts the antibacterial fluoroquinolone norfloxacin to N-acetylnorfloxacin and three other metabolites. Because N-acetylation results in loss of antibacterial activity, identification of the enzyme responsible is important for understanding fluoroquinolone resistance. The enzyme was identified as glutamine synthetase (GS); N-acetylnorfloxacin was produced only under conditions associated with GS expression. The GS gene (glnA) was cloned, and the protein (53 kDa) was heterologously expressed and isolated. Optimal conditions and biochemical properties (K(m) and V(max)) of purified GS were characterized; the purified enzyme was inhibited by Mn(2+), Mg(2+), ATP, and ADP. The contribution of GS to norfloxacin resistance was shown by using a norfloxacin-sensitive Escherichia coli strain carrying glnA derived from Microbacterium sp. 4N2-2. The GS of Microbacterium sp. 4N2-2 was shown to act as an N-acetyltransferase for norfloxacin, which produced low-level norfloxacin resistance. Structural and docking analysis identified potential binding sites for norfloxacin at the ADP binding site and for acetyl coenzyme A (acetyl-CoA) at a cleft in GS. The results suggest that environmental bacteria whose enzymes modify fluoroquinolones may be able to survive in the presence of low fluoroquinolone concentrations.
Collapse
|
7
|
Rühl M, Le Coq D, Aymerich S, Sauer U. 13C-flux analysis reveals NADPH-balancing transhydrogenation cycles in stationary phase of nitrogen-starving Bacillus subtilis. J Biol Chem 2012; 287:27959-70. [PMID: 22740702 DOI: 10.1074/jbc.m112.366492] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In their natural habitat, microorganisms are typically confronted with nutritional limitations that restrict growth and force them to persevere in a stationary phase. Despite the importance of this phase, little is known about the metabolic state(s) that sustains it. Here, we investigate metabolically active but non-growing Bacillus subtilis during nitrogen starvation. In the absence of biomass formation as the major NADPH sink, the intracellular flux distribution in these resting B. subtilis reveals a large apparent catabolic NADPH overproduction of 5.0 ± 0.6 mmol g(-1)h(-1) that was partly caused by high pentose phosphate pathway fluxes. Combining transcriptome analysis, stationary (13)C-flux analysis in metabolic deletion mutants, (2)H-labeling experiments, and kinetic flux profiling, we demonstrate that about half of the catabolic excess NADPH is oxidized by two transhydrogenation cycles, i.e. isoenzyme pairs of dehydrogenases with different cofactor specificities that operate in reverse directions. These transhydrogenation cycles were constituted by the combined activities of the glyceraldehyde 3-phosphate dehydrogenases GapA/GapB and the malic enzymes MalS/YtsJ. At least an additional 6% of the overproduced NADPH is reoxidized by continuous cycling between ana- and catabolism of glutamate. Furthermore, in vitro enzyme data show that a not yet identified transhydrogenase could potentially reoxidize ∼20% of the overproduced NADPH. Overall, we demonstrate the interplay between several metabolic mechanisms that concertedly enable network-wide NADPH homeostasis under conditions of high catabolic NADPH production in the absence of cell growth in B. subtilis.
Collapse
Affiliation(s)
- Martin Rühl
- Institute of Molecular Systems Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | | | | |
Collapse
|
8
|
Dressaire C, Redon E, Gitton C, Loubière P, Monnet V, Cocaign-Bousquet M. Investigation of the adaptation of Lactococcus lactis to isoleucine starvation integrating dynamic transcriptome and proteome information. Microb Cell Fact 2011; 10 Suppl 1:S18. [PMID: 21995707 PMCID: PMC3236307 DOI: 10.1186/1475-2859-10-s1-s18] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Amino acid assimilation is crucial for bacteria and this is particularly true for Lactic Acid Bacteria (LAB) that are generally auxotroph for amino acids. The global response of the LAB model Lactococcus lactis ssp. lactis was characterized during progressive isoleucine starvation in batch culture using a chemically defined medium in which isoleucine concentration was fixed so as to become the sole limiting nutriment. Dynamic analyses were performed using transcriptomic and proteomic approaches and the results were analysed conjointly with fermentation kinetic data. Results The response was first deduced from transcriptomic analysis and corroborated by proteomic results. It occurred progressively and could be divided into three major mechanisms: (i) a global down-regulation of processes linked to bacterial growth and catabolism (transcription, translation, carbon metabolism and transport, pyrimidine and fatty acid metabolism), (ii) a specific positive response related to the limiting nutrient (activation of pathways of carbon or nitrogen metabolism and leading to isoleucine supply) and (iii) an unexpected oxidative stress response (positive regulation of aerobic metabolism, electron transport, thioredoxin metabolism and pyruvate dehydrogenase). The involvement of various regulatory mechanisms during this adaptation was analysed on the basis of transcriptomic data comparisons. The global regulator CodY seemed specifically dedicated to the regulation of isoleucine supply. Other regulations were massively related to growth rate and stringent response. Conclusion This integrative biology approach provided an overview of the metabolic pathways involved during isoleucine starvation and their regulations. It has extended significantly the physiological understanding of the metabolism of L. lactis ssp. lactis. The approach can be generalised to other conditions and will contribute significantly to the identification of the biological processes involved in complex regulatory networks of micro-organisms.
Collapse
Affiliation(s)
- Clémentine Dressaire
- Université de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | | | | | | | | | | |
Collapse
|
9
|
Schweder T. Bioprocess monitoring by marker gene analysis. Biotechnol J 2011; 6:926-33. [PMID: 21786424 DOI: 10.1002/biot.201100248] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 06/28/2011] [Accepted: 06/29/2011] [Indexed: 11/11/2022]
Abstract
The optimization and the scale up of industrial fermentation processes require an efficient and possibly comprehensive analysis of the physiology of the production system throughout the process development. Furthermore, to ensure a good quality control of established bioprocesses, on-line analysis techniques for the determination of marker gene expression are of interest to monitor the productivity and the safety of bioprocesses. A prerequisite for such analyses is the knowledge of genes, the expression of which is critical either for the productivity or for the performance of the bioprocess. This work reviews marker genes that are specific indicators for stress- and nutrient-limitation conditions or for the physiological status of the bacterial production hosts Bacillus subtilis, Bacillus licheniformis and Escherichia coli. The suitability of existing gene expression analysis techniques for bioprocess monitoring is discussed. Analytical approaches that enable a robust and sensitive determination of selected marker mRNAs or proteins are presented.
Collapse
Affiliation(s)
- Thomas Schweder
- Institute of Pharmacy, Ernst-Moritz-Arndt-University, Greifswald, Germany.
| |
Collapse
|
10
|
From the genome sequence to the protein inventory of Bacillus subtilis. Proteomics 2011; 11:2971-80. [DOI: 10.1002/pmic.201100090] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/07/2011] [Accepted: 04/20/2011] [Indexed: 12/12/2022]
|
11
|
Shih TW, Pan TM. Stress responses of thermophilic Geobacillus sp. NTU 03 caused by heat and heat-induced stress. Microbiol Res 2010; 166:346-59. [PMID: 20869219 DOI: 10.1016/j.micres.2010.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 08/02/2010] [Accepted: 08/08/2010] [Indexed: 11/26/2022]
Abstract
A batch culture of Geobacillus sp. NTU 03 was subjected to a rapid temperature shift for investigating the stress response. Several known heat-shock responses for protein, DNA, and cell membrane recurring were observed on two-dimensional (2D) gels. Heat caused protein and cell membrane disruption greatly affected the electron transport chain. Further, heat caused lower dissolved oxygen (DO) solubility resulting in insufficient oxygen to be electron acceptor, and the NADH could not be reoxidized. Hence, we observed seven dehydrogenase that used NADH as electron donor were downregulated on the 2D gels. In contrast, succinate dehydrogenase that used FADH(2) as electron donor was upregulated. However, this induction may simultaneously increase generation of superoxide; therefore the cellular redox state was imbalanced. We observed that superoxide dismutase (2D gel) and zinc ion ABC transporter (mRNA quantification) were upregulated, whereas ferric ion ABC transporter (2D gel and mRNA quantification) was downregulated. Increase in the reactive oxygen or nitrogen species scavenging activities were also observed. For responding the lower DO solubility, a transient activation of nitrate respiration was observed at transcriptional level. Our results support the view that both heat stress and heat-induced stress should be considered together when investigating the stress responses of thermophiles.
Collapse
Affiliation(s)
- Tsung-Wei Shih
- Department of Biochemical Science & Technology, College of Life Science, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| | | |
Collapse
|
12
|
Soufi B, Kumar C, Gnad F, Mann M, Mijakovic I, Macek B. Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) Applied to Quantitative Proteomics of Bacillus subtilis. J Proteome Res 2010; 9:3638-46. [DOI: 10.1021/pr100150w] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Boumediene Soufi
- Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany, Center for Biological Sequence Analysis, Technical University of Denmark, 2800 Lyngby, Denmark, Micalis, AgroParisTech-INRA, Domaine de Vilvert, 78352 Jouy-en-Josas, France, and Proteome Center Tuebingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Chanchal Kumar
- Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany, Center for Biological Sequence Analysis, Technical University of Denmark, 2800 Lyngby, Denmark, Micalis, AgroParisTech-INRA, Domaine de Vilvert, 78352 Jouy-en-Josas, France, and Proteome Center Tuebingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Florian Gnad
- Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany, Center for Biological Sequence Analysis, Technical University of Denmark, 2800 Lyngby, Denmark, Micalis, AgroParisTech-INRA, Domaine de Vilvert, 78352 Jouy-en-Josas, France, and Proteome Center Tuebingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Matthias Mann
- Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany, Center for Biological Sequence Analysis, Technical University of Denmark, 2800 Lyngby, Denmark, Micalis, AgroParisTech-INRA, Domaine de Vilvert, 78352 Jouy-en-Josas, France, and Proteome Center Tuebingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Ivan Mijakovic
- Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany, Center for Biological Sequence Analysis, Technical University of Denmark, 2800 Lyngby, Denmark, Micalis, AgroParisTech-INRA, Domaine de Vilvert, 78352 Jouy-en-Josas, France, and Proteome Center Tuebingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Boris Macek
- Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany, Center for Biological Sequence Analysis, Technical University of Denmark, 2800 Lyngby, Denmark, Micalis, AgroParisTech-INRA, Domaine de Vilvert, 78352 Jouy-en-Josas, France, and Proteome Center Tuebingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| |
Collapse
|
13
|
Kayumov A, Heinrich A, Sharipova M, Iljinskaya O, Forchhammer K. Inactivation of the general transcription factor TnrA in Bacillus subtilis by proteolysis. MICROBIOLOGY-SGM 2008; 154:2348-2355. [PMID: 18667567 DOI: 10.1099/mic.0.2008/019802-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Under conditions of nitrogen limitation, the general transcription factor TnrA in Bacillus subtilis activates the expression of genes involved in assimilation of various nitrogen sources. Previously, TnrA activity has been shown to be controlled by protein-protein interaction with glutamine synthetase, the key enzyme of ammonia assimilation. Furthermore, depending on ATP and 2-oxoglutarate levels, TnrA can bind to the GlnK-AmtB complex. Here, we report that upon transfer of nitrate-grown cells to combined nitrogen-depleted medium, TnrA is rapidly eliminated from the cells by proteolysis. As long as TnrA is membrane-bound through GlnK-AmtB interaction it seems to be protected from degradation. Upon removal of nitrogen sources, the localization of TnrA becomes cytosolic and degradation occurs. The proteolytic activity against TnrA was detected in the cytosolic fraction but not in the membrane, and its presence does not depend on the nitrogen regime of cell growth. The proteolytic degradation of TnrA as a response to complete nitrogen starvation might represent a novel mechanism of TnrA control in B. subtilis.
Collapse
Affiliation(s)
- Airat Kayumov
- Department of Microbiology, Kazan State University, Kremlevskaya 18, 420008 Kazan, Russia
| | - Annette Heinrich
- Institut für Mikrobiologie, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | - Margarita Sharipova
- Department of Microbiology, Kazan State University, Kremlevskaya 18, 420008 Kazan, Russia
| | - Olga Iljinskaya
- Department of Microbiology, Kazan State University, Kremlevskaya 18, 420008 Kazan, Russia
| | - Karl Forchhammer
- Institut für Mikrobiologie, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| |
Collapse
|
14
|
Nitric oxide stress induces different responses but mediates comparable protein thiol protection in Bacillus subtilis and Staphylococcus aureus. J Bacteriol 2008; 190:4997-5008. [PMID: 18487332 DOI: 10.1128/jb.01846-07] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The nonpathogenic Bacillus subtilis and the pathogen Staphylococcus aureus are gram-positive model organisms that have to cope with the radical nitric oxide (NO) generated by nitrite reductases of denitrifying bacteria and by the inducible NO synthases of immune cells of the host, respectively. The response of both microorganisms to NO was analyzed by using a two-dimensional gel approach. Metabolic labeling of the proteins revealed major changes in the synthesis pattern of cytosolic proteins after the addition of the NO donor MAHMA NONOate. Whereas B. subtilis induced several oxidative stress-responsive regulons controlled by Fur, PerR, OhrR, and Spx, as well as the general stress response controlled by the alternative sigma factor SigB, the more resistant S. aureus showed an increased synthesis rate of proteins involved in anaerobic metabolism. These data were confirmed by nuclear magnetic resonance analyses indicating that NO causes a drastically higher increase in the formation of lactate and butanediol in S. aureus than in B. subtilis. Monitoring the intracellular protein thiol state, we observed no increase in reversible or irreversible protein thiol modifications after NO stress in either organism. Obviously, NO itself does not cause general protein thiol oxidations. In contrast, exposure of cells to NO prior to peroxide stress diminished the irreversible thiol oxidation caused by hydrogen peroxide.
Collapse
|
15
|
van der Voort M, Kuipers OP, Buist G, de Vos WM, Abee T. Assessment of CcpA-mediated catabolite control of gene expression in Bacillus cereus ATCC 14579. BMC Microbiol 2008; 8:62. [PMID: 18416820 PMCID: PMC2358912 DOI: 10.1186/1471-2180-8-62] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 04/16/2008] [Indexed: 01/01/2023] Open
Abstract
Background The catabolite control protein CcpA is a transcriptional regulator conserved in many Gram-positives, controlling the efficiency of glucose metabolism. Here we studied the role of Bacillus cereus ATCC 14579 CcpA in regulation of metabolic pathways and expression of enterotoxin genes by comparative transcriptome analysis of the wild-type and a ccpA-deletion strain. Results Comparative analysis revealed the growth performance and glucose consumption rates to be lower in the B. cereus ATCC 14579 ccpA deletion strain than in the wild-type. In exponentially grown cells, the expression of glycolytic genes, including a non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase that mediates conversion of D-glyceraldehyde 3-phosphate to 3-phospho-D-glycerate in one single step, was down-regulated and expression of gluconeogenic genes and genes encoding the citric acid cycle was up-regulated in the B. cereus ccpA deletion strain. Furthermore, putative CRE-sites, that act as binding sites for CcpA, were identified to be present for these genes. These results indicate CcpA to be involved in the regulation of glucose metabolism, thereby optimizing the efficiency of glucose catabolism. Other genes of which the expression was affected by ccpA deletion and for which putative CRE-sites could be identified, included genes with an annotated function in the catabolism of ribose, histidine and possibly fucose/arabinose and aspartate. Notably, expression of the operons encoding non-hemolytic enterotoxin (Nhe) and hemolytic enterotoxin (Hbl) was affected by ccpA deletion, and putative CRE-sites were identified, which suggests catabolite repression of the enterotoxin operons to be CcpA-dependent. Conclusion The catabolite control protein CcpA in B. cereus ATCC 14579 is involved in optimizing the catabolism of glucose with concomitant repression of gluconeogenesis and alternative metabolic pathways. Furthermore, the results point to metabolic control of enterotoxin gene expression and suggest that CcpA-mediated glucose sensing provides an additional mode of control in moderating the expression of the nhe and hbl operons in B. cereus ATCC 14579.
Collapse
|
16
|
Kagan J, Sharon I, Beja O, Kuhn JC. The tryptophan pathway genes of the Sargasso Sea metagenome: new operon structures and the prevalence of non-operon organization. Genome Biol 2008; 9:R20. [PMID: 18221558 PMCID: PMC2395257 DOI: 10.1186/gb-2008-9-1-r20] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 12/17/2007] [Accepted: 01/27/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The enormous database of microbial DNA generated from the Sargasso Sea metagenome provides a unique opportunity to locate genes participating in different biosynthetic pathways and to attempt to understand the relationship and evolution of those genes. In this article, an analysis of the Sargasso Sea metagenome is made with respect to the seven genes of the tryptophan pathway. RESULTS At least 5% of all the genes that are related to amino acid biosynthesis are tryptophan (trp) genes. Many contigs and scaffolds contain whole or split operons that are similar to previously analyzed trp gene organizations. Only two scaffolds discovered in this analysis possess a different operon organization of tryptophan pathway genes than those previously known. Many marine organisms lack an operon-type organization of these genes or have mini-operons containing only two trp genes. In addition, the trpB genes from this search reveal that the dichotomous division between trpB_1 and trpB_2 also occurs in organisms from the Sargasso Sea. One cluster was found to contain trpB sequences that were closely related to each other but distinct from most known trpB sequences. CONCLUSION The data show that trp genes are widely dispersed within this metagenome. The novel organization of these genes and an unusual group of trpB_1 sequences that were found among some of these Sargasso Sea bacteria indicate that there is much to be discovered about both the reason for certain gene orders and the regulation of tryptophan biosynthesis in marine bacteria.
Collapse
Affiliation(s)
- Juliana Kagan
- Faculty of Biology, Technion, Israel Institute of Technology, Haifa, Israel 32000
| | | | | | | |
Collapse
|