1
|
Aegerter H, Smole U, Heyndrickx I, Verstraete K, Savvides SN, Hammad H, Lambrecht BN. Charcot-Leyden crystals and other protein crystals driving type 2 immunity and allergy. Curr Opin Immunol 2021; 72:72-78. [PMID: 33873124 DOI: 10.1016/j.coi.2021.03.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 01/21/2023]
Abstract
Protein crystals derived from innate immune cells have been synonymous with a Type-2 immune response in both mouse and man for over 150 years. Eosinophilic Galectin-10 (Charcot-Leyden) crystals in humans, and Ym1/Ym2 crystals in mice are frequently found in the context of parasitic infections, but also in diseases such as asthma and chronic rhinosinusitis. Despite their notable presence, these crystals are often overlooked as trivial markers of Type-2 inflammation. Here, we discuss the source, context, and role of protein crystallization. We focus on similarities observed between Galectin-10 and Ym1/2 crystals in driving immune responses; the subsequent benefit to the host during worm infection, and conversely the detrimental exacerbation of inflammation and mucus production during asthma.
Collapse
Affiliation(s)
- Helena Aegerter
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Ursula Smole
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Ines Heyndrickx
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Kenneth Verstraete
- Unit for Structural Biology, VIB Center for Inflammation Research, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Savvas N Savvides
- Unit for Structural Biology, VIB Center for Inflammation Research, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Hamida Hammad
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, ErasmusMC, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Safar HA, El-Hashim AZ, Amoudy H, Mustafa AS. Mycobacterium tuberculosis-Specific Antigen Rv3619c Effectively Alleviates Allergic Asthma in Mice. Front Pharmacol 2020; 11:532199. [PMID: 33101014 PMCID: PMC7546857 DOI: 10.3389/fphar.2020.532199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 08/31/2020] [Indexed: 01/20/2023] Open
Abstract
Despite significant advances, asthma remains a cause of premature death, and current treatments are suboptimal. Antigen-specific Th2 cells and their cytokines are primary mediators of the pathophysiological changes seen in asthma. Studies in animal models have shown that mycobacteria can suppress the asthma phenotype by alteration of the Th1/Th2 cytokines ratio. In this study, utilizing a Th1 delivery system to modulate the allergic airway inflammation in a Th2-driven model of asthma, we evaluated the efficacy of immunization with Mycobacterium tuberculosis-specific antigen Rv3619c, either alone or in combination with low dose dexamethasone. The rv3619c gene was cloned in an expression plasmid pGES-TH-1, expressed in Escherichia coli, and the recombinant protein Rv3619c was purified to homogeneity using affinity chromatography. Mice were immunized with the recombinant protein emulsified in Freund's Incomplete Adjuvant (IFA) alone and in combination with low dose dexamethasone, and then challenged with ovalbumin (OVA). Airway inflammation was assessed by quantifying airway cytology, histological changes and Th2 cytokine (IL-5) secretion from splenocytes. OVA-specific IgE, IgG and IgG1 from sera was assessed, as well as pERK1/2 expression in the lung tissue. Immunization with recombinant Rv3619c alone inhibited the OVA-induced increase in total cell counts, eosinophil airway cell infiltration in BAL fluid, perivascular and peribronchial inflammation and fibrosis, and goblet cell hyper/metaplasia. In addition, Rv3619c/IFA inhibited the OVA-induced IL-5 in spleen cells, OVA-specific IgE, IgG, and IgG1 levels in sera, and pERK1/2 expression in lung tissue. Immunization with Rv3619c/IFA in combination with low dose dexamethasone resulted in an enhanced effect on some but not all the asthma features. Taken together, this study demonstrates that immunization with Rv3619c/IFA, alone or in combination with dexamethasone, may be an effective treatment strategy for the prevention of asthma.
Collapse
Affiliation(s)
- Hussain A Safar
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Ahmed Z El-Hashim
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait City, Kuwait
| | - Hanady Amoudy
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Abu Salim Mustafa
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
3
|
Choi M, Jeong H, Kim S, Kim M, Lee M, Rhim T. Targeted delivery of Chil3/Chil4 siRNA to alveolar macrophages using ternary complexes composed of HMG and oligoarginine micelles. NANOSCALE 2020; 12:933-943. [PMID: 31840707 DOI: 10.1039/c9nr06382j] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cell-type-specific genes involved in disease can be effective therapeutic targets; therefore, the development of a cell-type-specific gene delivery system is essential. In this study, targeted delivery of Chil3 and Chil4 siRNA to activated macrophages was developed using a ligand called high mobility group (HMG) and oligoarginine (OR) micelles. HMG binds to TLR4 and RAGE located on the surface of activated macrophages. Since HMG is positively charged, it binds to the negatively charged siRNA by charge interaction. However, the stable formation of the siRNA/HMG complex requires an additional molecule to act as a carrier. In this study, OR micelles were used as the carrier. Gel retardation assays showed that siRNA, HMG, and OR micelles formed stable siRNA/HMG/OR micelle ternary complexes. In vitro transfection showed that the ternary complexes selectively delivered siRNA to TLR4 expressing macrophages. In addition, intratracheal administration of siRNA/HMG/OR ternary complexes delivered Chil3 and Chil4 siRNA specifically to alveolar macrophages. Furthermore, the siRNA that was delivered using ternary complexes reduced Chil3 and Chil4 expression and suppressed the symptoms of asthma, such as airway inflammation and mucin secretion.
Collapse
Affiliation(s)
- Moonhwan Choi
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, 04763, Korea.
| | | | | | | | | | | |
Collapse
|
4
|
Kastbom A, Roos Ljungberg K, Ziegelasch M, Wetterö J, Skogh T, Martinsson K. Changes in anti-citrullinated protein antibody isotype levels in relation to disease activity and response to treatment in early rheumatoid arthritis. Clin Exp Immunol 2018; 194:391-399. [PMID: 30136282 DOI: 10.1111/cei.13206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2018] [Indexed: 01/09/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease where serum analysis of anti-citrullinated peptide/protein antibodies (ACPA) is an important diagnostic/prognostic tool. Levels and changes of ACPA in RA patients have been studied previously in relation to disease course and therapy response, but less is known regarding ACPA isotype changes in early RA. Hence, recent-onset RA patients (n = 231) were subjected to a 3-year clinical and radiological follow-up. Serum samples were serially collected and ACPA isotypes were analysed using the second-generation cyclic citrullinated peptide (CCP) as capture antigen. Changes in ACPA isotype levels and status were related to disease course and pharmacotherapy. At inclusion, 74% of the patients tested positive for ACPA IgG; 55% for immunoglobulin (Ig)A, 37% for secretory IgA (SIgA) and 35% for IgM. The proportion of positive patients decreased significantly at follow-up regarding ACPA SIgA, IgM and IgA. During the initial 3 months, reduction of the 28-joint disease activity score (DAS28) correlated with reduced levels of ACPA IgG (Rho = 0·242, P = 0·003), IgA (Rho = 0·260, P = 0·008), IgM (Rho = 0·457, P < 0·001) and SIgA (Rho = 0·402, P < 0·001). Levels of ACPA SIgA (P = 0·008) and IgM (P = 0·021) decreased significantly among patients with good response to treatment, which was not seen regarding ACPA IgA or IgG. Changes in ACPA isotype levels were not associated with radiographic damage. In conclusion, ACPA SIgA and IgM declined rapidly upon anti-rheumatic therapy and correlated with decreased disease activity in recent-onset RA. This may indicate that down-regulation of mucosal immunity to citrullinated proteins/peptides and recruitment of new B cells are key features of therapy responses in early RA.
Collapse
Affiliation(s)
- A Kastbom
- Division of Neuro and Inflammation Sciences, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - K Roos Ljungberg
- Division of Neuro and Inflammation Sciences, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - M Ziegelasch
- Division of Neuro and Inflammation Sciences, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - J Wetterö
- Division of Neuro and Inflammation Sciences, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - T Skogh
- Division of Neuro and Inflammation Sciences, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - K Martinsson
- Division of Neuro and Inflammation Sciences, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
5
|
Fu LQ, Li YL, Fu AK, Wu YP, Wang YY, Hu SL, Li WF. Pidotimod exacerbates allergic pulmonary infection in an OVA mouse model of asthma. Mol Med Rep 2017; 16:4151-4158. [PMID: 28731127 DOI: 10.3892/mmr.2017.7046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 05/16/2017] [Indexed: 11/05/2022] Open
Abstract
Pidotimod is a synthetic dipeptide with biological and immuno‑modulatory properties. It has been widely used for treatment and prevention of recurrent respiratory infections. However, its impact on the regulation of allergic pulmonary inflammation is still not clear. In the current study, an ovalbumin (OVA)‑induced allergic asthma model was used to investigate the immune‑modulating effects of pidotimod on airway eosinophilia, mucus metaplasia and inflammatory factor expression compared with dexamethasone (positive control). The authors determined that treatment with pidotimod exacerbated pulmonary inflammation as demonstrated by significantly increased eosinophil infiltration, dramatically elevated immunoglobulin E production, and enhanced T helper 2 response. Moreover, treatment failed to attenuate mucus production in lung tissue, and did not reduce OVA‑induced high levels of FIZZ1 and Arg1 expression in asthmatic mice. In contrast, administration of dexamethasone was efficient in alleviating allergic airway inflammation in OVA‑induced asthmatic mice. These data indicated that pidotimod as an immunotherapeutic agent should be used cautiously and the effectiveness for controlling allergic asthma needs further evaluation and research.
Collapse
Affiliation(s)
- Luo-Qin Fu
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Ya-Li Li
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Ai-Kun Fu
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Yan-Ping Wu
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Yuan-Yuan Wang
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Sheng-Lan Hu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, P.R. China
| | - Wei-Fen Li
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| |
Collapse
|
6
|
Dong H, Huang Y, Yao S, Liang B, Long Y, Xie Y, Mai J, Gong S, Zhou Z. The recombinant fusion protein of cholera toxin B and neutrophil-activating protein expressed on Bacillus subtilis spore surface suppresses allergic inflammation in mice. Appl Microbiol Biotechnol 2017; 101:5819-5829. [PMID: 28608279 DOI: 10.1007/s00253-017-8370-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/25/2017] [Accepted: 05/29/2017] [Indexed: 12/28/2022]
Abstract
The neutrophil-activating protein of Helicobacter pylori (HP-NAP) has been identified as a modulator with anti-Th2 inflammation activity, and cholera toxin B (CTB) is a mucosal adjuvant that can also induce antigen tolerance. In this study, we constructed a CTB-NAP fusion protein on the surface of Bacillus subtilis spore and evaluate the efficiency of oral administration of the recombinant CTB-NAP spores in preventing asthma in mice. Oral administration of recombinant CTB or CTB-NAP spores significantly decreased serum ovalbumin (OVA)-specific IgE (p < 0.001) and increased fecal IgA (p < 0.01) compared to the treatment with non-recombinant spores. Oral administration of recombinant CTB or CTB-NAP spores induced IL-10 and IFN-γ expression and reduced IL-4 levels in bronchoalveolar lavage fluid (BALF). Moreover, CTB and CTB-NAP spores reduced the eosinophils in BALF and inflammatory cell infiltration in the lungs. Furthermore, CD4+CD25+Foxp3+ Tregs in splenocytes were significantly increased in mice treated with recombinant CTB or CTB-NAP spores. The number of CD4+CD25+Foxp3+ Tregs caused by CTB-NAP was higher than that by CTB alone. Our study indicated that B. subtilis spores with surface expression of subunit CTB or CTB-NAP could inhibit OVA-induced allergic inflammation in mice. The attenuated inflammation was attributed to the induction of CD4+CD25+Foxp3+ Tregs and IgA. Moreover, the fusion protein CTB-NAP demonstrated a better efficiency than CTB alone in inhibiting the inflammation.
Collapse
Affiliation(s)
- Hui Dong
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- The First Women and Children's Hospital of Huizhou, Huizhou, 516000, China
| | - Yanmei Huang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Shuwen Yao
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Bingshao Liang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Yan Long
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Yongqiang Xie
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Jialiang Mai
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Sitang Gong
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Zhenwen Zhou
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
7
|
Haenen S, Clynen E, Nemery B, Hoet PH, Vanoirbeek JA. Biomarker discovery in asthma and COPD: Application of proteomics techniques in human and mice. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Neumann D, Beermann S, Burhenne H, Glage S, Hartwig C, Seifert R. The dual H3/4R antagonist thioperamide does not fully mimic the effects of the 'standard' H4R antagonist JNJ 7777120 in experimental murine asthma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2013; 386:983-90. [PMID: 23820873 DOI: 10.1007/s00210-013-0898-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 06/17/2013] [Indexed: 10/26/2022]
Abstract
Histamine is detected in high concentrations in the airways during an allergic asthma response. In a murine model of allergic asthma, the histamine H4 receptor (H4R)-selective ligand JNJ 7777120 reduces asthma-like symptoms. A sole antagonistic function of JNJ 7777120 at the murine H4R has, however, been questioned in the literature. Therefore, in the present study, we aimed at analyzing the effects of JNJ 7777120 in comparison to that of the H3/4R-selective antagonist thioperamide. Experimental murine asthma was induced by sensitization and provocation of BALB/c mice with ovalbumine (OVA). JNJ 7777120, thioperamide, or JNJ 5207852, an H3R-selective antagonist which was used to dissect H3R- and H4R-mediated activities of thioperamide, were injected subcutaneously during sensitization and effects were analyzed after provocation. Pharmacokinetic analyses revealed shortest t1/2 values in both plasma and lung tissue and lowest maximal concentration in lung tissue for JNJ 7777120 in comparison to thioperamide and JNJ 5207852. Nevertheless, JNJ 7777120 reduced serum titers of allergen-specific (anti-OVA) IgE, inflammatory infiltrations in lung tissue, and eosinophilia in bronchoalveolar lavage fluid. In contrast, thioperamide reduced only eosinophilia in bronchoalveolar lavage fluid, while anti-OVA IgE concentrations and lung infiltrations remained unaffected. JNJ 5207852 had no effect on these parameters. JNJ 7777120 provides beneficial effects in experimental murine asthma, which, however, could only partially be mimicked by thioperamide, despite more favorable pharmacokinetics. Thus, whether these effects of JNJ 7777120 are entirely attributable to an antagonistic activity at the murine H4R or whether an agonistic activity is also involved has to be reconsidered.
Collapse
Affiliation(s)
- Detlef Neumann
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany,
| | | | | | | | | | | |
Collapse
|
9
|
Hussain M, Wilson JB. New Paralogues and Revised Time Line in the Expansion of the Vertebrate GH18 Family. J Mol Evol 2013; 76:240-60. [DOI: 10.1007/s00239-013-9553-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 02/20/2013] [Indexed: 01/25/2023]
|
10
|
Louten J, Mattson JD, Malinao MC, Li Y, Emson C, Vega F, Wardle RL, Van Scott MR, Fick RB, McClanahan TK, de Waal Malefyt R, Beaumont M. Biomarkers of disease and treatment in murine and cynomolgus models of chronic asthma. Biomark Insights 2012; 7:87-104. [PMID: 22837640 PMCID: PMC3403565 DOI: 10.4137/bmi.s9776] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background Biomarkers facilitate early detection of disease and measurement of therapeutic efficacy, both at clinical and experimental levels. Recent advances in analytics and disease models allow comprehensive screening for biomarkers in complex diseases, such as asthma, that was previously not feasible. Objective Using murine and nonhuman primate (NHP) models of asthma, identify biomarkers associated with early and chronic stages of asthma and responses to steroid treatment. Methods The total protein content from thymic stromal lymphopoietin transgenic (TSLP Tg) mouse BAL fluid was ascertained by shotgun proteomics analysis. A subset of these potential markers was further analyzed in BAL fluid, BAL cell mRNA, and lung tissue mRNA during the stages of asthma and following corticosteroid treatment. Validation was conducted in murine and NHP models of allergic asthma. Results Over 40 proteins were increased in the BAL fluid of TSLP Tg mice that were also detected by qRT-PCR in lung tissue and BAL cells, as well as in OVA-sensitive mice and house dust mite-sensitive NHP. Previously undescribed as asthma biomarkers, KLK1, Reg3γ, ITLN2, and LTF were modulated in asthmatic mice, and Clca3, Chi3l4 (YM2), and Ear11 were the first lung biomarkers to increase during disease and the last biomarkers to decline in response to therapy. In contrast, GP-39, LCN2, sICAM-1, YM1, Epx, Mmp12, and Klk1 were good indicators of early therapeutic intervention. In NHP, AMCase, sICAM-1, CLCA1, and GP-39 were reduced upon treatment with corticosteroids. Conclusions and clinical relevance These results significantly advance our understanding of the biomarkers present in various tissue compartments in animal models of asthma, including those induced early during asthma and modulated with therapeutic intervention, and show that BAL cells (or their surrogate, induced sputum cells) are a viable choice for biomarker examination.
Collapse
Affiliation(s)
- Jennifer Louten
- Merck Research Laboratories (formerly Schering-Plough Biopharma) Palo Alto, California USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Gupta A, Dimeloe S, Richards DF, Bush A, Saglani S, Hawrylowicz CM. Vitamin D binding protein and asthma severity in children. J Allergy Clin Immunol 2012; 129:1669-71. [PMID: 22460073 DOI: 10.1016/j.jaci.2012.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 02/04/2012] [Accepted: 02/06/2012] [Indexed: 11/24/2022]
|
12
|
Pulmonary Collectins in Diagnosis and Prevention of Lung Diseases. ANIMAL LECTINS: FORM, FUNCTION AND CLINICAL APPLICATIONS 2012. [PMCID: PMC7121960 DOI: 10.1007/978-3-7091-1065-2_43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pulmonary surfactant is a complex mixture of lipids and proteins, and is synthesized and secreted by alveolar type II epithelial cells and bronchiolar Clara cells. It acts to keep alveoli from collapsing during the expiratory phase of the respiratory cycle. After its secretion, lung surfactant forms a lattice structure on the alveolar surface, known as tubular myelin. Surfactant proteins (SP)-A, B, C and D make up to 10% of the total surfactant. SP-B and SPC are relatively small hydrophobic proteins, and are involved in the reduction of surface-tension at the air-liquid interface. SP-A and SP-D, on the other hand, are large oligomeric, hydrophilic proteins that belong to the collagenous Ca2+-dependent C-type lectin family (known as “Collectins”), and play an important role in host defense and in the recycling and transport of lung surfactant (Awasthi 2010) (Fig. 43.1). In particular, there is increasing evidence that surfactant-associated proteins A and -D (SP-A and SP-D, respectively) contribute to the host defense against inhaled microorganisms (see 10.1007/978-3-7091-1065_24 and 10.1007/978-3-7091-1065_25). Based on their ability to recognize pathogens and to regulate the host defense, SP-A and SP-D have been recently categorized as “Secretory Pathogen Recognition Receptors”. While SP-A and SP-D were first identified in the lung; the expression of these proteins has also been observed at other mucosal surfaces, such as lacrimal glands, gastrointestinal mucosa, genitourinary epithelium and periodontal surfaces. SP-A is the most prominent among four proteins in the pulmonary surfactant-system. The expression of SP-A is complexly regulated on the transcriptional and the chromosomal level. SP-A is a major player in the pulmonary cytokine-network and moreover has been described to act in the pulmonary host defense. This chapter gives an overview on the understanding of role of SP-A and SP-D in for human pulmonary disorders and points out the importance for pathology-orientated research to further elucidate the role of these molecules in adult lung diseases. As an outlook, it will become an issue of pulmonary pathology which might provide promising perspectives for applications in research, diagnosis and therapy (Awasthi 2010).
Collapse
|
13
|
O'Neil SE, Lundbäck B, Lötvall J. Proteomics in asthma and COPD phenotypes and endotypes for biomarker discovery and improved understanding of disease entities. J Proteomics 2011; 75:192-201. [PMID: 22037230 DOI: 10.1016/j.jprot.2011.10.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 10/10/2011] [Accepted: 10/12/2011] [Indexed: 11/17/2022]
Abstract
The application of proteomics to respiratory diseases, such as asthma and COPD, has been limited compared to other fields, like cancer. Both asthma and COPD are recognised to be multi-factorial and complex diseases, both consisting of clusters of multiple disease phenotypes. The complexity of these diseases combined with the inaccessibility and invasiveness of disease relevant samples have provided a hurdle to the progress of respiratory proteomics. Advances in proteomic instrumentation and methodology have led to the possibility to identify proteomes in much smaller quantities of biological material. This review focuses on the efforts in respiratory proteomics in relation to asthma and COPD, and the importance of identifying subgroups of disease entities to establish appropriate biomarkers, and to enhance the understanding of underlying mechanisms in each subgroup. Careful phenotype characterisation of patient subpopulations is required to make improvement in the field of heterogeneous diseases such as asthma and COPD, and the clusters of phenotypes are likely to encompass subgroups of disease with distinct molecular mechanisms; endotypes. The utilisation of modern advanced proteomics in endotypes of asthma and COPD will likely contribute to the increased understanding of disease mechanisms, establishment of biomarkers for these endotypes and improved patient care.
Collapse
Affiliation(s)
- Serena E O'Neil
- Krefting Research Centre, Department of Internal Medicine, University of Gothenburg, Sweden.
| | | | | |
Collapse
|
14
|
Kim J, Natarajan S, Bae H, Jung SK, Cruikshank W, Remick DG. Herbal medicine treatment reduces inflammation in a murine model of cockroach allergen-induced asthma. Ann Allergy Asthma Immunol 2011; 107:154-62. [PMID: 21802024 DOI: 10.1016/j.anai.2011.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/14/2011] [Accepted: 05/02/2011] [Indexed: 11/17/2022]
Abstract
BACKGROUND Asthma is a significant disease among children, and its prevalence has increased notably during the last 2 decades. A traditional Korean medicine, So-Cheong-Ryong-Tang (SCRT), has been used for the treatment of asthma in Asia for centuries, but its mechanism for reducing bronchopulmonary inflammation in asthma has yet to be elucidated. OBJECTIVE To investigate whether the herbal extract SCRT inhibits inflammation in a mouse model of cockroach allergen-induced asthma. METHODS A house dust extract containing endotoxin and cockroach allergens was used for immunization and 2 additional pulmonary challenges in BALB/c mice. Mice were treated with SCRT or vehicle 1 hour before each pulmonary challenge. Respiratory parameters were evaluated by whole-body plethysmography and forced oscillation methods 24 hours after the last challenge. Bronchoalveolar lavage (BAL) fluid was collected, and histologic sections of lung were prepared either 4 or 24 hours after the last house dust extract challenge. RESULTS SCRT treatment significantly reduced the hyperreactivity of the airways as measured by whole-body plethysmography and direct measurement of airway resistance. Inflammation was significantly inhibited by SCRT treatment as demonstrated by reduced plasma IgE levels and improved pulmonary histologic characteristics. SCRT significantly reduced the number of neutrophils in the BAL fluid and also significantly reduced the BAL levels of CXC chemokines, providing a potential mechanism for the reduced inflammation. In a similar fashion, SCRT reduced eosinophil recruitment and BAL levels of eotaxin and RANTES. CONCLUSION These data indicate that SCRT treatment alleviates asthma-like pulmonary inflammation via suppression of specific chemokines.
Collapse
Affiliation(s)
- Jiyoun Kim
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Cole DC, Olland AM, Jacob J, Brooks J, Bursavich MG, Czerwinski R, DeClercq C, Johnson M, Joseph-McCarthy D, Ellingboe JW, Lin L, Nowak P, Presman E, Strand J, Tam A, Williams CMM, Yao S, Tsao DHH, Fitz LJ. Identification and characterization of acidic mammalian chitinase inhibitors. J Med Chem 2010; 53:6122-8. [PMID: 20666458 DOI: 10.1021/jm100533p] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acidic mammalian chitinase (AMCase) is a member of the glycosyl hydrolase 18 family (EC 3.2.1.14) that has been implicated in the pathophysiology of allergic airway disease such as asthma. Small molecule inhibitors of AMCase were identified using a combination of high-throughput screening, fragment screening, and virtual screening techniques and characterized by enzyme inhibition and NMR and Biacore binding experiments. X-ray structures of the inhibitors in complex with AMCase revealed that the larger more potent HTS hits, e.g. 5-(4-(2-(4-bromophenoxy)ethyl)piperazine-1-yl)-1H-1,2,4-triazol-3-amine 1, spanned from the active site pocket to a hydrophobic pocket. Smaller fragments identified by FBS occupy both these pockets independently and suggest potential strategies for linking fragments. Compound 1 is a 200 nM AMCase inhibitor which reduced AMCase enzymatic activity in the bronchoalveolar lavage fluid in allergen-challenged mice after oral dosing.
Collapse
Affiliation(s)
- Derek C Cole
- WorldWide Medicinal Chemistry: Inflammation & Immunology, Pfizer Global Research & Development, Cambridge, MA 01240, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Proteomics has the goal of defining the complete protein complement of biological systems, which can then be analyzed in a comparative fashion to generate informative data regarding protein expression and function. Proteomic analyses can also facilitate the discovery of biomarkers that can be used to diagnose and monitor disease severity, activity and therapeutic response, as well as to identify new targets for drug development. A major challenge for proteomics, however, has been detecting low-abundance proteins in complex biological fluids. This review summarizes how proteomic analyses have advanced lung cell biology and facilitated the identification of new mechanisms of disease pathogenesis in respiratory disorders, such as asthma, cystic fibrosis, lung cancer, acute lung injury and sarcoidosis. The impact of nanotechnology and microfluidics, as well as studies of post-translational modifications and protein-protein interactions (the interactome), are considered. Furthermore, the application of systems-biology approaches to organize and analyze data regarding the lung proteome, interactome, genome, transcriptome, metabolome, glycome and small RNAome (regulatory RNAs), should facilitate future conceptual advances regarding lung cell biology, disease pathogenesis, biomarker discovery and drug development.
Collapse
Affiliation(s)
- Stewart J Levine
- National Institutes of Health, Pulmonary-Critical Care Medicine Branch, NHLBI, Building 10, Room 6D03, MSC 1590, Bethesda, MD 0892-1590, USA.
| |
Collapse
|
17
|
Chiu KH, Lee WLW, Chang CC, Chen SC, Chang YC, Ho MN, Hsu JF, Liao PC. A label-free differential proteomic analysis of mouse bronchoalveolar lavage fluid exposed to ultrafine carbon black. Anal Chim Acta 2010; 673:160-6. [PMID: 20599030 DOI: 10.1016/j.aca.2010.05.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 05/23/2010] [Accepted: 05/30/2010] [Indexed: 10/19/2022]
Abstract
Ultrafine carbon black (ufCB) is a potential hazard to the lung. It causes changes in protein expression and it increases alveolar-capillary permeability in the lung. Label-free quantitative proteomic methods allow a sensitive and accurate analytical method for identifying and quantifying proteins in a protein mixture without chemically modifying the proteins. We used a label-free quantitative proteomic approach that combined and aligned LC-MS and LC-MS/MS spectra to analyze mouse bronchoalveolar lavage fluid (BALF) protein changes associated with exposure to ufCB. We developed a simple normalization method for quantification without spiking the internal standard. The intensities of unchanged peptides were used as normalization factors based on a statistical method to avoid the influence of peptides changed because of ufCB. LC-MS/MS spectra and then database searching were used to identify proteins. The relative abundances of the aligned peptides of identified proteins were determined using LC-MS spectra. We identified 132 proteins, of which 77 are reported for the first time. In addition, the expression of 15 inflammatory proteins and surfactant-associated proteins was regulated (i.e., 7 upregulated and 8 downregulated) compared with the controls. Several proteins not previously reported provide complementary information on the proteins present in mouse BALF, and they are potential biomarkers for the understanding of mechanisms involved in ufCB-induced lung disorders hypothesize that using the label-free quantitative proteomic approach introduced here is well suited for more rigorous, large-scale quantitative analysis of biological samples. We hypothesize that this label-free quantitative proteomic approach will be suited for a large-scale quantitative analysis of biological samples.
Collapse
Affiliation(s)
- Kuo-Hsun Chiu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Cho WS, Kim TH, Lee HM, Lee SH, Lee SH, Yoo JH, Kim YS, Lee SH. Increased expression of acidic mammalian chitinase and chitotriosidase in the nasal mucosa of patients with allergic rhinitis. Laryngoscope 2010; 120:870-5. [PMID: 20422678 DOI: 10.1002/lary.20863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVES/HYPOTHESIS Acidic mammalian chitinase (AMCase) has emerged as an important mediator of allergic asthma in both animal models and in humans. Recently, chitotriosidase has been suggested to play a role in innate immunity because of its phagocytic-specific expression. Thus, AMCase and chitotriosidase may play a role in the pathogenesis of allergic nasal mucosa. The expression and pattern of distribution of AMCase and chitotriosidase were, therefore, determined in normal and allergic nasal mucosa. STUDY DESIGN Controlled, prospective study. METHODS Normal inferior turbinate mucosa was obtained in patients who were admitted for augmentation rhinoplasty. Allergic turbinate mucosa was obtained from patients who had perennial allergic rhinitis during septo-turbinate surgery. Reverse transcriptase-polymerase chain reaction (RT-PCR), immunohistochemistry, and Western blotting were applied to the normal and allergic nasal mucosa. RESULTS The expression of AMCase and chitotriosidase mRNAs and proteins analyzed by RT-PCR and Western blot were detected in all normal and allergic turbinate mucosa tested. The levels of expression of AMCase and chitotriosidase mRNAs and proteins were increased in allergic turbinate mucosa compared with normal turbinate mucosa. In both normal and allergic turbinate mucosa, AMCase and chitotriosidase were detected in the epithelium, inflammatory cells, and submucosal glands. The staining intensity for AMCase and chitotriosidase was stronger in allergic nasal mucosa than normal nasal mucosa. CONCLUSIONS AMCase and chitotriosidase are constitutively expressed in normal turbinate mucosa, suggesting involvement in defense against chitin-containing pathogens. Upregulation of these chitinases in allergic condition suggests that they may play a role in the nasal allergic reaction like other inflammatory mediators in allergic rhinitis. Laryngoscope, 2010.
Collapse
Affiliation(s)
- Woo Sung Cho
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhang L, Wang M, Kang X, Boontheung P, Li N, Nel AE, Loo JA. Oxidative stress and asthma: proteome analysis of chitinase-like proteins and FIZZ1 in lung tissue and bronchoalveolar lavage fluid. J Proteome Res 2009; 8:1631-8. [PMID: 19714806 DOI: 10.1021/pr800685h] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Oxidative stress plays an important role in the development of airway inflammation and hyperreactivity in asthma. The identification of oxidative stress markers in bronchoalveolar lavage fluid (BALF) and lung tissue from ovalbumin (OVA) sensitized mice could provide new insight into disease pathogenesis and possible use of antioxidants to alleviate disease severity. We used two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to determine the impact of the thiol antioxidant, N-acetylcysteine (NAC), on protein expression in a murine OVA model. At least six proteins or protein families were found to be significantly increased in BALF from OVA-challenged mice compared to a control group: Chitinase 3-like protein 3 (Yml), Chitinase 3-like protein 4 (Ym2), acidic mammalian Chitinase (AMCase), pulmonary surfactant-associated protein D (SP-D), resistin-like molecule alpha (RELMalpha) or "found in inflammatory 1" (FIZZ1), and haptoglobin alpha-subunit. A total of nine proteins were significantly increased in lung tissue from the murine asthma model, including Yml, Ym2, FIZZ1, and other lung remodeling-related proteins. Western blotting confirmed increased Yml/Ym2, SP-D, and FIZZ1 expression measured from BAL fluid and lung tissue from OVA-challenged mice. Intraperitoneal NAC administration prior to the final OVA challenge inhibited Yml/Ym2, SP-D, and FIZZ1 expression in BALF and lung tissue. The oxidative stress proteins, Ym1/Ym2, FIZZ1, and SP-D, could play an important role in the pathogenesis of asthma and may be useful oxidative stress markers.
Collapse
Affiliation(s)
- Lifeng Zhang
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Sutherland TE, Maizels RM, Allen JE. Chitinases and chitinase-like proteins: potential therapeutic targets for the treatment of T-helper type 2 allergies. Clin Exp Allergy 2009; 39:943-55. [PMID: 19400900 DOI: 10.1111/j.1365-2222.2009.03243.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mammalian chitinase and chitinase-like proteins (CLPs) are a family of mediators increasingly associated with infection, T cell-mediated inflammation, wound healing, allergy and asthma. Although our current knowledge of the function of mammalian chitinases and CLPs is very limited, important information can be deduced from research carried out in lower organisms, and in different immunopathological conditions. Enzymatically active mammalian chitinase proteins may have evolved to degrade the copious amounts of chitin mammals are exposed to on a daily basis, and to form an innate barrier to chitin-containing organisms. CLPs are homologous to chitinases but lack the ability to degrade chitin. It is most striking that both chitinases and CLPs are up-regulated in T-helper type 2 (Th2)-driven conditions, and the first evidence is now emerging that these proteins may accentuate Th2 reactivity, and possibly contribute to the repair process that follows inflammation. Following studies demonstrating that chitinase inhibition leads to an attenuated allergic response, several strategies are being used to develop enzyme inhibitors for therapeutic use in human diseases. In this review, we will summarize recent insights into the effects of chitinases and CLPs in the context of Th2-dominated pathology with particular focus on allergy and asthma, discussing whether chitinase enzyme inhibitors may be of therapeutic value.
Collapse
Affiliation(s)
- T E Sutherland
- Ashworth Laboratories, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
21
|
Vasconcelos JF, Teixeira MM, Barbosa-Filho JM, Agra MF, Nunes XP, Giulietti AM, Ribeiro-Dos-Santos R, Soares MBP. Effects of umbelliferone in a murine model of allergic airway inflammation. Eur J Pharmacol 2009; 609:126-31. [PMID: 19289114 DOI: 10.1016/j.ejphar.2009.03.027] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2008] [Revised: 02/19/2009] [Accepted: 03/03/2009] [Indexed: 11/15/2022]
Abstract
The therapeutic effects of umbelliferone (30, 60 and 90 mg/kg), a coumarin isolated from Typha domingensis (Typhaceae) were investigated in a mouse model of bronchial asthma. BALB/c mice were immunized and challenged by nasal administration of ovalbumin. Treatment with umbelliferone (60 and 90 mg/kg) caused a marked reduction of cellularity and eosinophil numbers in bronchoalveolar lavage fluids from asthmatic mice. In addition, a decrease in mucus production and lung inflammation were observed in mice treated with umbelliferone. A reduction of IL-4, IL-5, and IL-13, but not of IFN-gamma, was found in bronchoalveolar lavage fluids of mice treated with umbelliferone, similar to that observed with dexamethasone. The levels of ovalbumin-specific IgE were not significantly altered after treatment with umbelliferone. In conclusion, our results demonstrate that umbelliferone attenuates the alteration characteristics of allergic airway inflammation. The investigation of the mechanisms of action of this molecule may contribute for the development of new drugs for the treatment of asthma.
Collapse
Affiliation(s)
- Juliana F Vasconcelos
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, 40296-750, Salvador, BA, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Sung HN, Jeon CH, Gill BC, Kim HR, Cheong SW, Park JH. Enhancement of ovalbumin-induced pulmonary eosinophilia by intranasal administration of alpha1-proteinase inhibitor type 2 antisense oligonucleotides. Immunol Lett 2008; 122:76-83. [PMID: 19111575 DOI: 10.1016/j.imlet.2008.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 11/12/2008] [Accepted: 12/01/2008] [Indexed: 11/26/2022]
Abstract
To identify asthma-susceptibility genes, we did proteome analyses of the lung from control and ovalbumin-sensitized BALB/c mice. Among the 6 up-regulated proteins is alpha(1)-protease inhibitor (alpha(1)-PI) type 2, which is a member of the serine protease inhibitor superfamily of protease inhibitors that participate in a variety of physiological functions, including extracellular matrix remodeling and inflammation. The up-regulated expression of alpha(1)-PI type 2 was confirmed by real-time PCR. Then we examined mRNA expression of five members of the alpha(1)-PI family genes (alpha(1)-PI types 1-5) in several organs of BALB/c mice and found that in addition to the liver, all the organs tested also expressed different isoforms of alpha(1)-PI in a tissue-specific manner, albeit to a lesser extent compared with the liver. When a similar study was performed with C57BL/6 mice, which have been shown to be more susceptible to ovalbumin-induced asthma than BALB/c mice, a pair of remarkable differences between the mouse strains were revealed: (1) the magnitude of alpha(1)-PI type 2 mRNA in all the organs was much higher in BALB/c than in C57BL/6 mice and (2) alpha(1)-PI type 2 is the only isoform expressed in the lung of BALB/c, but not of C57BL/c mice. Using the antisense oligonucleotide technology to specifically down-regulate expression of alpha(1)-PI type 2, we demonstrated that pulmonary infiltration of eosinophils was significantly increased by intranasal administration of alpha(1)-PI type 2 antisense oligonucleotides in OVA-sensitized mice, suggesting that alpha(1)-PI type 2 may suppress the progress of asthma, probably by acting on neutrophil elastase, which can produce many of the pathological features of asthma.
Collapse
Affiliation(s)
- Ha-Na Sung
- Department of Biology, Changwon National University,Changwon, Kyungnam, South Korea
| | | | | | | | | | | |
Collapse
|
23
|
Bucolo C, Musumeci M, Maltese A, Drago F, Musumeci S. Effect of chitinase inhibitors on endotoxin-induced uveitis (EIU) in rabbits. Pharmacol Res 2008; 57:247-52. [PMID: 18353673 DOI: 10.1016/j.phrs.2008.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 02/06/2008] [Accepted: 02/06/2008] [Indexed: 01/12/2023]
Abstract
The acidic mammalian chitinase (AMCase) is significantly increased in tears of human allergic conjunctivitis. The aim of the study was to investigate the effects of chitinase inhibitors, allosamidin and caffeine versus dexamethasone, in rabbit endotoxin-induced uveitis (EIU). EIU was induced in rabbits by a single intravitreal injection of 100ng/10microl lipopolysaccharide (LPS). Drugs at four different concentrations (0.1, 0.01, 0.001 and 0.0001mM) were topically applied to the rabbit eye five times in 24h. Tears were collected at 0, 6 and 24h after LPS to measure the AMCase activity. The effect of treatment was also evaluated at the same time by slit lamp examination. Tear AMCase activity increased 6 and 24h after LPS injection. The AMCase activity was significantly inhibited in all treated groups with all doses of allosamidin and caffeine except with the lowest concentration. A higher AMCase inhibition at 24h was found with allosamidin and caffeine compared to dexamethasone. Moreover, topical administration of allosamidin, caffeine and dexamethasone produced a remarkable reduction of inflammatory signs, in the order: dexamethasone>caffeine>allosamidin. AMCase inhibitors showed in this rabbit model of uveitis a notable control of inflammatory response with a significant reduction of AMCase activity in tears with caffeine and allosamidin. These results support the key role of AMCase in the pathogenesis of human ocular inflammatory diseases and the therapeutic effect of AMCase inhibitors on experimental uveitis.
Collapse
Affiliation(s)
- Claudio Bucolo
- Department of Experimental and Clinical Pharmacology, School of Medicine, University of Catania, Catania, Italy
| | | | | | | | | |
Collapse
|
24
|
Therien AG, Bernier V, Weicker S, Tawa P, Falgueyret JP, Mathieu MC, Honsberger J, Pomerleau V, Robichaud A, Stocco R, Dufresne L, Houshyar H, Lafleur J, Ramachandran C, O'Neill GP, Slipetz D, Tan CM. Adenovirus IL-13-induced airway disease in mice: a corticosteroid-resistant model of severe asthma. Am J Respir Cell Mol Biol 2008; 39:26-35. [PMID: 18258919 DOI: 10.1165/rcmb.2007-0240oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Interleukin 13 (IL-13) is considered to be a key driver of the development of airway allergic inflammation and remodeling leading to airway hyperresponsiveness (AHR). How precisely IL-13 leads to the development of airway inflammation, AHR, and mucus production is not fully understood. In order to identify key mediators downstream of IL-13, we administered adenovirus IL-13 to specifically induce IL-13-dependent inflammation in the lungs of mice. This approach was shown to induce cardinal features of lung disease, specifically airway inflammation, elevated cytokines, AHR, and mucus secretion. Notably, the model is resistant to corticosteroid treatment and is characterized by marked neutrophilia, two hallmarks of more severe forms of asthma. To identify IL-13-dependent mediators, we performed a limited-scale two-dimensional SDS-PAGE proteomic analysis and identified proteins significantly modulated in this model. Intriguingly, several identified proteins were unique to this model, whereas others correlated with those modulated in a mouse ovalbumin-induced pulmonary inflammation model. We corroborated this approach by illustrating that proteomic analysis can identify known pathways/mediators downstream of IL-13. Thus, we have characterized a murine adenovirus IL-13 lung model that recapitulates specific disease traits observed in human asthma, and have exploited this model to identify effectors downstream of IL-13. Collectively, these findings will enable a broader appreciation of IL-13 and its impact on disease pathways in the lung.
Collapse
Affiliation(s)
- Alex G Therien
- Merck Frosst Centre for Therapeutic Research, 16711 Trans Canada Highway, Kirkland, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Stellato C. Glucocorticoid actions on airway epithelial responses in immunity: functional outcomes and molecular targets. J Allergy Clin Immunol 2008; 120:1247-63; quiz 1264-5. [PMID: 18073120 DOI: 10.1016/j.jaci.2007.10.041] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 10/26/2007] [Accepted: 10/29/2007] [Indexed: 12/27/2022]
Abstract
Research on the biology of airway epithelium in the last decades has progressively uncovered the many roles of this cell type during the immune response. Far from the early view of the epithelial layer simply as a passive barrier, the airway epithelium is now considered a central player in mucosal immunity, providing innate mechanisms of first-line host defense as well as facilitating adaptive immune responses. Alterations of the epithelial phenotype are primarily involved in the pathogenesis of allergic airways disease, particularly in severe asthma. Appreciation of the epithelium as target of glucocorticoid therapy has also grown, because of studies defining the pathways and mediators affected by glucocorticoids, and studies illustrating the relevance of the control of the response from epithelium in the overall efficacy of topical and systemic therapy with glucocorticoids. Studies of the mechanism of action of glucocorticoids within the biology of the immune response of the epithelium have uncovered mechanisms of gene regulation involving both transcriptional and posttranscriptional events. The view of epithelium as therapeutic target therefore has plenty of room to evolve, as new knowledge on the role of epithelium in immunity is established and novel pathways mediating glucocorticoid regulation are elucidated.
Collapse
Affiliation(s)
- Cristiana Stellato
- Division of Allergy and Clinical Immunology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
26
|
Narala VR, Ranga R, Smith MR, Berlin AA, Standiford TJ, Lukacs NW, Reddy RC. Pioglitazone is as effective as dexamethasone in a cockroach allergen-induced murine model of asthma. Respir Res 2007; 8:90. [PMID: 18053220 PMCID: PMC2231357 DOI: 10.1186/1465-9921-8-90] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Accepted: 12/04/2007] [Indexed: 01/17/2023] Open
Abstract
Background While glucocorticoids are currently the most effective therapy for asthma, associated side effects limit enthusiasm for their use. Peroxisome proliferator-activated receptor-γ (PPAR-γ) activators include the synthetic thiazolidinediones (TZDs) which exhibit anti-inflammatory effects that suggest usefulness in diseases such as asthma. How the ability of TZDs to modulate the asthmatic response compares to that of glucocorticoids remains unclear, however, because these two nuclear receptor agonists have never been studied concurrently. Additionally, effects of PPAR-γ agonists have never been examined in a model involving an allergen commonly associated with human asthma. Methods We compared the effectiveness of the PPAR-γ agonist pioglitazone (PIO) to the established effectiveness of a glucocorticoid receptor agonist, dexamethasone (DEX), in a murine model of asthma induced by cockroach allergen (CRA). After sensitization to CRA and airway localization by intranasal instillation of the allergen, Balb/c mice were challenged twice at 48-h intervals with intratracheal CRA. Either PIO (25 mg/kg/d), DEX (1 mg/kg/d), or vehicle was administered throughout the period of airway CRA exposure. Results PIO and DEX demonstrated similar abilities to reduce airway hyperresponsiveness, pulmonary recruitment of inflammatory cells, serum IgE, and lung levels of IL-4, IL-5, TNF-α, TGF-β, RANTES, eotaxin, MIP3-α, Gob-5, and Muc5-ac. Likewise, intratracheal administration of an adenovirus containing a constitutively active PPAR-γ expression construct blocked CRA induction of Gob-5 and Muc5-ac. Conclusion Given the potent effectiveness shown by PIO, we conclude that PPAR-γ agonists deserve investigation as potential therapies for human asthma.
Collapse
Affiliation(s)
- Venkata R Narala
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109-2200, USA.
| | | | | | | | | | | | | |
Collapse
|