1
|
Doğru S, Yaşar E, Yeşilkaya A. Uric acid can enhance MAPK pathway-mediated proliferation in rat primary vascular smooth muscle cells via controlling of mitochondria and caspase-dependent cell death. J Recept Signal Transduct Res 2021; 42:293-301. [PMID: 34057027 DOI: 10.1080/10799893.2021.1931320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Hyperuricemia may be a risk factor for cardiovascular diseases such as hypertension and atherosclerosis, but the mechanisms underlying uric acid-induced pathological conditions remain unknown. In this study, we investigated the effect of short time and long-term administration of increasing uric acid concentrations on cell viability, proliferative and apoptotic pathways in vascular smooth muscle cells (VSMCs). Cell viability/proliferation was determined with WST-1 assay. Expression levels of mitogen-activated protein kinases (MAPKs) (phosphorylated (p)-p38 and p-p44/42 MAPK), extrinsic (caspase 3, caspase 8), and intrinsic (B-cell lymphoma-extra-large (Bcl-xL)) apoptotic pathway proteins were measured by Western blotting. In order to assess the proliferative effects of uric acid incubations on VSMCs, we monitored the proliferative/apoptosis signaling pathways for up to 24 h. Our results indicated that uric acid increases cell viability at time and dose-dependently in VSMCs. Immunoblotting results showed that uric acid treatment elevated the expression level of p-p38 MAPK but did markedly reduce the protein levels of p-p44/42, compared with all the uric acid doses-treated VSMCs, especially at 1 h. Uric acid stimulation increased caspase-3 protein levels and decreased Bcl-xL, but did not alter caspase-8 protein expression at the same dose and time. Furthermore, low uric acid incubations (0-7.5 mg/dL) did not affect any signaling pathways for long time points (6-24 h). In conclusion, our study demonstrates for the first time that VSMCs induced with uric acid can affect cell viability, proliferative, and apoptosis pathways at the widest time and dose range. These findings provide a better understanding of the uric acid effects related to vascular impairments.
Collapse
Affiliation(s)
- Segün Doğru
- Department of Biochemistry, Medical School of Akdeniz University, Antalya, Turkey
| | - Ekrem Yaşar
- Department of Biophysics, Medical School of Akdeniz University, Antalya, Turkey
| | - Akın Yeşilkaya
- Department of Biochemistry, Medical School of Akdeniz University, Antalya, Turkey
| |
Collapse
|
2
|
Oğuz N, Kırça M, Çetin A, Yeşilkaya A. Effect of uric acid on inflammatory COX-2 and ROS pathways in vascular smooth muscle cells. J Recept Signal Transduct Res 2017; 37:500-505. [DOI: 10.1080/10799893.2017.1360350] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Mustafa Kırça
- Department of Biochemistry, Medical School of Akdeniz University, Antalya, Turkey
| | - Arzu Çetin
- Department of Biochemistry, Medical School of Akdeniz University, Antalya, Turkey
| | - Akın Yeşilkaya
- Department of Biochemistry, Medical School of Akdeniz University, Antalya, Turkey
| |
Collapse
|
3
|
Jiang D, Zhuang J, Peng W, Lu Y, Liu H, Zhao Q, Chi C, Li X, Zhu G, Xu X, Yan C, Xu Y, Ge J, Pang J. Phospholipase Cγ1 Mediates Intima Formation Through Akt-Notch1 Signaling Independent of the Phospholipase Activity. J Am Heart Assoc 2017; 6:JAHA.117.005537. [PMID: 28698260 PMCID: PMC5586285 DOI: 10.1161/jaha.117.005537] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Vascular smooth muscle cell proliferation, migration, and dedifferentiation are critical for vascular diseases. Recently, it was demonstrated that Notch receptors have opposing effects on intima formation after vessel injury. Therefore, it is important to investigate the specific regulatory pathways that activate the different Notch receptors. Methods and Results There was a time‐ and dose‐dependent activation of Notch1 by angiotensin II and platelet‐derived growth factor in vascular smooth muscle cells. When phospholipase Cγ1 (PLCγ1) expression was reduced by small interfering RNA, Notch1 activation and Hey2 expression (Notch target gene) induced by angiotensin II or platelet‐derived growth factor were remarkably inhibited, while Notch2 degradation was not affected. Mechanistically, we observed an association of PLCγ1 and Akt, which increased after angiotensin II or platelet‐derived growth factor stimulation. PLCγ1 knockdown significantly inhibited Akt activation. Importantly, PLCγ1 phospholipase site mutation (no phospholipase activity) did not affect Akt activation. Furthermore, PLCγ1 depletion inhibited platelet‐derived growth factor–induced vascular smooth muscle cell proliferation, migration, and dedifferentiation, while it increased apoptosis. In vivo, PLCγ1 and control small interfering RNA were delivered periadventitially in pluronic gel and complete carotid artery ligation was performed. Morphometric analysis 21 days after ligation demonstrated that PLCγ1 small interfering RNA robustly attenuated intima area and intima/media ratio compared with the control group. Conclusions PLCγ1‐Akt–mediated Notch1 signaling is crucial for intima formation. This effect is attributable to PLCγ1‐Akt interaction but not PLCγ1 phospholipase activity. Specific inhibition of the PLCγ1 and Akt interaction will be a promising therapeutic strategy for preventing vascular remodeling.
Collapse
Affiliation(s)
- Dongyang Jiang
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianhui Zhuang
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenhui Peng
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuyan Lu
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hao Liu
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qian Zhao
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chen Chi
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiankai Li
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guofu Zhu
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiangbin Xu
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Chen Yan
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Yawei Xu
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinjiang Pang
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China .,Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
4
|
Kırça M, Oğuz N, Çetin A, Uzuner F, Yeşilkaya A. Uric acid stimulates proliferative pathways in vascular smooth muscle cells through the activation of p38 MAPK, p44/42 MAPK and PDGFRβ. J Recept Signal Transduct Res 2016; 37:167-173. [PMID: 27400779 DOI: 10.1080/10799893.2016.1203941] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hyperuricemia and angiotensin II (Ang II) may have a pathogenetic role in the development of hypertension and atherosclerosis as well as cardiovascular disease (CVD) and its prognosis. The purpose of this study was to investigate whether uric acid can induce proliferative pathways of vascular smooth muscle cell (VSMC) that are thought to be responsible for the development of CVD. The phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), p44/42 mitogen-activated protein kinase (p44/42 MAPK) and platelet-derived growth factor receptor β (PDGFRβ) was measured by Elisa and Western blot techniques to determine the activation of proliferative pathways in primary cultured VSMCs from rat aorta. Results demonstrated that uric acid can stimulate p38 MAPK, p44/42 MAPK and PDGFRβ phosphorylation in a time- and concentration-dependent manner. Furthermore, treatment of VSMCs with the angiotensin II type I receptor (AT1R) inhibitor losartan suppressed p38 MAPK and p44/42 MAPK induction by uric acid. The stimulatory effect of uric acid on p38 MAPK was higher compared to that of Ang II. The results of this study show for the first time that uric acid-induced PDGFRβ phosphorylation plays a crucial role in the development of CVDs and that elevated uric acid levels could be a potential therapeutical target in CVD patients.
Collapse
Affiliation(s)
- M Kırça
- a Department of Biochemistry , Medical School of Akdeniz University , Antalya , Turkey
| | - N Oğuz
- b Ataturk State Hospital , Balıkesir , Turkey
| | - A Çetin
- a Department of Biochemistry , Medical School of Akdeniz University , Antalya , Turkey
| | - F Uzuner
- a Department of Biochemistry , Medical School of Akdeniz University , Antalya , Turkey
| | - A Yeşilkaya
- a Department of Biochemistry , Medical School of Akdeniz University , Antalya , Turkey
| |
Collapse
|
5
|
Öztürk OH, Çetin A, Tokay A, Uzuner F, Tanrıöver G, Yeşilkaya A. PDGF-β receptor and PKC have no effect on angiotensin II-induced JAK2 and STAT1 phosphorylation in vascular smooth muscle cells under high glucose condition. J Recept Signal Transduct Res 2011; 31:340-9. [PMID: 21929289 DOI: 10.3109/10799893.2011.592535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The mechanisms responsible for the accelerated cardiovascular disease in diabetes, as well as the increased hypertrophic effects of angiotensin II (Ang II) under hyperglycemic condition, are not very clear. Evidences show that platelet-derived growth factor (PDGF) and protein kinase C (PKC) play a critical role in this effect. In our study, we examined the role of PKC and PDGF receptor on JAK2 and STAT1 phosphorylation under high glucose (HG) condition (25 mmol/L) in response to Ang II in cultured vascular smooth muscle cells (VSMC). METHODS VSMCs were isolated from the thoracic aorta of male Wistar rats and were cultured. Growth-arrested VSMCs were placed in either normal glucose (NG) or HG condition for 48 h and then VSMCs were stimulated with agonists and antagonists. The tyrosine phosphorylation of JAK2 or STAT were determined by immunoblotting using specific antibodies. RESULTS High glucose markedly increased the phosphorylation of tyrosine residues of JAK2 and serine residues of STAT 1 compared with cells cultured in NG (5.5 mmol/L) with and without Ang II stimulation. Experiments made with specific PDGF-β receptor inhibitor AG1295 and PKC inhibitor GF109203X showed that there were no changes in Ang II-stimulated JAK2 and STAT1 phosphorylation under NG and HG conditions compared with experiments without inhibitors. CONCLUSION According to our findings, Ang II-stimulated JAK2 and STAT1 phosphorylation under either NG or HG condition do not proceed via a different pathway rather than PKC and PDGF-β receptor.
Collapse
Affiliation(s)
- Oktay Hasan Öztürk
- Department of Biochemistry, Medical School, Mustafa Kemal University, Antakya, Hatay, Turkey.
| | | | | | | | | | | |
Collapse
|
6
|
Haslam NJ, Gibson TJ. EpiC: An Open Resource for Exploring Epitopes To Aid Antibody-Based Experiments. J Proteome Res 2010; 9:3759-63. [DOI: 10.1021/pr100029f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Niall J. Haslam
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Toby J. Gibson
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| |
Collapse
|
7
|
Roztocil E, Nicholl SM, Davies MG. Sphingosine-1-phosphate-induced oxygen free radical generation in smooth muscle cell migration requires Galpha12/13 protein-mediated phospholipase C activation. J Vasc Surg 2008; 46:1253-1259. [PMID: 18155002 DOI: 10.1016/j.jvs.2007.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 07/28/2007] [Accepted: 08/05/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND Sphingosine-1-phosphate (S-1-P) is a bioactive sphingolipid that stimulates the migration of vascular smooth muscle cell (VSMC) through G-protein coupled receptors; it has been shown to activate reduced nicotinamide dinucleotide phosphate hydrogen (NAD[P]H) oxidase. The role of phospholipase C (PLC) in oxygen free radical generation, and the regulation of VSMC migration in response to S-1-P, are poorly understood. METHODS Rat arterial VSMC were cultured in vitro. Oxygen free radical generation was measured by fluorescent redox indicator assays in response to S-1-P (0.1microM) in the presence and absence of the active PLC inhibitor (U73122; U7, 10nM) or its inactive analog U73343 (InactiveU7, 10nM). Activation of PLC was assessed by immunoprecipitation and Western blotting for the phosphorylated isozymes (beta and gamma). Small interfering (si) RNA to the G-proteins Galphai, Galphaq, and Galpha12/13 was used to downregulate specific proteins. Statistics were by one-way analysis of variance (n = 6). RESULTS S-1-P induced time-dependent activation of PLC-beta and PLC-gamma; PLC-beta but not PLC-gamma activation was blocked by U7 but not by InactiveU7. PLC-beta activation was Galphai-independent (not blocked by pertussis toxin, a Galphai inhibitor, or Galphai2 and Galphai3 siRNA) and Galphaq-independent (not blocked by glycoprotein [GP] 2A, a Galphaq inhibitor, or Galphaq siRNA). PLC-beta activation and cell migration was blocked by siRNA to Galpha12/13. Oxygen free radical generation induced by S-1-P, as measured by dihydroethidium staining, was significantly inhibited by U7 but not by InactiveU7. Inhibition of oxygen free radicals with the inhibitor diphenyleneiodonium resulted in decreased cell migration to S-1-P. VSMC mitogen-activated protein kinase activation and VSMC migration in response to S-1-P was inhibited by PLC- inhibition. CONCLUSION S-1-P induces oxygen free radical generation through a Galpha12/13, PLC-beta-mediated mechanism that facilitates VSMC migration. To our knowledge, this is the first description of PLC-mediated oxygen free radical generation as a mediator of S-1-P VSMC migration and illustrates the need for the definition of cell signaling to allow targeted strategies in molecular therapeutics for restenosis.
Collapse
Affiliation(s)
- Eliza Roztocil
- Vascular Biology and Therapeutics Program, Department of Surgery, University of Rochester, Rochester, NY 14642, USA
| | | | | |
Collapse
|