1
|
Bossert S, Unadkat P, Sheth KN, Sze G, Schulder M. A Novel Portable, Mobile MRI: Comparison with an Established Low-Field Intraoperative MRI System. Asian J Neurosurg 2023; 18:492-498. [PMID: 38152522 PMCID: PMC10749856 DOI: 10.1055/s-0043-1760857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023] Open
Abstract
Background MRI (magnetic resonance imaging) using low-magnet field strength has unique advantages for intraoperative use. We compared a novel, compact, portable MR imaging system to an established intraoperative 0.15 T system to assess potential utility in intracranial neurosurgery. Methods Brain images were acquired with a 0.15 T intraoperative MRI (iMRI) system and a 0.064 T portable MR system. Five healthy volunteers were scanned. Individual sequences were rated on a 5-point (1 to 5) scale for six categories: contrast, resolution, coverage, noise, artifacts, and geometry. Results Overall, the 0.064 T images (M = 3.4, SD = 0.1) had statistically higher ratings than the 0.15 T images (M = 2.4, SD = 0.2) ( p < 0.01). All comparable sequences (T1, T2, T2 FLAIR and SSFP) were rated significantly higher on the 0.064 T and were rated 1.2 points (SD = 0.3) higher than 0.15 T scanner, with the T2 fluid-attenuated inversion recovery (FLAIR) sequences showing the largest increment on the 0.064 T with an average rating difference of 1.5 points (SD = 0.2). Scanning time for the 0.064 T system obtained images more quickly and encompassed a larger field of view than the 0.15 T system. Conclusions A novel, portable 0.064 T self-shielding MRI system under ideal conditions provided images of comparable quality or better and faster acquisition times than those provided by the already well-established 0.15 T iMR system. These results suggest that the 0.064 T MRI has the potential to be adapted for intraoperative use for intracranial neurosurgery.
Collapse
Affiliation(s)
- Sharon Bossert
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell Health, New York, United States
| | - Prashin Unadkat
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell Health, New York, United States
- Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, United States
| | - Kevin N Sheth
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, United States
| | - Gordon Sze
- Department of Radiology, Yale School of Medicine, New Haven, Connecticut, United States
| | - Michael Schulder
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell Health, New York, United States
| |
Collapse
|
2
|
Abstract
Stereotactic brain biopsy is one of the most frequently performed brain surgeries. This review aimed to expose the latest cutting-edge and updated technologies and innovations available to neurosurgeons to safely perform stereotactic brain biopsy by minimizing the risks of complications and ensuring that the procedure is successful, leading to a histological diagnosis. We also examined methods for improving preoperative, intraoperative, and postoperative workflows. We performed a comprehensive state-of-the-art literature review. Intraoperative histology, fluorescence, and imaging techniques appear as smart tools to improve the diagnostic yield of biopsy. Constant innovations such as optical methods and augmented reality are also being made to increase patient safety. Robotics and integrated imaging techniques provide an enhanced intraoperative workflow. Patients' management algorithms based on early discharge after biopsy optimize the patient's personal experience and make the most efficient possible use of the available hospital resources. Many new trends are emerging, constantly improving patient care and safety, as well as surgical workflow. A parameter that must be considered is the cost-effectiveness of these devices and the possibility of using them on a daily basis. The decision to implement a new instrument in the surgical workflow should also be dependent on the number of procedures per year, the existing stereotactic equipment, and the experience of each center. Research on patients' postbiopsy management is another mandatory approach to enhance the safety profile of stereotactic brain biopsy and patient satisfaction, as well as to reduce healthcare costs.
Collapse
Affiliation(s)
- Alix Bex
- Department of Neurosurgery, CHR Citadelle, Liege, Belgium
| | - Bertrand Mathon
- Department of Neurosurgery, Sorbonne University, APHP, La Pitié-Salpêtrière Hospital, 47-83, Boulevard de L'Hôpital, 75651 Cedex 13, Paris, France.
- ICM, INSERM U 1127, CNRS UMR 7225, UMRS, Paris Brain Institute, Sorbonne University, 1127, Paris, France.
- GRC 23, Brain Machine Interface, APHP, Sorbonne University, Paris, France.
- GRC 33, Robotics and Surgical Innovation, APHP, Sorbonne University, Paris, France.
| |
Collapse
|
3
|
Mohyeldin A, Elder JB. Stereotactic Biopsy Platforms with Intraoperative Imaging Guidance. Neurosurg Clin N Am 2017; 28:465-475. [DOI: 10.1016/j.nec.2017.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Markowitz D, Lin D, Salas S, Kohn N, Schulder M. Compact Intraoperative MRI: Stereotactic Accuracy and Future Directions. Stereotact Funct Neurosurg 2017; 95:197-204. [PMID: 28614824 DOI: 10.1159/000475673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/05/2017] [Indexed: 01/21/2023]
Abstract
BACKGROUND Intraoperative imaging must supply data that can be used for accurate stereotactic navigation. This information should be at least as accurate as that acquired from diagnostic imagers. OBJECTIVES The aim of this study was to compare the stereotactic accuracy of an updated compact intraoperative MRI (iMRI) device based on a 0.15-T magnet to standard surgical navigation on a 1.5-T diagnostic scan MRI and to navigation with an earlier model of the same system. METHODS The accuracy of each system was assessed using a water-filled phantom model of the brain. Data collected with the new system were compared to those obtained in a previous study assessing the older system. The accuracy of the new iMRI was measured against standard surgical navigation on a 1.5-T MRI using T1-weighted (W) images. RESULTS The mean error with the iMRI using T1W images was lower than that based on images from the 1.5-T scan (1.24 vs. 2.43 mm). T2W images from the newer iMRI yielded a lower navigation error than those acquired with the prior model (1.28 vs. 3.15 mm). CONCLUSIONS Improvements in magnet design can yield progressive increases in accuracy, validating the concept of compact, low-field iMRI. Avoiding the need for registration between image and surgical space increases navigation accuracy.
Collapse
Affiliation(s)
- Daniel Markowitz
- Department of Neurosurgery, Northwell Health, Manhasset, NY, USA
| | | | | | | | | |
Collapse
|
5
|
Mohyeldin A, Lonser RR, Elder JB. Real-time magnetic resonance imaging-guided frameless stereotactic brain biopsy: technical note. J Neurosurg 2015; 124:1039-46. [PMID: 26495951 DOI: 10.3171/2015.5.jns1589] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The object of this study was to assess the feasibility, accuracy, and safety of real-time MRI-compatible frameless stereotactic brain biopsy. METHODS Clinical, imaging, and histological data in consecutive patients who underwent stereotactic brain biopsy using a frameless real-time MRI system were analyzed. RESULTS Five consecutive patients (4 males, 1 female) were included in this study. The mean age at biopsy was 45.8 years (range 29-60 years). Real-time MRI permitted concurrent display of the biopsy cannula trajectory and tip during placement at the target. The mean target depth of biopsied lesions was 71.3 mm (range 60.4-80.4 mm). Targeting accuracy analysis revealed a mean radial error of 1.3 ± 1.1 mm (mean ± standard deviation), mean depth error of 0.7 ± 0.3 mm, and a mean absolute tip error of 1.5 ± 1.1 mm. There was no correlation between target depth and absolute tip error (Pearson product-moment correlation coefficient, r = 0.22). All biopsy cannulae were placed at the target with a single penetration and resulted in a diagnostic specimen in all cases. Histopathological evaluation of biopsy samples revealed dysembryoplastic neuroepithelial tumor (1 case), breast carcinoma (1 case), and glioblastoma multiforme (3 cases). CONCLUSIONS The ability to place a biopsy cannula under real-time imaging guidance permits on-the-fly alterations in the cannula trajectory and/or tip placement. Real-time imaging during MRI-guided brain biopsy provides precise safe targeting of brain lesions.
Collapse
Affiliation(s)
- Ahmed Mohyeldin
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, The Ohio State University Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, Ohio
| | - Russell R Lonser
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, The Ohio State University Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, Ohio
| | - J Bradley Elder
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, The Ohio State University Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, Ohio
| |
Collapse
|
6
|
Yao C, Lv S, Chen H, Tang W, Guo J, Zhuang D, Chrisochoides N, Wu J, Mao Y, Zhou L. The clinical utility of multimodal MR image-guided needle biopsy in cerebral gliomas. Int J Neurosci 2015; 126:53-61. [PMID: 25539452 DOI: 10.3109/00207454.2014.992429] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Our aim was to evaluate the diagnostic value of multimodal Magnetic Resonance (MR) Image in the stereotactic biopsy of cerebral gliomas, and investigate its implications. MATERIALS AND METHODS Twenty-four patients with cerebral gliomas underwent (1)H Magnetic Resonance Spectroscopy ((1)H-MRS)- and intraoperative Magnetic Resonance Imaging (iMRI)-supported stereotactic biopsy, and 23 patients underwent only the preoperative MRI-guided biopsy. The diagnostic yield, morbidity and mortality rates were analyzed. In addition, 20 patients underwent subsequent tumor resection, thus the diagnostic accuracy of the biopsy was further evaluated. RESULTS The diagnostic accuracies of biopsies evaluated by tumor resection in the trial groups were better than control groups (92.3% and 42.9%, respectively, p = 0.031). The diagnostic yield in the trial groups was better than the control groups, but the difference was not statistically significant (100% and 82.6%, respectively, p = 0.05). The morbidity and mortality rates were similar in both groups. CONCLUSIONS Multimodal MR image-guided glioma biopsy is practical and valuable. This technique can increase the diagnostic accuracy in the stereotactic biopsy of cerebral gliomas. Besides, it is likely to increase the diagnostic yield but requires further validation.
Collapse
Affiliation(s)
- Chengjun Yao
- a Glioma Surgery Division.,b Department of Neurological Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Shunzeng Lv
- c Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | | | - Weijun Tang
- e Department of Radiology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Jun Guo
- f Neurological Surgery Department, First People's Hospital of Yancheng, Jiang Su Province, P. R. China
| | - Dongxiao Zhuang
- a Glioma Surgery Division.,b Department of Neurological Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | | | - Jinsong Wu
- a Glioma Surgery Division.,b Department of Neurological Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Ying Mao
- b Department of Neurological Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Liangfu Zhou
- b Department of Neurological Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| |
Collapse
|
7
|
Quinn J, Spiro D, Schulder M. Stereotactic brain biopsy with a low-field intraoperative magnetic resonance imager. Neurosurgery 2011; 68:217-24; discussion 224. [PMID: 21206306 DOI: 10.1227/neu.0b013e31820826c2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Techniques for stereotactic brain biopsy have evolved in parallel with the imaging modalities used to visualize the brain. OBJECTIVE To describe our technique for performing stereotactic brain biopsy using a compact, low-field, intraoperative magnetic resonance imager (iMRI). METHODS Thirty-three patients underwent stereotactic brain biopsies with the PoleStar N-20 iMRI system (Medtronic Navigation, Louisville, Colorado). Preoperative iMRI scans were obtained for biopsy target identification and trajectory planning. A skull-mounted device (Navigus, Medtronic Navigation) was used to guide an MRI-compatible cannula to the target. An intraoperative image was acquired to confirm accurate cannula placement within the lesion. Serial images were obtained to track cannula movement and to rule out hemorrhage. Frozen sections were obtained in all but 1 patient with a brain abscess. RESULTS Diagnostic tissue was obtained in 32 of 33 patients. In all cases, imaging demonstrated cannula placement within the lesion. Histological diagnoses included 22 primary brain tumors and 10 nonneoplastic lesions. In 61% of the cases, initial trajectory was corrected on the basis of the intraoperative scans. In 1 patient, biopsy was nondiagnostic despite accurate cannula placement. No patient suffered a clinically or radiographically significant hemorrhage during or after surgery. There were no intraoperative complications. CONCLUSION Stereotactic biopsy with a low-field iMRI is an accurate way to obtain specimens with a high diagnostic yield. This accuracy, combined with the acceptable additional procedural time, may obviate the need for frozen section. The ability to correct biopsy cannula placement during surgery eliminates the chance of misdiagnosis because of faulty targeting, as well as the risks associated with inconclusive frozen sections and "blind" replacement of the cannula.
Collapse
Affiliation(s)
- John Quinn
- Department of Neurological Surgery, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA
| | | | | |
Collapse
|
8
|
Dual-room 1.5-T intraoperative magnetic resonance imaging suite with a movable magnet: implementation and preliminary experience. Neurosurg Rev 2011; 35:95-109; discussion 109-10. [PMID: 21674146 DOI: 10.1007/s10143-011-0336-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 03/31/2011] [Accepted: 04/03/2011] [Indexed: 10/18/2022]
Abstract
We hereby report our initial clinical experience of a dual-room intraoperative magnetic resonance imaging (iMRI) suite with a movable 1.5-T magnet for both neurosurgical and independent diagnostic uses. The findings from the first 45 patients who underwent scheduled neurosurgical procedures with iMRI in this suite (mean age, 41.3 ± 12.0 years; intracranial tumors, 39 patients; cerebral vascular lesions, 5 patients; epilepsy surgery, 1 patient) were reported. The extent of resection depicted at intraoperative imaging, the surgical consequences of iMRI, and the clinical practicability of the suite were analyzed. Fourteen resections with a trans-sphenoidal/transoral approach and 31 craniotomies were performed. Eighty-two iMRI examinations were performed in the operating room, while during the same period of time, 430 diagnostic scans were finished in the diagnostic room. In 22 (48.9%) of 45 patients, iMRI revealed accessible residual tumors leading to further resection. No iMRI-related adverse event occurred. Complete lesion removal was achieved in 36 (80%) of all 45 cases. It is concluded that the dual-room 1.5-T iMRI suite can be successfully integrated into standard neurosurgical workflow. The layout of the dual-room suite can enable the maximum use of the system and save costs by sharing use of the 1.5-T magnet between neurosurgical and diagnostic use. Intraoperative MR imaging may provide valuable information that allows intraoperative modification of the surgical strategy.
Collapse
|
9
|
Colen RR, Kekhia H, Jolesz FA. Multimodality intraoperative MRI for brain tumor surgery. Expert Rev Neurother 2011; 10:1545-58. [PMID: 20945538 DOI: 10.1586/ern.10.145] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Intraoperative MRI has already fundamentally changed the way current brain tumor surgery is performed. The ability to integrate high-field MRI into the operating room has allowed intraoperative MRI to emerge as an important adjunct to CNS tumor treatment. Furthermore, the ability of MRI to successfully couple with molecular imaging (PET and/or optical imaging), neuroendoscopy and therapeutic devices, such as focused ultrasound, will allow it to emerge as an important image-guidance modality for improving brain tumor therapy and outcomes.
Collapse
Affiliation(s)
- Rivka R Colen
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | | | | |
Collapse
|
10
|
Implementation of the ultra low field intraoperative MRI PoleStar N20 during resection control of pituitary adenomas. ACTA NEUROCHIRURGICA. SUPPLEMENT 2011. [PMID: 20960324 DOI: 10.1007/978-3-211-99651-5_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
OBJECTIVE To describe our experience with the application of an intraoperative ultra low field magnetic resonance imaging system (ioMRI) PoleStar N20, Medtronic Surgical Navigation Technologies, Louisville, USA during resection control of pituitary adenomas. METHODS Forty-four patients were operated on a pituitary adenoma (1 microadenoma, 43 macroadenomas; mean size 26.0 ± 9.7 mm). The ioMRI system was used for navigation and resection control after transseptal, transsphenoidal microsurgical tumour removal using standard instruments and standard microscope. If any accessible tumour remnant was suspected surgery was continued for navigation guided re-exploration and if necessary continued resection. RESULTS The applications of the scanner integrated navigation system, with a 3-planar reconstruction of the coronal scan, enabled the surgeon to safely approach and remove the tumour. The quality of preoperative tumour visualization with the ultra low field ioMRI in patients with macroadenomas is very good and has a good congruency with the preoperative 1.5 T MRI. For microadenomas the preoperative visualization is poor and very difficult to interpret. In seven patients ioMRI resection control showed residual tumours leading to further resection. After final tumour resection the ioMRI scan documented adequate decompression of the optic pathway in all patients. However, the intraoperative image interpretation was equivocal in four patients in whom it was difficult to distinguish between small intrasellar tumour remnants and perioperative changes. CONCLUSIONS The PoleStar N20 is a safe, helpful and feasible tool for navigation guided pituitary tumour approach. Image interpretation is requires some experience, but decompression of the optic system can be reliable shown in cases with pituitary macroadenomas. This system is of limited value for resection control of pituitary microadenomas.
Collapse
|
11
|
Hadani M. Development and design of low field compact intraoperative MRI for standard operating room. ACTA NEUROCHIRURGICA. SUPPLEMENT 2011; 109:29-33. [PMID: 20960317 DOI: 10.1007/978-3-211-99651-5_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
OBJECTIVES To present the development of a compact low field intraoperative MR image guidance system and its application in brain surgery. METHODS The PoleStar ioMRI system (Odin Medical Technologies, Israel and Medtronic, Inc. USA) was developed for use in a standard operating room. Its primary physical fixed parameters are magnetic field of 0.15 T and field of view of 20 x 16 cm. The magnet is mounted on a transportable gantry and can be positioned under the surgical table when not in use for scanning. Additional functionality includes integrated navigation, and system operation by the surgeons. RESULTS The PoleStar system integrates into existing operating rooms requiring only slight modification of the surgical environment. Standard instruments can be used. The system's imaging allows it to be used for the following indications: pituitary tumors, low grade gliomas (including awake surgery), high grade gliomas, intraventricular tumors, accurate navigation to small lesions such as cavernous angiomas or metastases, drainage of cysts and brain abscesses. The image quality, which is comparable to post operative diagnostic high field imaging, enables high quality resection control. More than 6,000 brain surgeries were done with the system in 50 centers in the US and Europe. CONCLUSION The low field intraoperative MRI system is a valuable tool in the modern operating room.
Collapse
Affiliation(s)
- Moshe Hadani
- Department of Neurosurgery, Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Hashomer 52621, Israel.
| |
Collapse
|
12
|
Emborg ME, Joers V, Fisher R, Brunner K, Carter V, Ross C, Raghavan R, Brady M, Raschke J, Kubota K, Alexander A. Intraoperative intracerebral MRI-guided navigation for accurate targeting in nonhuman primates. Cell Transplant 2010; 19:1587-97. [PMID: 20587170 DOI: 10.3727/096368910x514323] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
During in vivo intracerebral infusions, the ability to perform accurate targeting towards a 3D-specific point allows control of the anatomical variable and identification of the effects of variations in other factors. Intraoperative MRI navigation systems are currently being used in the clinic, yet their use in nonhuman primates and MRI monitoring of intracerebral infusions has not been reported. In this study rhesus monkeys were placed in a MRI-compatible stereotaxic frame. T1 MRIs in the three planes were obtained in a 3.0T GE scanner to identify the target and plan the trajectory to ventral postcommisural putamen. A craniotomy was performed under sterile surgical conditions at the trajectory entry point. A modified MRI-compatible trajectory guide base (Medtronic Inc.) was secured above the cranial opening and the alignment stem applied. Scans were taken to define the position of the alignment stem. When the projection of the catheter in the three planes matched the desired trajectory to the target, the base was locked in position. A catheter replaced the alignment stem and was slowly introduced to the final target structure. Additional scans were performed to confirm trajectory and during the infusion of a solution of gadoteridol (ProHance, Bracco Diagnostics; 2 mM/L) and bromophenol blue (0.16 mg/ml) in saline. Monitoring of the pressure in the infusion lines was performed using pressure monitoring and infusion pump controller system (Engineering Resources Group Inc.) in combination with a MRI-compatible infusion pump (Harvard). MRI during infusion confirmed successful targeting and matched postmortem visualization of bromophenol blue. Assessment of the accuracy of the targeting revealed an overall 3D mean ± SD distance error of 1.2 ± 0.6 mm and angular distance error of 0.9 ± 0.5 mm. Our results in nonhuman primates confirm the accuracy of intraoperative MRI intracerebral navigation combined with an adaptable, pivot point-based targeting system and validates its use for preclinical intracerebral procedures.
Collapse
Affiliation(s)
- Marina E Emborg
- Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1223 Capitol Court, Madison, WI 53715, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Senft C, Ulrich CT, Seifert V, Gasser T. Intraoperative magnetic resonance imaging in the surgical treatment of cerebral metastases. J Surg Oncol 2010; 101:436-41. [DOI: 10.1002/jso.21508] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Abstract
Neurosurgical diagnosis and intervention has evolved through improved neuroimaging, allowing better visualization of anatomy and pathology. This article discusses the various systems that have been designed over the last decade to meet the requirements of neurosurgical patients and opines on the potential future developments in the technology and application of intraoperative MRI. Because the greatest amount of experience with intraoperative MRI comes from its use in brain tumor resection, this article focuses on the origins of intraoperative MRI in relation to this field.
Collapse
|
15
|
Abstract
Neurosurgical diagnosis and intervention has evolved through improved neuroimaging, allowing better visualization of anatomy and pathology. This article discusses the various systems that have been designed over the last decade to meet the requirements of neurosurgical patients and opines on the potential future developments in the technology and application of intraoperative MRI. Because the greatest amount of experience with intraoperative MRI comes from its use in brain tumor resection, this article focuses on the origins of intraoperative MRI in relation to this field.
Collapse
Affiliation(s)
- John M K Mislow
- Department of Neurosurgery, Harvard Medical School, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | | | | |
Collapse
|
16
|
Anesthesia for brain tumor resection using intraoperative magnetic resonance imaging (iMRI) with the Polestar N-20 system: experience and challenges. J Clin Anesth 2009; 21:371-6. [DOI: 10.1016/j.jclinane.2008.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 09/02/2008] [Accepted: 09/04/2008] [Indexed: 11/22/2022]
|
17
|
Wu JS, Shou XF, Yao CJ, Wang YF, Zhuang DX, Mao Y, Li SQ, Zhou LF. TRANSSPHENOIDAL PITUITARY MACROADENOMAS RESECTION GUIDED BY POLESTAR N20 LOW-FIELD INTRAOPERATIVE MAGNETIC RESONANCE IMAGING. Neurosurgery 2009; 65:63-70; discussion 70-1. [DOI: 10.1227/01.neu.0000348549.26832.51] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
ABSTRACT
OBJECTIVE
To evaluate the applicability of low-field intraoperative magnetic resonance imaging (iMRI) during transsphenoidal surgery of pituitary macroadenomas.
METHODS
Fifty-five transsphenoidal surgeries were performed for macroadenomas (modified Hardy's Grade II–IV) resections. All of the surgical processes were guided by real-time updated contrast T1-weighted coronal and sagittal images, which were acquired with 0.15 Tesla PoleStar N20 iMRI (Medtronic Navigation, Louisville, CO). The definitive benefits as well as major drawbacks of low-field iMRI in transsphenoidal surgery were assessed with respect to intraoperative imaging, tumor resection control, comparison with early postoperative high-field magnetic resonance imaging, and follow-up outcomes.
RESULTS
Intraoperative imaging revealed residual tumor and guided extended tumor resection in 17 of 55 cases. As a result, the percentage of gross total removal of macroadenomas increased from 58.2% to 83.6%. The accuracy of imaging evaluation of low-field iMRI was 81.8%, compared with early postoperative high-field MRI (Correlation coefficient, 0.677; P <0.001). A significantly lower accuracy was identified with low-field iMRI in 6 cases with cavernous sinus invasion (33.3%) in contrast to the 87.8% found with other sites (Fisher's exact test, P <0.001).
CONCLUSION
The PoleStar N20 low-field iMRI navigation system is a promising tool for safe, minimally invasive, endonasal, transsphenoidal pituitary macroadenomas resection. It enables neurosurgeons to control the extent of tumor resection, particularly for suprasellar tumors, ensuring surgical accuracy and safety, and leading to a decreased likelihood of repeat surgeries. However, this technology is still not satisfying in estimating the amount of the parasellar residual tumor invading into cavernous sinus, given the false or uncertain images generated by low-field iMRI in this region, which are difficult to discriminate between tumor remnant and blood within the venous sinus.
Collapse
Affiliation(s)
- Jin-Song Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xue-Fei Shou
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng-Jun Yao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yong-Fei Wang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dong-Xiao Zhuang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shi-Qi Li
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liang-Fu Zhou
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Gerlach R, du Mesnil de Rochemont R, Gasser T, Marquardt G, Reusch J, Imoehl L, Seifert V. Feasibility of Polestar N20, an ultra-low-field intraoperative magnetic resonance imaging system in resection control of pituitary macroadenomas: lessons learned from the first 40 cases. Neurosurgery 2009; 63:272-84; discussion 284-5. [PMID: 18797357 DOI: 10.1227/01.neu.0000312362.63693.78] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To evaluate the feasibility of PoleStar N20 (Medtronic Surgical Navigation Technologies, Louisville, KY), an ultra-low-field intraoperative magnetic resonance imaging (iMRI) system during resection control of pituitary macroadenomas and to compare intraoperative images with postoperative 1.5-T MRI images obtained 3 months after the procedure. METHODS Forty patients with a pituitary macroadenoma (mean size, 26.9 +/- 9.1 mm) underwent a surgical procedure to remove the tumor. The iMRI system was implemented in a standardized microsurgical procedure (endonasal, transseptal, transsphenoidal approach) using standard microsurgical instruments. Intraoperative imaging was performed for tumor visualization/navigation and resection control. If an accessible tumor remnant was suspected, surgery was continued for reexploration and, if necessary, continued resection. Total anesthesia time and operation time were compared with a historical cohort of 100 patients who underwent a surgical procedure on pituitary adenomas without iMRI. Sensitivity and specificity of the iMRI to detect residual tumor tissue was assessed in 33 patients (82.5%) after comparison with standard postoperative 1.5-T MRI 3 months after the procedure. RESULTS Preoperative tumor visualization with the ultra-low-field iMRI showed a very good congruency with the preoperative 1.5-T MRI scans. A three-dimensional reconstruction of the coronal scan enabled the surgeon to safely approach the tumor using the integrated navigation system. In seven patients (17.5%), iMRI resection control showed accessible residual tumors leading to further resection. After tumor resection, the final iMRI scan documented adequate decompression of the optic pathway in all patients. Implementation of iMRI led to a significant increase of anesthesia time (246.0 +/- 50.7 versus 163.4 +/- 41.2 min) and operation time (116.9 +/- 43.9 versus 78.2 +/- 33.0 min; P < 0.05, t test). Sensitivity of the iMRI was 88.9, 85.7, 93.3, and 100% for the suprasellar, intrasellar, and right and left parasellar regions, respectively, and the specificity was 90.5% in the suprasellar and 100% in the intra- and parasellar regions on both sides. In four patients, the intraoperative interpretation of iMRI was equivocal; thus, it was difficult to distinguish between very small tumor remnants and perioperative changes. CONCLUSION Ultra-low-field 0.15-T iMRI is a safe, helpful, and feasible tool for navigation and tumor resection control in patients with pituitary macroadenomas. Total anesthesia and operation times are prolonged, but iMRI adequately documents the extent of tumor resection. In this series, the PoleStar system increased the rate of resection without disrupting the neurosurgical workflow.
Collapse
Affiliation(s)
- Ruediger Gerlach
- Department of Neurosurgery, Johann Wolfgang Goethe University, Frankfurt am Main, Germany.
| | | | | | | | | | | | | |
Collapse
|
19
|
Schulder M. Intracranial surgery with a compact, low-field-strength magnetic resonance imager. Top Magn Reson Imaging 2009; 19:179-189. [PMID: 19148034 DOI: 10.1097/rmr.0b013e31819637cc] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Intraoperative magnetic resonance imaging (iMRI) has been a reality for more than a decade. As technology has begun to mature, the focus on practicality and user-friendliness has sharpened. In addition, the need for well-designed and well-executed outcome studies remains so that expensive new instruments such as iMRI can be justified. We present our experience with the PoleStar system, a compact, low-field-strength iMRI designed to make intraoperative imaging a routine component of intracranial neurosurgery. The advantages and limitations of this approach are discussed in the context of different clinical applications.
Collapse
Affiliation(s)
- Michael Schulder
- Harvey Cushing Brain Tumor Institute and Department of Neurosurgery, North Shore LIJ, Manhasset, NY, USA.
| |
Collapse
|
20
|
Senft C, Seifert V, Hermann E, Gasser T. Surgical treatment of cerebral abscess with the use of a mobile ultralow-field MRI. Neurosurg Rev 2008; 32:77-84; discussion 84-5. [DOI: 10.1007/s10143-008-0174-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2008] [Revised: 05/26/2008] [Accepted: 08/09/2008] [Indexed: 11/30/2022]
|