1
|
Zhou Z, Wang Y, Xing Y, Pan S, Wang W, Yang J, Wu W, Zhou J, Huang L, Liang Q, Zhang D, Kong L. Magnolol Inhibits High Fructose-Induced Podocyte Inflammation via Downregulation of TKFC/Sp1/HDAC4/Notch1 Activation. Pharmaceuticals (Basel) 2024; 17:1416. [PMID: 39598328 PMCID: PMC11597211 DOI: 10.3390/ph17111416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/06/2024] [Accepted: 10/19/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES High fructose has been implicated as an important trigger of kidney inflammation in patients and experimental models. Magnolol, isolated from Magnolia officinalis, has an anti-inflammatory effect, but its protective role in podocytes remains underexplored. This study explored the protective effects and underlying mechanism of magnolol against high fructose-induced podocyte inflammation. METHODS The effects of magnolol on high fructose-induced podocyte inflammation were assessed in male Sprague Dawley rats administered 10% (w/v) fructose water for 12 weeks and heat-sensitive human podocyte cell lines (HPCs) exposed to 5 mM fructose. Podocyte foot processes were examined using transmission electron microscopy. The expression levels of nephrin, podocin, tumor necrosis factor-α (TNF-α), Notch1 intracellular domain (NICD1), triokinase/FMN cyclase (TKFC), specificity protein 1 (Sp1) and histone deacetylase 4 (HDAC4) were determined by Western blot, immunofluorescence and real-time quantitative polymerase chain reaction (qRT-PCR). The chromatin immunoprecipitation (ChIP) assay was performed to evaluate the interaction between Sp1 and the promoter region of HDAC4. RESULTS Magnolol mitigated the impairment of glomerular filtration function in high fructose-fed rats. Besides, it significantly alleviated the inflammatory responses in glomeruli and HPCs, evidenced by decreased protein levels of TNF-α and NICD1. Increased protein levels of TKFC, Sp1 and HDAC4 were observed in high fructose-stimulated HPCs and rat glomeruli. TMP195, an HDAC4 inhibitor, reduced TNF-α and NICD1 protein levels in high fructose-exposed HPCs. The increased Sp1 was shown to associate with the promoter region of HDAC4, promoting HDAC4 protein expression in high fructose-exposed HPCs. The knockdown of TKFC in HPCs by TKFC siRNA decreased Sp1, HDAC4 and NICD1 protein levels, alleviating podocyte inflammatory response. Furthermore, magnolol inhibited TKFC/Sp1/HDAC4/Notch1 activation in vivo and in vitro. CONCLUSIONS Magnolol attenuated high fructose-induced podocyte inflammation possibly through the suppression of TKFC/Sp1/HDAC4/Notch1 activation, providing new evidence for its potential role in podocyte protection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Dongmei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing 210023, China; (Z.Z.); (Y.W.); (Y.X.); (S.P.); (W.W.); (J.Y.); (W.W.); (J.Z.); (L.H.); (Q.L.)
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing 210023, China; (Z.Z.); (Y.W.); (Y.X.); (S.P.); (W.W.); (J.Y.); (W.W.); (J.Z.); (L.H.); (Q.L.)
| |
Collapse
|
2
|
Sinha SK, Carpio MB, Nicholas SB. Fiery Connections: Macrophage-Mediated Inflammation, the Journey from Obesity to Type 2 Diabetes Mellitus and Diabetic Kidney Disease. Biomedicines 2024; 12:2209. [PMID: 39457523 PMCID: PMC11503991 DOI: 10.3390/biomedicines12102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
The high prevalence of diabetes mellitus (DM) poses a significant public health challenge, with diabetic kidney disease (DKD) as one of its most serious consequences. It has become increasingly clear that type 2 DM (T2D) and the complications of DKD are not purely metabolic disorders. This review outlines emerging evidence related to the step-by-step contribution of macrophages to the development and progression of DKD in individuals who specifically develop T2D as a result of obesity. The macrophage is a prominent inflammatory cell that contributes to obesity, where adipocyte hypertrophy leads to macrophage recruitment and eventually to the expansion of adipose tissue. The recruited macrophages secrete proinflammatory cytokines, which cause systemic inflammation, glucose dysregulation, and insulin sensitivity, ultimately contributing to the development of T2D. Under such pathological changes, the kidney is susceptible to elevated glucose and thereby activates signaling pathways that ultimately drive monocyte recruitment. In particular, the early recruitment of proinflammatory macrophages in the diabetic kidney produces inflammatory cytokines/chemokines that contribute to inflammation and tissue damage associated with DKD pathology. Macrophage activation and recruitment are crucial inciting factors that also persist as DKD progresses. Thus, targeting macrophage activation and function could be a promising therapeutic approach, potentially offering significant benefits for managing DKD at all stages of progression.
Collapse
Affiliation(s)
- Satyesh K. Sinha
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Maria Beatriz Carpio
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Susanne B. Nicholas
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
3
|
Lin DW, Yang TM, Ho C, Shih YH, Lin CL, Hsu YC. Targeting Macrophages: Therapeutic Approaches in Diabetic Kidney Disease. Int J Mol Sci 2024; 25:4350. [PMID: 38673935 PMCID: PMC11050450 DOI: 10.3390/ijms25084350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetes is not solely a metabolic disorder but also involves inflammatory processes. The immune response it incites is a primary contributor to damage in target organs. Research indicates that during the initial phases of diabetic nephropathy, macrophages infiltrate the kidneys alongside lymphocytes, initiating a cascade of inflammatory reactions. The interplay between macrophages and other renal cells is pivotal in the advancement of kidney disease within a hyperglycemic milieu. While M1 macrophages react to the inflammatory stimuli induced by elevated glucose levels early in the disease progression, their subsequent transition to M2 macrophages, which possess anti-inflammatory and tissue repair properties, also contributes to fibrosis in the later stages of nephropathy by transforming into myofibroblasts. Comprehending the diverse functions of macrophages in diabetic kidney disease and regulating their activity could offer therapeutic benefits for managing this condition.
Collapse
Affiliation(s)
- Da-Wei Lin
- Department of Internal Medicine, St. Martin De Porres Hospital, Chiayi City 60069, Taiwan;
| | - Tsung-Ming Yang
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33303, Taiwan;
| | - Cheng Ho
- Division of Endocrinology and Metabolism, Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
| | - Ya-Hsueh Shih
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
| | - Chun-Liang Lin
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33303, Taiwan;
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
- Kidney Research Center, Chang Gung Memorial Hospital, Taipei 10507, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Yung-Chien Hsu
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33303, Taiwan
| |
Collapse
|
4
|
Lin Z, Wan X, Zhang T, Huo H, Zhang X, Li K, Bei W, Guo J, Yang Y. Trefoil factor 3: New highlights in chronic kidney disease research. Cell Signal 2022; 100:110470. [PMID: 36122885 DOI: 10.1016/j.cellsig.2022.110470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022]
Abstract
Trefoil factor 3 (TFF3, also known as intestinal trefoil factor) is a small-molecule peptide containing a typical trefoil structure. TFF3 has several biological effects, such as wound healing, immune regulation, neuroprotection, and cell migration and proliferation promotion. Although TFF3 binding sites were identified in rat kidneys more than a decade ago, the specific effects of this small-molecule peptide on kidneys remain unclear. Until recently, much of the research on TFF3 in the kidney field has focused exclusively on its role as a biomarker. Notably, a large prospective randomized study of patients with 29 common clinical diseases revealed that chronic kidney disease (CKD) was associated with the highest serum TFF3 levels, which were 3-fold higher than in acute gastroenteritis, which had the second-highest levels. Examination of each stage of CKD revealed that urine and serum TFF3 levels significantly increased with the progression of CKD. These results suggest that the role of TFF3 in CKD needs further research. The present review summarizes the renal physiological expression, biological functions, and downstream signaling of TFF3, as well as the upstream events that lead to high expression of TFF3 in CKD.
Collapse
Affiliation(s)
- Ziyang Lin
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Xiaofen Wan
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Tao Zhang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Hongyan Huo
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Xiaoyu Zhang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Kunping Li
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Weijian Bei
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Jiao Guo
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Yiqi Yang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China.
| |
Collapse
|
5
|
An Exosomal Urinary miRNA Signature for Early Diagnosis of Renal Fibrosis in Lupus Nephritis. Cells 2019; 8:cells8080773. [PMID: 31349698 PMCID: PMC6721515 DOI: 10.3390/cells8080773] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/12/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023] Open
Abstract
For lupus nephritis (LN) management, it is very important to detect fibrosis at an early stage. Urinary exosomal miRNAs profiling can be used as a potential multi-marker phenotyping tool to identify early fibrosis. We isolated and characterised urinary exosomes and cellular pellets from patients with biopsy-proven LN (n = 45) and healthy controls (n = 20). LN chronicity index (CI) correlated with urinary exosomal miR-21, miR-150, and miR-29c (r = 0.565, 0.840, −0.559, respectively). This miRNA profile distinguished low CI from moderate-high CI in LN patients with a high sensitivity and specificity (94.4% and 99.8%). Furthermore, this multimarker panel predicted an increased risk of progression to end-stage renal disease (ESRD). Pathway analysis identified VEGFA and SP1 as common target genes for the three miRNAs. Immunohistochemistry in LN renal biopsies revealed a significant increase of COL1A1 and COL4A1 correlated with renal chronicity. SP1 decreased significantly in the high-CI group (p = 0.002). VEGFA levels showed no differences. In vitro experiments suggest that these miRNA combinations promote renal fibrosis by increasing profibrotic molecules through SP1 and Smad3/TGFβ pathways. In conclusion, a urinary exosomal multimarker panel composed of miR-21, miR-150, and miR-29c provides a non-invasive method to detect early renal fibrosis and predict disease progression in LN.
Collapse
|
6
|
Ohigashi M, Kobara M, Takahashi T, Toba H, Wada T, Nakata T. Pitavastatin suppresses hyperglycaemia-induced podocyte injury via bone morphogenetic protein-7 preservation. Clin Exp Pharmacol Physiol 2017; 44:378-385. [DOI: 10.1111/1440-1681.12716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 12/05/2016] [Accepted: 12/13/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Makoto Ohigashi
- Department of Clinical Pharmacology; Division of Pathological Science; Kyoto Pharmaceutical University; Kyoto Japan
| | - Miyuki Kobara
- Department of Clinical Pharmacology; Division of Pathological Science; Kyoto Pharmaceutical University; Kyoto Japan
| | - Tamotsu Takahashi
- Department of Clinical Pharmacology; Division of Pathological Science; Kyoto Pharmaceutical University; Kyoto Japan
| | - Hiroe Toba
- Department of Clinical Pharmacology; Division of Pathological Science; Kyoto Pharmaceutical University; Kyoto Japan
| | - Takehiko Wada
- Division of Nephrology, Endocrinology and Metabolism; Tokai University School of Medicine; Isezaki Japan
| | - Tetsuo Nakata
- Department of Clinical Pharmacology; Division of Pathological Science; Kyoto Pharmaceutical University; Kyoto Japan
| |
Collapse
|
7
|
Raghu G, Jakhotia S, Yadagiri Reddy P, Anil Kumar P, Bhanuprakash Reddy G. Ellagic acid inhibits non-enzymatic glycation and prevents proteinuria in diabetic rats. Food Funct 2016; 7:1574-83. [DOI: 10.1039/c5fo01372k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation of advanced glycation end products (AGEs) is a characteristic feature of diabetic tissues and accumulation of AGEs been implicated in the pathogenesis of diabetic nephropathy (DN). Ellagic acid prevented the accumulation of AGEs and in turn ameliorated proteinurea in diabetic rats.
Collapse
Affiliation(s)
- G. Raghu
- National Institute of Nutrition
- Hyderabad
- India
| | | | | | - P. Anil Kumar
- Department of Biochemistry
- University of Hyderabad
- Hyderabad
- India
| | | |
Collapse
|
8
|
Tomino Y. Pathogenesis and treatment of chronic kidney disease: a review of our recent basic and clinical data. Kidney Blood Press Res 2014; 39:450-89. [PMID: 25501571 DOI: 10.1159/000368458] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2014] [Indexed: 12/30/2022] Open
Abstract
Chronic kidney disease (CKD) is a worldwide public health problem that affects millions of people from all racial and ethnic groups. At end of 2013, over 300,000 Japanese patients had maintenance dialysis therapy (JSDT). In Japan, the major causes of end stage kidney disease (ESKD) are chronic glomerulonephritis (particularly IgA nephropathy), type 2 diabetic nephropathy, and hypertensive nephrosclerosis. Hypertension is a major factor driving the progression of CKD to ESKD. Since many features of the pathogenesis of IgA nephropathy are still obscure, specific treatment is not yet available. However, efforts by investigators around the world have gradually clarified different aspects of the pathogenesis and treatment of IgA nephropathy. Today, around half of all diabetic patients in Japan receive medical treatment. Type 2 diabetic nephropathy is one of the major long-term microvascular complications occurring in nearly 40% of Japanese diabetic patients. The pathogenesis of diabetic nephropathy involves both genetic and environmental factors. However, the candidate genes related to the initiation and progression of the disorder are still obscure in patients with diabetic nephropathy. Regarding environmental factors, the toxicity of persistent hyperglycemia, reactive oxygen species, systemic and/or glomerular hypertension, dyslipidemia and complement are considered to play an important role. The first part of this review covers the pathogenesis of IgA nephropathy and type 2 diabetic nephropathy, and combines the clinicopathological findings in patients with our research on the ddY and KKA-y mouse models (spontaneous animal models for IgA nephropathy and diabetic nephropathy, respectively). In Japan, the major renal replacement therapies (RRT) are peritoneal dialysis (PD) and hemodialysis (HD). The second part of this review focuses on PD and HD. Based on our research findings from patients and as well as from animal models, we discuss strategies for the management of patients on PD and HD.
Collapse
Affiliation(s)
- Yasuhiko Tomino
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Hickey FB, Martin F. Diabetic kidney disease and immune modulation. Curr Opin Pharmacol 2013; 13:602-12. [DOI: 10.1016/j.coph.2013.05.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/23/2013] [Accepted: 05/03/2013] [Indexed: 12/11/2022]
|
10
|
Kim KH, Park JH, Lee WR, Park JS, Kim HC, Park KK. The inhibitory effect of chimeric decoy oligodeoxynucleotide against NF-κB and Sp1 in renal interstitial fibrosis. J Mol Med (Berl) 2012; 91:573-86. [PMID: 23114611 DOI: 10.1007/s00109-012-0972-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 10/12/2012] [Accepted: 10/12/2012] [Indexed: 01/01/2023]
Abstract
The pathophysiology of chronic renal disease is characterized by a progressive loss of renal function and deposition of the extracellular matrix, leading to widespread tissue fibrosis. Much of the matrix in chronic renal disease is synthesized by interstitial myofibroblasts, recruited from resident fibroblasts and circulating precursors. These changes are believed to be derived from epithelial-mesenchymal transition (EMT) of tubuloepithelial cells. To develop a novel therapeutic approach for treating renal fibrosis, we examined the simultaneous inhibition of the transcription factors NF-κB and Sp1 in a mouse model of unilateral ureteral obstruction (UUO). To simultaneously inhibit both NF-κB and Sp1, we developed chimeric (Chi) decoy oligodeoxynucleotide (ODN) which contained binding sequences for both NF-κB and Sp1 in a single decoy molecule to enhance the effective use of decoy ODN strategy. Chi decoy ODN significantly attenuated tubulointerstitial fibrosis in a mouse model of UUO compared to scrambled decoy ODN, as demonstrated by the reduced interstitial volume, macrophage infiltration, and fibrosis-related gene expression. Interestingly, Chi decoy ODN also regulated EMT-related gene expression, leading to the inhibition of renal fibrotic changes in vivo and in vitro. The present study demonstrates the feasibility of Chi decoy ODN treatment for preventing renal fibrosis and EMT processes. This strategy might be useful to improve the clinical outcome after chronic renal disease.
Collapse
Affiliation(s)
- Kyung-Hyun Kim
- Department of Pathology, College of Medicine, Catholic University of Daegu, 3056-6 Daemyung 4-dong, Daegu, Nam-gu, 705-718, Republic of Korea
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
BACKGROUND Advanced glycation end-products (AGEs) are increased in situations with hyperglycemia and oxidative stress such as diabetes mellitus. They are products of nonenzymatic glycation and oxidation of proteins and lipids. The kidney plays an important role in clearance and metabolism of AGEs. METHODS Medline and other relevant databases were searched. In addition, key review articles were scanned for relevant original publication. Finally, original data from our research group were also included. RESULTS Kidney podocytes and endothelial cells express specific receptors for AGEs. Their activation leads to multiple pathophysiological effects including hypertrophy with cell cycle arrest and apoptosis, altered migration, and generation of proinflammatory cytokines. AGEs have been primarily implicated in the pathophysiology of diabetic nephropathy and diabetic microvascular complications. AGEs are also involved in other primary renal diseases as well as in the development and progression of atherosclerosis. However, serum or plasma concentrations of AGEs do not correlate well with cardiovascular events in patients with chronic kidney disease (CKD). This is likely due to the fact that serum concentrations failed to correlate with AGEs deposited in target tissues. Several inhibitors of the AGE-RAGE axis are currently tested for various indications. CONCLUSION AGEs and their receptors are involved in the pathogenesis of vascular and kidney disease. The role of circulating AGEs as biomarkers for cardiovascular risk estimation is questionable. Whether putative inhibitors of AGEs will get the maturity for its therapeutic use in the future remains open.
Collapse
Affiliation(s)
- Martin Busch
- Department of Internal Medicine III, Jena University Hospital - Friedrich Schiller University, Jena, Germany
| | | | | | | |
Collapse
|
12
|
Sanz AB, Sanchez-Niño MD, Ramos AM, Moreno JA, Santamaria B, Ruiz-Ortega M, Egido J, Ortiz A. NF-kappaB in renal inflammation. J Am Soc Nephrol 2010; 21:1254-62. [PMID: 20651166 DOI: 10.1681/asn.2010020218] [Citation(s) in RCA: 426] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The NF-kappaB family of transcription factors regulates the induction and resolution of inflammation. Two main pathways, classical and alternative, control the nuclear translocation of NF-kappaB. Classical NF-kappaB activation is usually a rapid and transient response to a wide range of stimuli whose main effector is RelA/p50. The alternative NF-kappaB pathway is a more delayed response to a smaller range of stimuli resulting in DNA binding of RelB/p52 complexes. Additional complexity in this system involves the posttranslational modification of NF-kappaB proteins and an ever-increasing range of co-activators, co-repressors, and NF-kappaB complex proteins. Collectively, NF-kappaB regulates the expression of numerous genes that play a key role in the inflammatory response during human and experimental kidney injury. Multiple stimuli activate NF-kappaB through the classical pathway in somatic renal cells, and noncanonical pathway activation by TWEAK occurs in acute kidney injury. Under most test conditions, specific NF-kappaB inhibitors tend to reduce inflammation in experimental kidney injury but not always. Although many drugs in current use clinically influence NF-kappaB activation, there are no data regarding specific NF-kappaB inhibition in human kidney disease.
Collapse
Affiliation(s)
- Ana Belen Sanz
- Servicio de Nefrologia, Fundación para la Investigación Biomédica del Hospital Universitario La Paz, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Kassimatis TI, Nomikos A, Giannopoulou I, Lymperopoulos A, Moutzouris DA, Varakis I, Nakopoulou L. Transcription factor Sp1 expression is upregulated in human glomerulonephritis: correlation with pSmad2/3 and p300 expression and renal injury. Ren Fail 2010; 32:243-53. [PMID: 20199187 DOI: 10.3109/08860220903411164] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Sp1 is a ubiquitous transcription factor that mediates the fibrogenic factor transforming growth factor beta (TGF-beta) signals through cooperation with Smad proteins. The transcriptional coactivator p300 is also suggested to play a role in Smad signal transduction. METHODS We investigated the immunohistochemical expression of Sp1 as well as the expression of pSmad2/3 and the coactivator p300 in 157 renal biopsy specimens from patients with various types of glomerulonephritis (GN). Correlations between immunohistochemical, clinical, and histologic parameters were performed. RESULTS Sp1 exhibited an increased glomerular and proximal tubular expression in all forms of GN compared to controls. The proximal tubular expression of Sp1 was significantly increased in proliferative GNs (p = 0.025), whereas in secondary GNs, there was a significant increase in the molecule's glomerular expression (p = 0.008). Sp1 correlated positively with pSmad2/3 and p300 expression in proximal tubules (r = 0.241, p = 0.018 and r = 0.244, p = 0.014, respectively), while in proliferative GNs, its expression correlated positively with pSmad2/3 expression in glomeruli (r = 0.32, p = 0.028). Sp1 glomerular and proximal tubular immunostaining correlated positively with serum creatinine levels (r = 0.265, p = 0.02 and r = 0.306, p = 0.006, respectively), while its proximal tubular expression showed a similar correlation with interstitial fibrosis (r = 0.213, p = 0.025). Sp1 was constantly detected in hyperplastic lesions and cellular crescents (each 100%), and very often in micro adhesions (94%) and segmentally or globally sclerotic areas (each 83%). CONCLUSIONS This study documents the upregulation of Sp1 expression in glomeruli and proximal tubules of GN specimens. Our findings suggest a possible cooperation of Sp1 with pSmad2/3 and p300 in mediating renal injury as well as a possible role for this molecule in the pathogenesis and the progression of human GN.
Collapse
|
14
|
Yao XM, Ye SD, Zai Z, Chen Y, Li XC, Yang GW, Wang YX, Chen K. Simvastatin protects diabetic rats against kidney injury through the suppression of renal matrix metalloproteinase-9 expression. J Endocrinol Invest 2010; 33:292-6. [PMID: 19820293 DOI: 10.1007/bf03346588] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To observe the effects of simvastatin on urinary excretion of matrix metalloproteinase-9 (MMP- 9), renal expression of MMP-9, and investigate its possible renoprotective mechanisms in streptozotocin (STZ)-induced diabetic rats. METHOD Twenty-four Wistar rats were divided into 3 groups: control healthy rats (group C, no.=8), untreated diabetic rats (group D, no.=8), and diabetic rats treated with simvastatin (20 mg/kg/d) (group S, no.=8). Peripheral blood glucose was tested weekly, glycosylated hemoglobin A1c (HbA1c), total cholesterol (TC), LDL cholesterol (LDL-C) levels, and urinary albumin (ALB) excretion rate as well as the urinary excretion rates of retinol-binding protein (RBP) and MMP-9 were tested at 8th week. The renal tissues of diabetic rats were obtained for evaluating kidney/ body weight ratio, observing renal pathological changes by electron microscope and examining the expression of renal MMP-9 mRNA by RT-PCR. RESULTS There was no statistical difference on the change of peripheral blood TC and LDL-C between group C and group D. Peripheral blood glucose, HbA1c levels kidney/body weight ratio urinary excretion rates of ALB, RBP, and MMP-9 concurrently with the expression of renal MMP-9 mRNA were significantly higher in groups D and S compared with group C (p<0.01). Treatment with simvastatin significantly lowered peripheral blood TC, LDL-C, kidney/body weight ratio, urinary excretion rates of ALB, RBP, and MMP-9 as well as the expression of renal MMP-9 mRNA (p<0.01); however, there was no evident effect on the change of blood glucose and HbA1c levels between group D and group S. In addition, urinary excretion rate of MMP-9 showed positive correlations with the urinary ALB excretion and urinary RBP excretion. Pathological lesions of the glomeruli and epithelial cells foot processes (FP) was lightened by simvastatin. CONCLUSION Simvastatin may has a potential therapeutic target in diabetic nephropathy, which may be partly attributed to down-regulating over-expression of MMP-9 in renal tissue.
Collapse
Affiliation(s)
- X-M Yao
- Department of Endocrinology, Anhui Provincal Hospital, Anhui Medical University, Hefei, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Ozbek E, Cekmen M, Ilbey YO, Simsek A, Polat EC, Somay A. Atorvastatin prevents gentamicin-induced renal damage in rats through the inhibition of p38-MAPK and NF-kappaB pathways. Ren Fail 2010; 31:382-92. [PMID: 19839839 DOI: 10.1080/08860220902835863] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND AND AIMS Gentamicin (GM) is still considered to be an important antibiotic against life-threatening, gram-negative bacterial infections despite its known nephrotoxic effects. We aimed to evaluate the potential protective effect of atorvastatin (ATO) against GM-induced nephrotoxicity in rats. MATERIALS AND METHODS The rats were randomly divided into five groups of six animals each: control, GM (100 mg/kg/day), ATO (10 mg/kg/day), GM + ATO, and GM + Vehicle. Kidney function tests, tissue oxidative stress parameters, and histopathological and immunohistochemical studies clarified GM nephrotoxicity. RESULTS GM caused a marked reduction in renal functions and increased oxidative stress parameters. Histopathological examination revealed tubular necrosis especially in the renal cortex in GM rats. On immunohistochemical evaluation, GM rat showed more intense expressions of mitogen-activated protein kinase (MAPK), nuclear factor kappa B (NF-kappaB), and inducible nitric oxide synthase (iNOS) compared with control. Kidney function tests and tissue oxidative stress parameters were normalized in the GM + ATO group. Histopathological and immunohistochemical pictures were also greatly ameliorated. CONCLUSIONS ATO acts in the kidney as a potent scavenger of free radicals to prevent the toxic effects of GM via the inhibition of MAPK and NF-kappaB signaling pathways and iNOS expression.
Collapse
Affiliation(s)
- Emin Ozbek
- Bezm-i Alem Valide Sultan Vakif Gureba Research and Education Hospital, Department of Urology, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
16
|
Liu S, Ding J, Fan Q, Zhang H. The activation of extracellular signal-regulated kinase is responsible for podocyte injury. Mol Biol Rep 2009; 37:2477-84. [PMID: 19728154 DOI: 10.1007/s11033-009-9761-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 08/11/2009] [Indexed: 01/02/2023]
Abstract
Podocyte and its slit diaphragm play an important role in maintaining normal glomerular filtration barrier function and structure. Podocyte apoptosis and slit diaphragm injury leads to proteinuria and glomerulosclerosis. However, the molecular mechanism of podocyte injury remains poorly understood. The family of mitogen-activated protein kinases including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase, and p38 signal pathways, are implicated in the progression of various glomerulopathies. However, the role of the activated signal pathway(s) in podocyte injury is elusive. This study examined phosphorylation of ERK in rat puromycin aminonucleoside (PAN) nephropathy as well as conditionally immortalized mouse podocyte treated with PAN in vitro. The effect of treatment with U0126, an inhibitor of ERK, was also investigated. In PAN nephropathy, the phosphorylation of ERK was marked. In podocyte injury, the marked and sustained activation of ERK pathway was also observed before the appearance of significant podocyte apoptosis. Pretreatment with U0126 to podocyte completely inhibited ERK activation, with complete suppression podocyte apoptosis and ameliorated nephrin protein expression along with the phosphorylation of nephrin in podocyte injury. In cultured podocyte, PAN induced actin recorganition, and U0126 inhibited such change. However, U0126 did not recovery the phosphorylation change of neph1 in podocyte injury. We concluded that the sustained activation of ERK along with the phosphorylation of neph1 might be necessary for podocyte injury. The study here suggested that ERK might become a potential target for therapeutic intervention to prevent podocytes from injury which will result in proteinuria.
Collapse
Affiliation(s)
- Shufang Liu
- Department of Pediatrics, Peking University First Hospital, No.1, Xi An Men Da Jie, 100034, Beijing, People's Republic of China.
| | | | | | | |
Collapse
|
17
|
Cormack-Aboud FC, Brinkkoetter PT, Pippin JW, Shankland SJ, Durvasula RV. Rosuvastatin protects against podocyte apoptosis in vitro. Nephrol Dial Transplant 2008; 24:404-12. [PMID: 18820279 DOI: 10.1093/ndt/gfn528] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Clinical studies suggest that statins reduce proteinuria and slow the decline in kidney function in chronic kidney disease. Given a rich literature identifying podocyte apoptosis as an early step in the pathophysiological progression to proteinuria and glomerulosclerosis, we hypothesized that rosuvastatin protects podocytes from undergoing apoptosis. Regarding a potential mechanism, our lab has shown that the cell cycle protein, p21, has a prosurvial role in podocytes and there is literature showing statins upregulate p21 in other renal cells. Therefore, we queried whether rosuvastatin is prosurvival in podocytes through a p21-dependent pathway. METHODS Two independent apoptotic triggers, puromycin aminonucleoside (PA) and adriamycin (ADR), were used to induce apoptosis in p21 +/+ and p21 -/- conditionally immortalized mouse podocytes with or without pre-exposure to rosuvastatin. Apoptosis was measured by two methods: Hoechst 33342 staining and fluorescence-activated cell sorting (FACS). To establish a role for p21, p21 levels were measured by western blotting following rosuvastatin exposure and p21 was stably transduced into p21 -/- mouse podocytes. RESULTS Rosuvastatin protects against ADR- and PA-induced apoptosis in podocytes. Further, exposure to rosuvastatin increases p21 levels in podocytes in vitro. ADR induces apoptosis in p21 -/- mouse podocytes, but rosuvastatin's protective effect is not seen in the absence of p21. Reconstituting p21 in p21 -/- podocytes restores rosuvastatin's prosurvival effect. CONCLUSION Rosuvastatin is prosurvival in injured podocytes. Rosuvastatin exerts its protective effect through a p21-dependent antiapoptotic pathway. These findings suggest that statins decrease proteinuria by protecting against podocyte apoptosis and subsequent podocyte depopulation.
Collapse
Affiliation(s)
- Fionnuala C Cormack-Aboud
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, WA98195, USA
| | | | | | | | | |
Collapse
|
18
|
Sternberg Z, Weinstock-Guttman B, Hojnacki D, Zamboni P, Zivadinov R, Chadha K, Lieberman A, Kazim L, Drake A, Rocco P, Grazioli E, Munschauer F. Soluble receptor for advanced glycation end products in multiple sclerosis: a potential marker of disease severity. Mult Scler 2008; 14:759-63. [PMID: 18505774 DOI: 10.1177/1352458507088105] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES To compare serum levels of the receptor for advanced glycation end products (sRAGE) between multiple sclerosis (MS) patients and healthy control subjects, and to investigate whether serum sRAGE levels correlate with MS disease severity as indicated by the Kurtzke Expanded Disability Status Scale (EDSS). METHOD 37 patients with clinical diagnosis of MS and 22 healthy control subjects were investigated in a cross-sectional study using enzyme-linked immunosorbent assays (ELISA). RESULTS Serum levels of sRAGE were found to be significantly lower in MS patients compared to levels in healthy controls (p = 0.005). A trend toward lower levels of serum sRAGE was observed in female MS patients compared to their male counterparts (p = 0.05). A relationship between sRAGE and EDSS, and sRAGE and rate of clinical relapse was observed (p = 0.012). CONCLUSION The significant reduction of sRAGE in MS patients relative to healthy controls supports the potential role for RAGE axis in MS clinical pathology. Lower levels of sRAGE may be associated with enhanced inflammatory responses. Based on these observations, further investigations into the role of sRAGE in MS clinical pathology is warranted.
Collapse
Affiliation(s)
- Z Sternberg
- Department of Neurology, Baird MS Center, Jacobs Neurological Institute, Buffalo, NY 14203, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gluhovschi G, Gluhovschi C, Bob F, Velciov S, Trandafirescu V, Petrica L, Bozdog G. Multiorgan-protective actions of blockers of the renin-angiotensin system, statins and erythropoietin: common pleiotropic effects in reno-, cardio- and neuroprotection. Acta Clin Belg 2008; 63:152-69. [PMID: 18714846 DOI: 10.1179/acb.2008.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Renal diseases induce nephroprotective measures that may affect the heart, brain and other organs. In addition, many cardiovascular and neurological diseases are accompanied by renal lesions. For these reasons, multiorgan-protective measures, including cardio-, reno- and neuro-protective measures, are necessary to treat these diseases. The drugs used in nephrology are often pleiotropic. Although they usually address a single organ or tissue, many of them have complex actions that may provide multiorgan-protection. The present paper aims to review 3 classes of drugs that are commonly prescribed in nephrological practice: statins, RAS blockers (such as ACEIs and ARBs) and erythropoietin (EPO). This paper highlights the renoprotective actions, as well as those that are protective of the heart, brain and other organs, of these drugs at the cellular and molecular level. Their protective actions are attributable to their main effects and pleiotropic effects. The protective pleiotropic actions of these drugs may be exerted on multiple organs, making them multiorgan-protective. Another objective is to analyse the shared multiorgan-protective pleiotropic effects of RAS blockers (ACEIs and ARBs), statins and erythropoietin. This will allow for the practical association of the main renoprotective drugs with multiorgan protection.
Collapse
Affiliation(s)
- G Gluhovschi
- Nephrology Department, University of Medicine and Pharmacy Victor Babes, Timisoara, Romania.
| | | | | | | | | | | | | |
Collapse
|
20
|
Tesch GH. MCP-1/CCL2: a new diagnostic marker and therapeutic target for progressive renal injury in diabetic nephropathy. Am J Physiol Renal Physiol 2008; 294:F697-701. [PMID: 18272603 DOI: 10.1152/ajprenal.00016.2008] [Citation(s) in RCA: 321] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Despite current therapies, many diabetic patients will suffer from declining renal function in association with progressive kidney inflammation. Recently, animal model studies have demonstrated that kidney macrophage accumulation is a critical factor in the development of diabetic nephropathy. However, specific anti-inflammatory strategies are not yet being considered for the treatment of patients with diabetic renal injury. This review highlights the chemokine monocyte chemoattractant protein-1 (MCP-1)/CC-chemokine ligand 2 as a major promoter of inflammation, renal injury, and fibrosis in diabetic nephropathy. Researchers have found that diabetes induces kidney MCP-1 production and that urine MCP-1 levels can be used to assess renal inflammation in this disease. In addition, genetic deletion and molecular blocking studies in rodents have identified MCP-1 as an important therapeutic target for treating diabetic nephropathy. Evidence also suggests that a polymorphism in the human MCP-1 gene is associated with progressive kidney failure in type 2 diabetes, which may identify patients at higher risk who need additional therapy. These findings provide a strong rationale for developing specific therapies against MCP-1 and inflammation in diabetic nephropathy.
Collapse
Affiliation(s)
- G H Tesch
- Dept. of Nephrology, Monash Medical Centre, 246 Clayton Rd., Clayton, Victoria 3168, Australia.
| |
Collapse
|
21
|
Mathieson PW. Minimal change nephropathy and focal segmental glomerulosclerosis. Semin Immunopathol 2007; 29:415-26. [DOI: 10.1007/s00281-007-0094-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Accepted: 09/04/2007] [Indexed: 11/28/2022]
|