1
|
van der Mijn JC, Laursen KB, Fu L, Khani F, Dow LE, Nowak DG, Chen Q, Gross SS, Nanus DM, Gudas LJ. Novel genetically engineered mouse models for clear cell renal cell carcinoma. Sci Rep 2023; 13:8246. [PMID: 37217526 DOI: 10.1038/s41598-023-35106-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 05/12/2023] [Indexed: 05/24/2023] Open
Abstract
Genetically engineered mouse models (GEMMs) are important immunocompetent models for research into the roles of individual genes in cancer and the development of novel therapies. Here we use inducible CRISPR-Cas9 systems to develop two GEMMs which aim to model the extensive chromosome p3 deletion frequently observed in clear cell renal cell carcinoma (ccRCC). We cloned paired guide RNAs targeting early exons of Bap1, Pbrm1, and Setd2 in a construct containing a Cas9D10A (nickase, hSpCsn1n) driven by tetracycline (tet)-responsive elements (TRE3G) to develop our first GEMM. The founder mouse was crossed with two previously established transgenic lines, one carrying the tet-transactivator (tTA, Tet-Off) and one with a triple-mutant stabilized HIF1A-M3 (TRAnsgenic Cancer of the Kidney, TRACK), both driven by a truncated, proximal tubule-specific γ-glutamyltransferase 1 (ggt or γGT) promoter, to create triple-transgenic animals. Our results indicate that this model (BPS-TA) induces low numbers of somatic mutations in Bap1 and Pbrm1 (but not in Setd2), known tumor suppressor genes in human ccRCC. These mutations, largely restricted to kidneys and testis, induced no detectable tissue transformation in a cohort of 13 month old mice (N = 10). To gain insights into the low frequencies of insertions and deletions (indels) in BPS-TA mice we analyzed wild type (WT, N = 7) and BPS-TA (N = 4) kidneys by RNAseq. This showed activation of both DNA damage and immune response, suggesting activation of tumor suppressive mechanisms in response to genome editing. We then modified our approach by generating a second model in which a ggt-driven, cre-regulated Cas9WT(hSpCsn1) was employed to introduce Bap1, Pbrm1, and Setd2 genome edits in the TRACK line (BPS-Cre). The BPS-TA and BPS-Cre lines are both tightly controlled in a spatiotemporal manner with doxycycline (dox) and tamoxifen (tam), respectively. In addition, whereas the BPS-TA line relies on paired guide RNAs (gRNAs), the BPS-Cre line requires only single gRNAs for gene perturbation. In the BPS-Cre we identified increased Pbrm1 gene-editing frequencies compared to the BPS-TA model. Whereas we did not detect Setd2 edits in the BPS-TA kidneys, we found extensive editing of Setd2 in the BPS-Cre model. Bap1 editing efficiencies were comparable between the two models. Although no gross malignancies were observed in our study, this is the first reported GEMM which models the extensive chromosome 3p deletion frequently observed in kidney cancer patients. Further studies are required (1) to model more extensive 3p deletions, e.g. impacting additional genes, and (2) to increase the cellular resolution, e.g. by employing single-cell RNAseq to ascertain the effects of specific combinatorial gene inactivation.
Collapse
Affiliation(s)
- Johannes C van der Mijn
- Department of Pharmacology, New York Presbyterian Hospital, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Kristian B Laursen
- Department of Pharmacology, New York Presbyterian Hospital, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Meyer Cancer Center, New York, USA
- Paratus Sciences, Alexandria Bld. West, New York, USA
| | - Leiping Fu
- Department of Pharmacology, New York Presbyterian Hospital, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Francesca Khani
- Department of Pathology, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, New York, USA
| | - Lukas E Dow
- Department of Biochemistry, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, New York, USA
| | - Dawid G Nowak
- Department of Pharmacology, New York Presbyterian Hospital, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Meyer Cancer Center, New York, USA
| | - Qiuying Chen
- Department of Pharmacology, New York Presbyterian Hospital, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Steven S Gross
- Department of Pharmacology, New York Presbyterian Hospital, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - David M Nanus
- Division of Hematology/Oncology, Department of Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, New York, USA
| | - Lorraine J Gudas
- Department of Pharmacology, New York Presbyterian Hospital, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA.
- Department of Urology, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA.
- Meyer Cancer Center, New York, USA.
| |
Collapse
|
2
|
Liang S, Wang Y, Kang M, Deng J, Chen L, Hong X, Hou FF, Zhang F. Generation and characterization of an inducible renal proximal tubule-specific CreERT2 mouse. Front Cell Dev Biol 2023; 11:1171637. [PMID: 37215091 PMCID: PMC10196630 DOI: 10.3389/fcell.2023.1171637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Protein reabsorption in renal proximal tubules is essential for maintaining nutrient homeostasis. Renal proximal tubule-specific gene knockout is a powerful method to assess the function of genes involved in renal proximal tubule protein reabsorption. However, the lack of inducible renal proximal tubule-specific Cre recombinase-expressing mouse strains hinders the study of gene function in renal proximal tubules. To facilitate the functional study of genes in renal proximal tubules, we developed an AMN CreERT2 knock-in mouse strain expressing a Cre recombinase-estrogen receptor fusion protein under the control of the promoter of the amnionless (AMN) gene, a protein reabsorption receptor in renal proximal tubules. AMN CreERT2 knock-in mice were generated using the CRISPR/Cas9 strategy, and the tissue specificity of Cre activity was investigated using the Cre/loxP reporter system. We showed that the expression pattern of CreERT2-mEGFP in AMN CreERT2 mice was consistent with that of the endogenous AMN gene. Furthermore, we showed that the Cre activity in AMN CreERT2 knock-in mice was only detected in renal proximal tubules with high tamoxifen induction efficiency. As a proof-of-principle study, we demonstrated that renal proximal tubule-specific knockout of Exoc4 using AMNCreERT2 led to albumin accumulation in renal proximal tubular epithelial cells. The AMN CreERT2 mouse is a powerful tool for conditional gene knockout in renal proximal tubules and should offer useful insight into the physiological function of genes expressed in renal proximal tubules.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fan Fan Hou
- *Correspondence: Fan Fan Hou, ; Fujian Zhang,
| | | |
Collapse
|
3
|
Drake KA, Fessler AR, Carroll TJ. Methods for renal lineage tracing: In vivo and beyond. Methods Cell Biol 2019; 154:121-143. [PMID: 31493814 DOI: 10.1016/bs.mcb.2019.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lineage tracing has resulted in fundamental discoveries in kidney development and disease and remains a powerful technique to study mechanisms of organogenesis, homeostasis, and repair/regeneration. Following decades of research on the cellular and molecular regulation of renal organogenesis, the kidney has become one of the most well-characterized organs, resulting in exciting advancements in pluripotent stem cell differentiation, tissue bioengineering, and the potential for developing novel regenerative therapies for kidney disease. Lineage tracing, or the labeling of progeny cells arising from a single cell or group of cells, allows for spatial and temporal analyses of dynamic in vivo and in vitro processes. As lineage tracing techniques expand across disciplines of developmental biology, stem cell biology, and regenerative medicine, careful experimental design and interpretation, along with an understanding of the basic principles and technical limitations, are essential for utilizing genetically complex lineage tracing models to further understand kidney development and disease.
Collapse
Affiliation(s)
- Keri A Drake
- Division of Pediatric Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Alicia R Fessler
- Department of Internal Medicine (Nephrology), University of Texas Southwestern Medical Center, Dallas, TX, United States; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Thomas J Carroll
- Department of Internal Medicine (Nephrology), University of Texas Southwestern Medical Center, Dallas, TX, United States; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
4
|
Chen L, Gao C, Zhang L, Zhang Y, Chen E, Zhang W. Highly tamoxifen-inducible principal cell-specific Cre mice with complete fidelity in cell specificity and no leakiness. Am J Physiol Renal Physiol 2018; 314:F572-F583. [PMID: 29357435 PMCID: PMC5966762 DOI: 10.1152/ajprenal.00436.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 11/22/2022] Open
Abstract
An ideal inducible system should be cell specific and have absolutely no background recombination without induction (i.e., no leakiness), a high recombination rate after induction, and complete fidelity in cell specificity (i.e., restricted recombination exclusively in cells where the driver gene is expressed). However, such an ideal mouse model remains unavailable for collecting duct research. Here, we report a mouse model that meets these criteria. In this model, a cassette expressing ERT2CreERT2 ( ECE) is inserted at the ATG of the endogenous Aqp2 locus to disrupt Aqp2 function and to express ECE under the control of the Aqp2 promoter. The resulting allele is named Aqp2ECE. There was no indication of a significant impact of disruption of a copy of Aqp2 on renal function and blood pressure control in adult Aqp2ECE/+ heterozygotes. Without tamoxifen, Aqp2ECE did not activate a Cre-dependent red fluorescence protein (RFP) reporter in adult kidneys. A single injection of tamoxifen (2 mg) to adult mice enabled Aqp2ECE to induce robust RFP expression in the whole kidney 24 h postinjection, with the highest recombination efficiency of 95% in the inner medulla. All RFP-labeled cells expressed principal cell markers (Aqp2 and Aqp3), but not intercalated cell markers (V-ATPase B1B2, and carbonic anhydrase II). Hence, Aqp2ECE confers principal cell-specific tamoxifen-inducible recombination with absolutely no leakiness, high inducibility, and complete fidelity in cell specificity, which should be an important tool for temporospatial control of target genes in the principal cells and for Aqp2+ lineage tracing in adult mice.
Collapse
Affiliation(s)
- Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute , Bethesda, Maryland
| | - Chao Gao
- Department of Regenerative and Cancer Cell Biology, Albany Medical College , Albany, New York
| | - Long Zhang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College , Albany, New York
| | - Ye Zhang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College , Albany, New York
| | - Enuo Chen
- Department of Regenerative and Cancer Cell Biology, Albany Medical College , Albany, New York
| | - Wenzheng Zhang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College , Albany, New York
| |
Collapse
|
5
|
Liao M, Zhou J, Wang F, Ali YH, Chan KL, Zou F, Offermanns S, Jiang Z, Jiang Z. An X-linked Myh11-CreER T2 mouse line resulting from Y to X chromosome-translocation of the Cre allele. Genesis 2018; 55. [PMID: 28845554 DOI: 10.1002/dvg.23054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 08/07/2017] [Accepted: 08/23/2017] [Indexed: 11/09/2022]
Abstract
The Myh11-CreERT2 mouse line (Cre+ ) has gained increasing application because of its high lineage specificity relative to other Cre drivers targeting smooth muscle cells (SMCs). This Cre allele, however, was initially inserted into the Y chromosome (X/YCre+ ), which excluded its application in female mice. Our group established a Cre+ colony from male ancestors. Surprisingly, genotype screening identified female carriers that stably transmitted the Cre allele to the following generations. Crossbreeding experiments revealed a pattern of X-linked inheritance for the transgene (k > 1000), indicating that these female carries acquired the Cre allele through a mechanism of Y to X chromosome translocation. Further characterization demonstrated that in hemizygous X/XCre+ mice Cre activity was restricted to a subset arterial SMCs, with Cre expression in arteries decreased by 50% compared to X/YCre+ mice. This mosaicism, however, diminished in homozygous XCre+ /XCre+ mice. In a model of aortic aneurysm induced by a SMC-specific Tgfbr1 deletion, the homozygous XCre+ /XCre+ Cre driver unmasked the aortic phenotype that is otherwise subclinical when driven by the hemizygous X/XCre+ Cre line. In conclusion, the Cre allele carried by this female mouse line is located on the X chromosome and subjected to X-inactivation. The homozygous XCre+ /XCre+ mice produce uniform Cre activity in arterial SMCs.
Collapse
Affiliation(s)
- Mingmei Liao
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida, 32610.,Department of Surgery, Xiangya Hospital Central South University, Changsha, Peoples Republic of China
| | - Junmei Zhou
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida, 32610.,Institute of Cardiovascular Disease, University of South China, Hengyang, China
| | - Fen Wang
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida, 32610
| | - Yasmin H Ali
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida, 32610
| | - Kelvin L Chan
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida, 32610
| | - Fei Zou
- Department of Biostatistics, University of Florida College of Public Health & Health Professions College of Medicine, Gainesville, Florida, 32611
| | - Stefan Offermanns
- Max-Planck-Institute for Heart and Lung Research, University of Heidelberg, Bad Nauheim, Germany
| | - Zhisheng Jiang
- Institute of Cardiovascular Disease, University of South China, Hengyang, China
| | - Zhihua Jiang
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida, 32610
| |
Collapse
|
6
|
Generation and Characterisation of a Pax8-CreERT2 Transgenic Line and a Slc22a6-CreERT2 Knock-In Line for Inducible and Specific Genetic Manipulation of Renal Tubular Epithelial Cells. PLoS One 2016; 11:e0148055. [PMID: 26866916 PMCID: PMC4751286 DOI: 10.1371/journal.pone.0148055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/12/2016] [Indexed: 01/05/2023] Open
Abstract
Genetically relevant mouse models need to recapitulate the hallmarks of human disease by permitting spatiotemporal gene targeting. This is especially important for replicating the biology of complex diseases like cancer, where genetic events occur in a sporadic fashion within developed somatic tissues. Though a number of renal tubule targeting mouse lines have been developed their utility for the study of renal disease is limited by lack of inducibility and specificity. In this study we describe the generation and characterisation of two novel mouse lines directing CreERT2 expression to renal tubular epithelia. The Pax8-CreERT2 transgenic line uses the mouse Pax8 promoter to direct expression of CreERT2 to all renal tubular compartments (proximal and distal tubules as well as collecting ducts) whilst the Slc22a6-CreERT2 knock-in line utilises the endogenous mouse Slc22a6 locus to specifically target the epithelium of proximal renal tubules. Both lines show high organ and tissue specificity with no extrarenal activity detected. To establish the utility of these lines for the study of renal cancer biology, Pax8-CreERT2 and Slc22a6-CreERT2 mice were crossed to conditional Vhl knockout mice to induce long-term renal tubule specific Vhl deletion. These models exhibited renal specific activation of the hypoxia inducible factor pathway (a VHL target). Our results establish Pax8-CreERT2 and Slc22a6-CreERT2 mice as valuable tools for the investigation and modelling of complex renal biology and disease.
Collapse
|
7
|
Baisantry A, Bhayana S, Rong S, Ermeling E, Wrede C, Hegermann J, Pennekamp P, Sörensen-Zender I, Haller H, Melk A, Schmitt R. Autophagy Induces Prosenescent Changes in Proximal Tubular S3 Segments. J Am Soc Nephrol 2015; 27:1609-16. [PMID: 26487561 DOI: 10.1681/asn.2014111059] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 09/02/2015] [Indexed: 11/03/2022] Open
Abstract
Evidence suggests that autophagy promotes the development of cellular senescence. Because cellular senescence contributes to renal aging and promotes the progression from AKI to CKD, we investigated the potential effect of tubular autophagy on senescence induction. Compared with kidneys from control mice, kidneys from mice with conditional deletion of autophagy-related 5 (Atg5) for selective ablation of autophagy in proximal tubular S3 segments (Atg5(Δ) (flox/) (Δ) (flox)) presented with significantly less tubular senescence, reduced interstitial fibrosis, and superior renal function 30 days after ischemia/reperfusion injury. To correlate this long-term outcome with differences in the early injury process, kidneys were analyzed 2 hours and 3 days after reperfusion. Notably, compared with kidneys of control mice, Atg5(Δ) (flox/) (Δ) (flox) kidneys showed more cell death in outer medullary S3 segments at 2 hours but less tubular damage and inflammation at day 3. These data suggest that the lack of autophagy prevents early survival mechanisms in severely damaged tubular cells. However, if such compromised cells persist, then they may lead to maladaptive repair and proinflammatory changes, thereby facilitating the development of a senescent phenotype and CKD.
Collapse
Affiliation(s)
- Arpita Baisantry
- Department of Nephrology and Department of Kidney, Liver and Metabolic Diseases, Children's Hospital, Hannover, Germany
| | | | | | - Esther Ermeling
- Department of Nephrology and Department of Kidney, Liver and Metabolic Diseases, Children's Hospital, Hannover, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy and Cluster of Excellence REBIRTH (Regenerative Biology to Reconstructive Therapy), Hannover Medical School, Hannover, Germany; and
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy and Cluster of Excellence REBIRTH (Regenerative Biology to Reconstructive Therapy), Hannover Medical School, Hannover, Germany; and
| | - Petra Pennekamp
- Children's Hospital, University of Munster, Munster, Germany
| | | | | | - Anette Melk
- Department of Kidney, Liver and Metabolic Diseases, Children's Hospital, Hannover, Germany
| | | |
Collapse
|
8
|
Low TGFβ1 expression prevents and high expression exacerbates diabetic nephropathy in mice. Proc Natl Acad Sci U S A 2015; 112:5815-20. [PMID: 25902541 DOI: 10.1073/pnas.1504777112] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nephropathy develops in many but not all patients with long-standing type 1 diabetes. Substantial efforts to identify genotypic differences explaining this differential susceptibility have been made, with limited success. Here, we show that the expression of the transforming growth factor β1 gene (Tgfb1) affects the development of diabetic nephropathy in mice. To do this we genetically varied Tgfb1 expression in five steps, 10%, 60%, 100%, 150%, and 300% of normal, in mice with type 1 diabetes caused by the Akita mutation in the insulin gene (Ins2(Akita)). Although plasma glucose levels were not affected by Tgfb1 genotype, many features of diabetic nephropathy (mesangial expansion, elevated plasma creatinine and urea, decreased creatinine clearance and albuminuria) were progressively ameliorated as Tgfb1 expression decreased and were progressively exacerbated when expression was increased. The diabetic 10% hypomorphs had comparable creatinine clearance and albumin excretion to wild-type mice and no harmful changes in renal morphology. The diabetic 300% hypermorphs had ∼1/3 the creatinine clearance of wild-type mice, >20× their albumin excretion, ∼3× thicker glomerular basement membranes and severe podocyte effacement, matching human diabetic nephropathy. Switching Tgfb1 expression from low to high in the tubules of the hypomorphs increased their albumin excretion more than 10-fold but creatinine clearance remained high. Switching Tgfb1 expression from low to high in the podocytes markedly decreased creatinine clearance, but minimally increased albumin excretion. Decreasing expression of Tgfb1 could be a promising option for preventing loss of renal function in diabetes.
Collapse
|
9
|
Sörensen-Zender I, Rong S, Susnik N, Zender S, Pennekamp P, Melk A, Haller H, Schmitt R. Renal tubular Notch signaling triggers a prosenescent state after acute kidney injury. Am J Physiol Renal Physiol 2014; 306:F907-15. [DOI: 10.1152/ajprenal.00030.2014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The aging kidney has a diminished regenerative potential and an increased tendency to develop tubular atrophy and fibrosis after acute injury. In this study, we found that activation of tubular epithelial Notch1 signaling was prolonged in the aging kidney after ischemia/reperfusion (IR) damage. To analyze the consequences of sustained Notch activation, we generated mice with conditional inducible expression of Notch1 intracellular domain (NICD) in proximal tubules. NICD kidneys were analyzed 1 and 4 wk after renal IR. Conditional NICD expression was associated with aggravated tubular damage, a fibrotic phenotype, and the expression of cellular senescence markers p21 and p16 INK4a. In wild-type mice pharmacological inhibition of Notch using the γ-secretase inhibitor N-[ N-(3,5-difluorophenacetyl)-l-alanyl]- S-phenylglycine t-butyl ester (DAPT) improved tubulo-interstitial damage and antagonized the prosenescent pathway activation after IR. In vitro, activation of Notch signaling with delta-like-ligand-4 caused prosenescent changes in tubular cells while inhibition with DAPT attenuated these changes. In conclusion, our data suggest that sustained epithelial Notch activation after IR might contribute to the inferior outcome of old kidneys after injury. Sustained epithelial activation of Notch is associated with a prosenescent phenotype and maladaptive repair.
Collapse
Affiliation(s)
- Inga Sörensen-Zender
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Song Rong
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Nathan Susnik
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Steffen Zender
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Petra Pennekamp
- Children's Hospital, University of Munster, Munster, Germany; and
| | - Anette Melk
- Department of Kidney, Liver and Metabolic Diseases, Children's Hospital, Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Roland Schmitt
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| |
Collapse
|
10
|
Liu S, Yao Y, Lu S, Aldous K, Ding X, Mei C, Gu J. The role of renal proximal tubule P450 enzymes in chloroform-induced nephrotoxicity: utility of renal specific P450 reductase knockout mouse models. Toxicol Appl Pharmacol 2013; 272:230-7. [PMID: 23732084 DOI: 10.1016/j.taap.2013.05.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 10/26/2022]
Abstract
The kidney is a primary target for numerous toxic compounds. Cytochrome P450 enzymes (P450) are responsible for the metabolic activation of various chemical compounds, and in the kidney are predominantly expressed in proximal tubules. The aim of this study was to test the hypothesis that renal proximal tubular P450s are critical for nephrotoxicity caused by chemicals such as chloroform. We developed two new mouse models, one having proximal tubule-specific deletion of the cytochrome P450 reductase (Cpr) gene (the enzyme required for all microsomal P450 activities), designated proximal tubule-Cpr-null (PTCN), and the other having proximal tubule-specific rescue of CPR activity with the global suppression of CPR activity in all extra-proximal tubular tissues, designated extra-proximal tubule-Cpr-low (XPT-CL). The PTCN, XPT-CL, Cpr-low (CL), and wild-type (WT) mice were treated with a single oral dose of chloroform at 200mg/kg. Blood, liver and kidney samples were obtained at 24h after the treatment. Renal toxicity was assessed by measuring BUN and creatinine levels, and by pathological examination. The blood and tissue levels of chloroform were determined. The severity of toxicity was less in PTCN and CL mice, compared with that of WT and XPT-CL mice. There were no significant differences in chloroform levels in the blood, liver, or kidney, between PTCN and WT mice, or between XPT-CL and CL mice. These findings indicate that local P450-dependent activities play an important role in the nephrotoxicity induced by chloroform. Our results also demonstrate the usefulness of these novel mouse models for studies of chemical-induced kidney toxicity.
Collapse
Affiliation(s)
- Senyan Liu
- Kidney Institute & Division of Nephrology, Changzheng Hospital, Shanghai 200003, China; Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, NY 12201, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Lee WC, Berry R, Hohenstein P, Davies J. siRNA as a tool for investigating organogenesis: The pitfalls and the promises. Organogenesis 2012; 4:176-81. [PMID: 19279730 DOI: 10.4161/org.4.3.6642] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 03/20/2008] [Indexed: 12/31/2022] Open
Abstract
Removing the function of a specific gene from a developing organ, by making a 'knockout' mouse, is a powerful method for analyzing the molecular pathways that control organogenesis. The technique is expensive, though, in terms of time and money, and complex strategies for producing conditional knockouts are needed for genes that are essential for early development of the embryo, for which an unconditional knockout would be lethal before the organ of interest begins to form. Small interfering RNAs (siRNAs) offer a method of knocking down the expression of specific genes with no need for genomic manipulation. Almost as soon as they had been discovered, siRNAs began to be used to explore the molecular biology of mammalian cells in conventional, two-dimensional culture. They have now also been applied successfully, by several groups, to knock down specific genes in various organ rudiments developing in organ culture. This article reviews the basic technique of siRNA-mediated gene knockdown and how it is being applied to organ culture. It also reviews some of the current problems and challenges in the field, and the ways in which these problems are likely to be overcome.
Collapse
Affiliation(s)
- Wen-Chin Lee
- Centre for Integrative Physiology; University of Edinburgh; Edinburgh UK
| | | | | | | |
Collapse
|
12
|
Dong Z, Fu A. Prevention of age-related memory deficit in transgenic mice by human choline acetyltransferase. Eur J Pharmacol 2012; 683:174-8. [PMID: 22449376 DOI: 10.1016/j.ejphar.2012.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 03/03/2012] [Accepted: 03/07/2012] [Indexed: 11/24/2022]
Abstract
Choline acetyltransferase (ChAT, acetylCoA:choline O-acetyltransferase, EC 2.3.1.6) is the biosynthetic enzyme of neurotransmitter acetylcholine. Here we showed for the first time that transgenic mice with human ChAT kept excellent learning and memory ability during aging process. Transgenic mice were prepared through microinjection of human ChAT into mouse fertilized eggs, and PCR reaction was used to screen out the transgenic mice. The results of measurements of ChAT activity and acetylcholine level in mouse brain indicated that human ChAT gene was expressed throughout the life of the transgenic mice. The results of step-through test and water maze test suggested that learning and memory ability was improved in transgenic mice compared to that of their age-matched littermates. The results support our idea that supplement of ChAT might serve as a potential therapeutic strategy for cognitive deficit.
Collapse
Affiliation(s)
- Zhaohui Dong
- Department of Clinical Pharmacy, Chengdu Military General Hospital, Chengdu 610083, China
| | | |
Collapse
|
13
|
Qin Y, Alderliesten MC, Stokman G, Pennekamp P, Bonventre JV, de Heer E, Ichimura T, de Graauw M, Price LS, van de Water B. Focal adhesion kinase signaling mediates acute renal injury induced by ischemia/reperfusion. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2766-78. [PMID: 21982831 DOI: 10.1016/j.ajpath.2011.08.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 07/21/2011] [Accepted: 08/24/2011] [Indexed: 11/16/2022]
Abstract
Renal ischemia/reperfusion (I/R) injury is associated with cell matrix and focal adhesion remodeling. Focal adhesion kinase (FAK) is a nonreceptor protein tyrosine kinase that localizes at focal adhesions and regulates their turnover. Here, we investigated the role of FAK in renal I/R injury, using a novel conditional proximal tubule-specific fak-deletion mouse model. Tamoxifen treatment of FAK(loxP/loxP)//γGT-Cre-ER(T2) mice caused renal-specific fak recombination (FAK(ΔloxP/ΔloxP)) and reduction of FAK expression in proximal tubules. In FAK(ΔloxP/ΔloxP) mice compared with FAK(loxP/loxP) controls, unilateral renal ischemia followed by reperfusion resulted in less tubular damage with reduced tubular cell proliferation and lower expression of kidney injury molecule-1, which was independent from the postischemic inflammatory response. Oxidative stress is involved in the pathophysiology of I/R injury. Primary cultured mouse renal cells were used to study the role of FAK deficiency for oxidative stress in vitro. The conditional fak deletion did not affect cell survival after hydrogen peroxide-induced cellular stress, whereas it impaired the recovery of focal adhesions that were disrupted by hydrogen peroxide. This was associated with reduced c-Jun N-terminal kinase-dependent phosphorylation of paxillin at serine 178 in FAK-deficient cells, which is required for focal adhesion turnover. Our findings support a role for FAK as a novel factor in the initiation of c-Jun N-terminal kinase-mediated cellular stress response during renal I/R injury and suggest FAK as a target in renal injury protection.
Collapse
Affiliation(s)
- Yu Qin
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Fu L, Wang G, Shevchuk MM, Nanus DM, Gudas LJ. Generation of a mouse model of Von Hippel-Lindau kidney disease leading to renal cancers by expression of a constitutively active mutant of HIF1α. Cancer Res 2011; 71:6848-56. [PMID: 21908555 DOI: 10.1158/0008-5472.can-11-1745] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Renal cancers are highly aggressive and clinically challenging, but a transgenic mouse model to promote pathologic studies and therapeutic advances has yet to be established. Here, we report the generation of a transgenic mouse model of von Hippel-Lindau (VHL) renal cancer termed the TRACK model (transgenic model of cancer of the kidney). TRACK mice specifically express a mutated, constitutively active HIF1α in kidney proximal tubule (PT) cells. Kidney histologies displayed by TRACK mice are highly similar to histologies seen in patients with VHL disease, including areas of distorted tubular structure, cells with clear cytoplasm and increased glycogen and lipid deposition, multiple renal cysts, and early onset of clear cell renal cell carcinoma (ccRCC). Distorted tubules in TRACK mice exhibit higher levels of CA-IX, Glut1, and VEGF than tubules in nontransgenic control mice. Furthermore, these tubules exhibit increased numbers of endothelial cells, increased cell proliferation, and increased expression of the human ccRCC marker CD70(TNFSF7). Moreover, PT cells in kidney tubules from TRACK mice exhibit increased genomic instability, as monitored by elevated levels of γH2AX. Our findings establish that activated HIF1α in murine kidney PT cells is sufficient to promote cell proliferation, angiogenesis, genomic instability, and other phenotypic alterations characteristic of human VHL kidney disease, establishing the TRACK mouse as a valid preclinical model of human renal cell carcinoma.
Collapse
Affiliation(s)
- Leiping Fu
- Department of Pharmacology, Weill Cornell Cancer Center, Weill Cornell Medical College (WCMC) of Cornell University, New York, New York, USA
| | | | | | | | | |
Collapse
|
15
|
Rubera I, Hummler E, Beermann F. Transgenic mice and their impact on kidney research. Pflugers Arch 2008; 458:211-22. [PMID: 19084992 DOI: 10.1007/s00424-008-0624-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 11/25/2008] [Indexed: 12/12/2022]
Abstract
The kidney is a key organ in the maintenance of ion and fluid homeostasis and specific transport systems localized along the nephron guarantee this function. Due to its large functional heterogeneity, experiments on the whole organ level cannot be easily performed, and thus more refined tools are needed, like for example the development of specific recombination systems to gain knowledge on the physiological role of single proteins implicated in ion transport. This review introduces the transgenic technology developed over the past decades, and then focuses on recent strategies for generating kidney-specific gene targeting, over-expression, and gene ablation in mice, that will help to understand the physiological role of proteins implicated in salt and water balance in the kidney.
Collapse
|
16
|
Kohan DE. Progress in gene targeting: using mutant mice to study renal function and disease. Kidney Int 2008; 74:427-37. [PMID: 18418351 DOI: 10.1038/ki.2008.146] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Genetic engineering in mice has provided much information about gene function in renal health and disease. This knowledge has largely come from conventional transgenic approaches. Recently, methods have been developed to control the cell type, timing and reversibility of target gene expression. Advances in identifying promoters conferring renal cell-specific gene regulation in vivo have greatly facilitated interpretation of gene targeting studies. Site-specific recombinases have permitted cell-specific knockout of genes; Cre is the preeminent recombinase, but recent progress with other recombinases, include Flp and PhiC31, will likely increase the usefulness of this class of enzymes. Temporally regulated gene expression, particularly using doxycycline- and tamoxifen-inducible systems, holds great promise for avoiding developmental effects of gene mutations as well as facilitating comparison of the same animal's phenotype before and after gene modification. RNA interference is undergoing tremendous growth and has great potential for achieving gene knockdown quickly and reversibly. To date, however, the utility of these systems in modifying renal function in transgenic mice remains unproven. Finally, new gene targeting tools are in development that may substantially simplify generation of transgenic animals. This review discusses the state-of-the-art in gene targeting in the kidney, reviewing function, indications and limitations of the molecular biologic tools.
Collapse
Affiliation(s)
- Donald E Kohan
- Division of Nephrology, Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA.
| |
Collapse
|
17
|
Li H, Zhou X, Davis DR, Xu D, Sigmund CD. An androgen-inducible proximal tubule-specific Cre recombinase transgenic model. Am J Physiol Renal Physiol 2008; 294:F1481-6. [PMID: 18385272 DOI: 10.1152/ajprenal.00064.2008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To facilitate the study of renal proximal tubules, we generated a transgenic mouse strain expressing an improved Cre recombinase (iCre) under the control of the kidney androgen-regulated protein (KAP) promoter. The transgene was expressed in the kidney of male mice but not in female mice. Treatment of female transgenic mice with androgen induced robust expression of the transgene in the kidney. We confirmed the presence of Cre recombinase activity and the cell specificity by breeding the KAP2-iCRE mice with ROSA26 reporter mice. X-Gal staining of kidney sections from male double transgenic mice showed robust staining in the epithelial cells of renal proximal tubules. beta-Gal staining in female mice became evident in proximal tubules after administration of androgen. This model of inducible Cre recombinase in the renal proximal tubule should provide a novel useful tool for studying the physiological significance of genes expressed in the renal proximal tubule. This has advantages over other current models where Cre recombinase expression is constitutive, not inducible.
Collapse
Affiliation(s)
- Huiping Li
- Dept. of Internal Medicine, 3181B Medical Education and Biomedical Research Facility, Roy J. and Lucille A. Carver College of Medicine, Univ. of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|