1
|
Vascular Effects of Low-Dose ACE2 Inhibitor MLN-4760—Benefit or Detriment in Essential Hypertension? Biomedicines 2021; 10:biomedicines10010038. [PMID: 35052717 PMCID: PMC8773407 DOI: 10.3390/biomedicines10010038] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infects host cells through angiotensin-converting enzyme 2 (ACE2). Concurrently, the product of ACE2 action, angiotensin 1–7 (Ang 1–7), binds to Mas receptors within the cardiovascular system and provides protective effects. Therefore, it is crucial to reveal the role of ACE2 inhibition, especially within pre-existing cardiovascular pathologies. In our study, we imitated the action of SARS-CoV-2 in organisms using the low dose of the ACE2 inhibitor MLN-4760 with the aim of investigating to what degree ACE2 inhibition is detrimental to the cardiovascular system of spontaneously hypertensive rats (SHRs), which represent a model of human essential hypertension. Our study revealed the complex action of MLN-4760 in SHRs. On the one hand, we found that MLN-4760 had (1) (pro)obesogenic effects that negatively correlated with alternative renin-angiotensin system activity and Ang 1–7 in plasma, (2) negative effects on ACE1 inhibitor (captopril) action, (3) detrimental effects on the small arteries function and (4) anti-angiogenic effect in the model of chick chorioallantoic membrane. On the other hand, MLN-4760 induced compensatory mechanisms involving strengthened Mas receptor-, nitric oxide- and hydrogen sulfide-mediated signal transduction in the aorta, which was associated with unchanged blood pressure, suggesting beneficial action of MLN-4760 when administered at a low dose.
Collapse
|
2
|
Kloza M, Baranowska-Kuczko M, Toczek M, Kusaczuk M, Sadowska O, Kasacka I, Kozłowska H. Modulation of Cardiovascular Function in Primary Hypertension in Rat by SKA-31, an Activator of KCa2.x and KCa3.1 Channels. Int J Mol Sci 2019; 20:ijms20174118. [PMID: 31450834 PMCID: PMC6747311 DOI: 10.3390/ijms20174118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/17/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to investigate the hemodynamic effects of SKA-31, an activator of the small (KCa2.x) and intermediate (KCa3.1) conductance calcium-activated potassium channels, and to evaluate its influence on endothelium-derived hyperpolarization (EDH)-KCa2.3/KCa3.1 type relaxation in isolated endothelium-intact small mesenteric arteries (sMAs) from spontaneously hypertensive rats (SHRs). Functional in vivo and in vitro experiments were performed on SHRs or their normotensive controls, Wistar-Kyoto rats (WKY). SKA-31 (1, 3 and 10 mg/kg) caused a brief decrease in blood pressure and bradycardia in both SHR and WKY rats. In phenylephrine-pre-constricted sMAs of SHRs, SKA-31 (0.01–10 µM)-mediated relaxation was reduced and SKA-31 potentiated acetylcholine-evoked endothelium-dependent relaxation. Endothelium denudation and inhibition of nitric oxide synthase (eNOS) and cyclooxygenase (COX) by the respective inhibitors l-NAME or indomethacin, attenuated SKA-31-mediated vasorelaxation. The inhibition of KCa3.1, KCa2.3, KIR and Na+/K+-ATPase by TRAM-34, UCL1684, Ba2+ and ouabain, respectively, reduced the potency and efficacy of the EDH-response evoked by SKA-31. The mRNA expression of eNOS, prostacyclin synthase, KCa2.3, KCa3.1 and KIR were decreased, while Na+/K+-ATPase expression was increased. Collectively, SKA-31 promoted hypotension and vasodilatation, potentiated agonist-stimulated vasodilation, and maintained KCa2.3/KCa3.1-EDH-response in sMAs of SHR with downstream signaling that involved KIR and Na+/K+-ATPase channels. In view of the importance of the dysfunction of endothelium-mediated vasodilatation in the mechanism of hypertension, application of activators of KCa2.3/KCa3.1 channels such as SKA-31 seem to be a promising avenue in pharmacotherapy of hypertension.
Collapse
Affiliation(s)
- Monika Kloza
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222 Białystok, Poland
| | - Marta Baranowska-Kuczko
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222 Białystok, Poland
- Department of Clinical Pharmacy, Medical University of Białystok, 15-222 Białystok, Poland
| | - Marek Toczek
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222 Białystok, Poland
| | - Magdalena Kusaczuk
- Department of Pharmaceutical Biochemistry, Medical University of Białystok, 15-222 Białystok, Poland
| | - Olga Sadowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222 Białystok, Poland
| | - Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Białystok, 15-222 Białystok, Poland
| | - Hanna Kozłowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222 Białystok, Poland.
| |
Collapse
|
3
|
Talari HR, Azad ZJ, Hamidian Y, Samimi M, Gilasi HR, Ebrahimi Afshar F, Ostadmohammadi V, Asemi Z. Effects of Carnitine Administration on Carotid Intima-media Thickness and Inflammatory Factors in Patients with Polycystic Ovary Syndrome: A Randomized, Double-blind, Placebo-controlled Trial. Int J Prev Med 2019; 10:89. [PMID: 31360336 PMCID: PMC6592103 DOI: 10.4103/ijpvm.ijpvm_2_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/26/2018] [Indexed: 12/04/2022] Open
Abstract
Background: This study was performed to evaluate the effects of carnitine administration on carotid intima-media thickness (CIMT) and inflammatory markers in women with polycystic ovary syndrome (PCOS). Methods: This randomized, double-blind, placebo-controlled trial was conducted among 60 women diagnosed with PCOS according to the Rotterdam criteria, aged 18–40 years. Participants were randomly allocated into two groups to intake either 250 mg/day carnitine (n = 30) or placebo (n = 30) for 12 weeks. High-resolution carotid ultrasonography was conducted at baseline and after the 12-week intervention. Results: After the 12-week intervention, compared with the placebo, carnitine supplementation resulted in a significant decrease in maximum levels of the left CIMT (−0.01 ± 0.02 vs. +0.002 mm ± 0.006 mm, P = 0.001), mean levels of the left CIMT (−0.01 ± 0.02 vs. +0.001 mm ± 0.01 mm, P = 0.001), maximum levels of the right CIMT (−0.01 ± 0.02 vs. +0.006 mm ± 0.01 mm, P < 0.001), and mean levels of the right CIMT (−0.01 ± 0.02 vs. +0.002 mm ± 0.01 mm, P = 0.001). Change in plasma nitric oxide (NO) (+2.4 ± 3.6 vs. +0.2 ± 2.3 μmol/L, P = 0.007) was significantly different between the supplemented patients and placebo group. We did not see any significant effect in serum high sensitivity C-reactive protein (hs-CRP) following the supplementation of carnitine compared with the placebo. Conclusions: Overall, carnitine administration for 12 weeks to participants with PCOS had beneficial effects on CIMT and plasma NO, but did not affect serum hs-CRP levels.
Collapse
Affiliation(s)
- Hamid Reza Talari
- Department of Radiology, Kashan University of Medical Sciences, Kashan, Iran
| | - Zeinab Jafari Azad
- Department of Radiology, Kashan University of Medical Sciences, Kashan, Iran
| | - Yaser Hamidian
- Department of Radiology, Kashan University of Medical Sciences, Kashan, Iran
| | - Mansooreh Samimi
- Department of Gynecology and Obstetrics, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Gilasi
- Department of Epidemiology and Biostatistics, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Faraneh Ebrahimi Afshar
- Department of Gynecology and Obstetrics, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Vahidreza Ostadmohammadi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
4
|
Graton ME, Potje SR, Troiano JA, Vale GT, Perassa LA, Nakamune ACMS, Tirapelli CR, Bendhack LM, Antoniali C. Apocynin alters redox signaling in conductance and resistance vessels of spontaneously hypertensive rats. Free Radic Biol Med 2019; 134:53-63. [PMID: 30586635 DOI: 10.1016/j.freeradbiomed.2018.12.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 01/28/2023]
Abstract
Chronic treatment with apocynin reduces blood pressure and prevents endothelial dysfunction development in spontaneously hypertensive rats (SHR). Mechanisms underlying apocynin effects on SHR remain unclear. Compared to diapocynin and other drugs, apocynin is a weak antioxidant, which suggests that its effects on SHR are associated with other mechanisms besides its antioxidant capacity. Angiotensin (Ang) II regulates NOX, the major reactive oxygen species (ROS) source in the cardiovascular system. We hypothesized that, by inhibiting NOX, apocynin could alter Ang II pressor and vasoconstrictor effects on SHR. We analyzed how Ang II affects blood pressure and vascular reactivity in aorta and mesenteric resistance arteries and evaluated plasma antioxidant capacity, NOX isoforms and subunits, NOS isoforms, AT1 and AT2 receptors expression, ROS production, and NOS activity in apocynin-treated SHR blood vessels (30 mg/Kg/day, p.o.). In SHR, apocynin reduced Ang II pressor effects, increased plasmatic antioxidant capacity, and blunted aortic and mesenteric NOX-dependent oxidants production and NOX2 and p47phox overexpression, which demonstrated that apocynin inhibits NOX in SHR blood vessels. Moreover, apocynin raised plasmatic and aortic nitrate/nitrite levels, maintained NOS activity and eNOS, p-eNOS, nNOS, iNOS, sGC-α, and sGC-β expression in mesenteric bed, diminished AT1 expression in aorta and mesenteric bed, and elevated AT2 expression in SHR aorta. Apocynin increased Ang II vasoconstriction endothelial modulation in SHR resistance arteries. All these results showed that in vivo treatment with apocynin alters several mechanisms that reduce Ang II pressor and vasoconstrictor effects on SHR. Such apocynin effects involve other mechanisms besides vascular ROS modulation, which improves NO availability in SHR vascular cells. These integrated data could help us to understand the promising apocynin activity as an antihypertensive drug that acts differently from the drugs that are currently being used in the clinical setting.
Collapse
Affiliation(s)
- Murilo E Graton
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil; São Paulo State University (UNESP), School of Dentistry, Araçatuba, Department of Basic Sciences, Araçatuba, São Paulo 16015-050, Brazil
| | - Simone R Potje
- University of São Paulo (USP), Faculty of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Jéssica A Troiano
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil; São Paulo State University (UNESP), School of Dentistry, Araçatuba, Department of Basic Sciences, Araçatuba, São Paulo 16015-050, Brazil
| | - Gabriel T Vale
- University of São Paulo (USP), College of Nursing of Ribeirão Preto, Department of Psychiatry Nursing and Human Sciences, Ribeirão Preto, São Paulo 14040-902, Brazil
| | - Ligia A Perassa
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil; São Paulo State University (UNESP), School of Dentistry, Araçatuba, Department of Basic Sciences, Araçatuba, São Paulo 16015-050, Brazil
| | - Ana Cláudia M S Nakamune
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil; São Paulo State University (UNESP), School of Dentistry, Araçatuba, Department of Basic Sciences, Araçatuba, São Paulo 16015-050, Brazil
| | - Carlos R Tirapelli
- University of São Paulo (USP), College of Nursing of Ribeirão Preto, Department of Psychiatry Nursing and Human Sciences, Ribeirão Preto, São Paulo 14040-902, Brazil
| | - Lusiane M Bendhack
- University of São Paulo (USP), Faculty of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Cristina Antoniali
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil; São Paulo State University (UNESP), School of Dentistry, Araçatuba, Department of Basic Sciences, Araçatuba, São Paulo 16015-050, Brazil.
| |
Collapse
|
5
|
Serum L-carnitine and vitamin D levels may be low among oral sildenafil citrate non-responders. Int J Impot Res 2018; 31:85-91. [PMID: 30287894 DOI: 10.1038/s41443-018-0036-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/11/2018] [Accepted: 05/19/2018] [Indexed: 02/08/2023]
Abstract
This cross-sectional comparative study aimed to compare serum L-carnitine and 25(OH)D levels between men with ED non-responding for oral sildenafil citrate and healthy volunteers. Overall, 192 men, recruited from two University Hospitals, were allocated into two equal groups of matched age; healthy potent men and men with ED non-responders for oral sildenafil citrate. Oral sildenafil citrate non-responders self-reported inadequate erectile responses after four attempts using 100 mg with the manufacturer's guidelines relative to meals, associated medications, and sexual stimulation/arousal. Exclusion criteria were: diabetes, cardiovascular disorders, beta blockers treatment, morbid obesity, thyroid disorders, post-radical prostatectomy, and hepatic/renal failure. All participants were subjected to; history taking, clinical examination, validated IIEF-5 questionnaire, estimation of serum L-carnitine by calorimetric method and serum 25(OH)D by ELISA method. Compared with potent controls, ED men non-responders for oral sildenafil citrate showed significant decreases in the mean serum L-carnitine level (16.8 ± 3.6 uM/L versus 66.3 ± 11.9 uM/L, P = 0.001), the mean serum 25(OH)D level (21.2 ± 7.1 ng/ml versus 54.6 ± 7.9 ng/mL, P = 0.001) and IIEF-5 score (7.8 ± 2.6 versus 23.9 ± 1.3). Serum L-carnitine showed significant positive correlation with IIEF-5 scores (r = 0.873, P = 001), serum 25(OH)D (r = 0.796, P = 0.001) and significant negative correlation with the age (r = -0.515, P = 0.001). Serum 25(OH)D showed significant positive correlation with IIEF-5 scores (r = 0.855, P = 0.001) and significant negative correlation with the age (r = -0.223, P = 0.005). It is concluded that normal homeostasis of serum L-carnitine and 25(OH)D play a role in male sexual health being significantly decreased in ED non-responding for oral sildenafil citrate.
Collapse
|
6
|
Recent Pathophysiological Aspects of Peyronie's Disease: Role of Free Radicals, Rationale, and Therapeutic Implications for Antioxidant Treatment-Literature Review. Adv Urol 2017; 2017:4653512. [PMID: 28744308 PMCID: PMC5514334 DOI: 10.1155/2017/4653512] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/30/2017] [Indexed: 12/13/2022] Open
Abstract
Peyronie's disease (PD) is a chronic inflammation of tunica albuginea of the corpora cavernosa that causes an inelastic plaque resulting in penis deformation. Although its etiology is not completely known, there is general consensus that PD is genetically transmitted and secondary to penile trauma. In recent years, numerous studies demonstrated the role played by oxidative stress in PD pathogenesis, and other studies have described successful use of antioxidants in PD treatment. Oxidative stress is an integral part of this disease, influencing its progression. In the early stages of PD, the inflammatory infiltrate cells produce high quantities of free radicals and proinflammatory and profibrotic cytokines, with consequent activation of transcription factor NF-κB. While conservative therapies commonly used in the early stages of PD include oral substances (Potaba, tamoxifen, colchicine, and vitamin E), intralesional treatment (verapamil, interferon, steroids, and more recently collagenase clostridium histolyticum-Xiaflex), and local physical treatment (iontophoresis, extracorporeal shock wave therapy, and penile extender), the significant results obtained by emerging treatments with the antioxidants cited in this article suggest these therapeutic agents interfere at several levels with the disease's pathogenetic mechanisms. Antioxidants therapy outcomes are interesting for good clinical practice and also confirm the fundamental role played by oxidative stress in PD.
Collapse
|
7
|
Preventive effect of l-carnitine and its derivatives on endothelial dysfunction and platelet aggregation. Clin Nutr ESPEN 2016; 15:1-10. [DOI: 10.1016/j.clnesp.2016.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 06/10/2016] [Indexed: 11/18/2022]
|
8
|
Propionyl-L-Carnitine Enhances Wound Healing and Counteracts Microvascular Endothelial Cell Dysfunction. PLoS One 2015; 10:e0140697. [PMID: 26473356 PMCID: PMC4608702 DOI: 10.1371/journal.pone.0140697] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/28/2015] [Indexed: 12/22/2022] Open
Abstract
Background Impaired wound healing represents a high cost for health care systems. Endothelial dysfunction characterizes dermal microangiopathy and contributes to delayed wound healing and chronic ulcers. Endothelial dysfunction impairs cutaneous microvascular blood flow by inducing an imbalance between vasorelaxation and vasoconstriction as a consequence of reduced nitric oxide (NO) production and the increase of oxidative stress and inflammation. Propionyl-L-carnitine (PLC) is a natural derivative of carnitine that has been reported to ameliorate post-ischemic blood flow recovery. Methods and Results We investigated the effects of PLC in rat skin flap and cutaneous wound healing. A daily oral PLC treatment improved skin flap viability and associated with reactive oxygen species (ROS) reduction, inducible nitric oxide synthase (iNOS) and NO up-regulation, accelerated wound healing and increased capillary density, likely favoring dermal angiogenesis by up-regulation for iNOS, vascular endothelial growth factor (VEGF), placental growth factor (PlGF) and reduction of NADPH-oxidase 4 (Nox4) expression. In serum-deprived human dermal microvascular endothelial cell cultures, PLC ameliorated endothelial dysfunction by increasing iNOS, PlGF, VEGF receptors 1 and 2 expression and NO level. In addition, PLC counteracted serum deprivation-induced impairment of mitochondrial β-oxidation, Nox4 and cellular adhesion molecule (CAM) expression, ROS generation and leukocyte adhesion. Moreover, dermal microvascular endothelial cell dysfunction was prevented by Nox4 inhibition. Interestingly, inhibition of β-oxidation counteracted the beneficial effects of PLC on oxidative stress and endothelial dysfunction. Conclusion PLC treatment improved rat skin flap viability, accelerated wound healing and dermal angiogenesis. The beneficial effects of PLC likely derived from improvement of mitochondrial β-oxidation and reduction of Nox4-mediated oxidative stress and endothelial dysfunction. Antioxidant therapy and pharmacological targeting of endothelial dysfunction may represent a promising tool for the treatment of delayed wound healing or chronic ulcers.
Collapse
|
9
|
Abstract
INTRODUCTION Overweight/obesity, malnutrition, and abnormalities in carnitine metabolism are recognized in kidney transplant recipients (KTRs). AIM The aim of this study was to evaluate the prevalence of nutritional abnormalities and carnitine status in KTRs. METHODS The study was performed in 80 stable KTRs aged 52.4 ± 14.0 years, without carnitine supplementation. Nutritional status was determined using a 7-point Subjective Global Assessment, anthropometric measurements, and s-albumin level. Urinary excretion and serum concentration of total (TC), free (FC) carnitine were measured using enzymatic methods according to Cederblad. RESULTS Mean transplantation vintage and estimated glomerular filtration rate (Modification of Diet in Renal Disease; 4 points) were 82.5 ± 56.5 months and 42.0 ± 15.0 mL/min/1.73 m(2), respectively. Overweight and obesity were noticed in 41% and 14% of patients, respectively. Signs of malnutrition were present in 64% (21/33) of the overweight patients, and in 91% (10/11) of the obese patients. KTRs with malnutrition (Subjective Global Assessment ≤5) were significantly older, with longer transplantation vintage, lower eGFR, higher body mass index (BMI), higher body fat, and decreased hand grip strength in comparison to KTR with good nutritional status (Subjective Global Assessment >5). In 8.6% of KTRs, deficiency of FC (in serum and urine) was observed. Carnitine (TC and FC) and FC/TC ratio were not correlated with anthropometric and laboratory parameters of nutritional status. Serum of TC and FC concentrations negatively correlated with graft function. CONCLUSIONS Plasma carnitine deficiency (limited availability) can appear in the KTR group and does not correspond with signs of both malnutrition and obesity. In spite of overweight/obesity, KTRs showed features of malnutrition and they need thorough nutritional evaluation and appropriate nutritional interventions.
Collapse
|
10
|
Ning WH, Zhao K. Propionyl-L-carnitine induces eNOS activation and nitric oxide synthesis in endothelial cells via PI3 and Akt kinases. Vascul Pharmacol 2013; 59:76-82. [PMID: 23850990 DOI: 10.1016/j.vph.2013.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/09/2013] [Accepted: 07/04/2013] [Indexed: 11/20/2022]
Abstract
Propionyl-l-carnitine (PLC) is a natural short-chain derivative of l-carnitine (LC), a natural amino acid that plays an important role in fatty acid metabolism. Recent studies suggest that PLC has vascular protective effects. Because of the importance of endothelial nitric oxide synthase (eNOS) and its product, antiatherogenic molecule nitric oxide (NO), in vascular endothelial function, we sought to elucidate that if PLC would stimulate eNOS and its upstream activators Akt and phosphatidylinositol 3-kinase (PI3 Kinase) in cultured human aortic endothelial cells (HAEC). PLC caused eNOS phosphorylation at Ser-1177, and dominant negative Akt and a novel Akt-selective inhibitor MK-2206 inhibited both PLC-mediated phosphorylation and activation of the enzyme. PI3 kinase inhibition also blocked the phosphorylation and activation of eNOS by PLC. Studies with specific drug inhibitors PD173955 and PP2 showed that the non-receptor tyrosine kinase, src, is an upstream stimulator of the PI3 kinase-Akt pathway in this pathway. In addition, PLC significantly decreased intracellular ATP/ADP ratio and activate AMPK, subsequently leading to Src activation. Finally, we demonstrated that the effects of PLC to augment eNOS activity were associated with a net increase in NO release from endothelial cells. NO production following incubation with PLC was abolished in endothelial cells coincubated with L-NAME, PD173955, LY294002, MK-2206 and compound C. In conclusion, PLC, via AMPK/Src-mediated signaling that leads to activation of PI3 kinase and Akt, stimulates eNOS, leading to increased production of NO.
Collapse
Affiliation(s)
- Wen-hu Ning
- Department of Emergency, the Forth Clinical Hospital, Harbin Medical University, Heilongjiang Harbin 150001, China.
| | | |
Collapse
|
11
|
Sharma S, Aramburo A, Rafikov R, Sun X, Kumar S, Oishi PE, Datar SA, Raff G, Xoinis K, Kalkan G, Fratz S, Fineman JR, Black SM. L-carnitine preserves endothelial function in a lamb model of increased pulmonary blood flow. Pediatr Res 2013; 74:39-47. [PMID: 23628882 PMCID: PMC3709010 DOI: 10.1038/pr.2013.71] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 02/01/2013] [Indexed: 12/30/2022]
Abstract
BACKGROUND In our model of a congenital heart defect (CHD) with increased pulmonary blood flow (PBF; shunt), we have recently shown a disruption in carnitine homeostasis, associated with mitochondrial dysfunction and decreased endothelial nitric oxide synthase (eNOS)/heat shock protein (Hsp)90 interactions that contribute to eNOS uncoupling, increased superoxide levels, and decreased bioavailable nitric oxide (NO). Therefore, we undertook this study to test the hypothesis that L-carnitine therapy would maintain mitochondrial function and NO signaling. METHODS Thirteen fetal lambs underwent in utero placement of an aortopulmonary graft. Immediately after delivery, lambs received daily treatment with oral L-carnitine or its vehicle. RESULTS L-Carnitine-treated lambs had decreased levels of acylcarnitine and a reduced acylcarnitine:free carnitine ratio as compared with vehicle-treated shunt lambs. These changes correlated with increased carnitine acetyl transferase (CrAT) protein and enzyme activity and decreased levels of nitrated CrAT. The lactate:pyruvate ratio was also decreased in L-carnitine-treated lambs. Hsp70 protein levels were significantly decreased, and this correlated with increases in eNOS/Hsp90 interactions, NOS activity, and NOx levels, and a significant decrease in eNOS-derived superoxide. Furthermore, acetylcholine significantly decreased left pulmonary vascular resistance only in L-carnitine-treated lambs. CONCLUSION L-Carnitine therapy may improve the endothelial dysfunction noted in children with CHDs and has important clinical implications that warrant further investigation.
Collapse
Affiliation(s)
- Shruti Sharma
- Pulmonary Vascular Disease Program, Vascular Biology Center, Georgia Health Sciences University, Augusta GA 30912
| | - Angela Aramburo
- Department of Pediatrics, University of California, San Francisco CA,Department of Pediatrics, University Autonomous Barcelona, Spain
| | - Ruslan Rafikov
- Pulmonary Vascular Disease Program, Vascular Biology Center, Georgia Health Sciences University, Augusta GA 30912
| | - Xutong Sun
- Pulmonary Vascular Disease Program, Vascular Biology Center, Georgia Health Sciences University, Augusta GA 30912
| | - Sanjiv Kumar
- Pulmonary Vascular Disease Program, Vascular Biology Center, Georgia Health Sciences University, Augusta GA 30912
| | - Peter E. Oishi
- Department of Pediatrics, University of California, San Francisco CA,Cardiovascular Research Institute, University of California, San Francisco CA
| | - Sanjeev A. Datar
- Department of Pediatrics, University of California, San Francisco CA
| | - Gary Raff
- Department of Cardiothoracic Surgery, University of California, Davis CA
| | - Kon Xoinis
- Department of Pediatrics, University of California, San Francisco CA
| | - Gohkan Kalkan
- Department of Pediatrics, University of California, San Francisco CA
| | - Sohrab Fratz
- Department of Pediatric Cardiology and Congenital Heart Disease, Deutsches Herzzentrum München, Klinik an der Technischen Universität München, Lazarettstrasse 36, 80636 Munich, Germany
| | - Jeffrey R. Fineman
- Department of Pediatrics, University of California, San Francisco CA,Cardiovascular Research Institute, University of California, San Francisco CA
| | - Stephen M. Black
- Pulmonary Vascular Disease Program, Vascular Biology Center, Georgia Health Sciences University, Augusta GA 30912
| |
Collapse
|
12
|
Role of carnitine acetyl transferase in regulation of nitric oxide signaling in pulmonary arterial endothelial cells. Int J Mol Sci 2012; 14:255-72. [PMID: 23344032 PMCID: PMC3565262 DOI: 10.3390/ijms14010255] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/26/2012] [Accepted: 11/30/2012] [Indexed: 12/16/2022] Open
Abstract
Congenital heart defects with increased pulmonary blood flow (PBF) result in pulmonary endothelial dysfunction that is dependent, at least in part, on decreases in nitric oxide (NO) signaling. Utilizing a lamb model with left-to-right shunting of blood and increased PBF that mimics the human disease, we have recently shown that a disruption in carnitine homeostasis, due to a decreased carnitine acetyl transferase (CrAT) activity, correlates with decreased bioavailable NO. Thus, we undertook this study to test the hypothesis that the CrAT enzyme plays a major role in regulating NO signaling through its effect on mitochondrial function. We utilized the siRNA gene knockdown approach to mimic the effect of decreased CrAT activity in pulmonary arterial endothelial cells (PAEC). Our data indicate that silencing the CrAT gene disrupted cellular carnitine homeostasis, reduced the expression of mitochondrial superoxide dismutase-and resulted in an increase in oxidative stress within the mitochondrion. CrAT gene silencing also disrupted mitochondrial bioenergetics resulting in reduced ATP generation and decreased NO signaling secondary to a reduction in eNOS/Hsp90 interactions. Thus, this study links the disruption of carnitine homeostasis to the loss of NO signaling observed in children with CHD. Preserving carnitine homeostasis may have important clinical implications that warrant further investigation.
Collapse
|
13
|
Mingorance C, Duluc L, Chalopin M, Simard G, Ducluzeau PH, Herrera MD, Alvarez de Sotomayor M, Andriantsitohaina R. Propionyl-L-carnitine corrects metabolic and cardiovascular alterations in diet-induced obese mice and improves liver respiratory chain activity. PLoS One 2012; 7:e34268. [PMID: 22457831 PMCID: PMC3311627 DOI: 10.1371/journal.pone.0034268] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 02/24/2012] [Indexed: 11/18/2022] Open
Abstract
AIMS Obesity is a primary contributor to acquired insulin resistance leading to the development of type 2 diabetes and cardiovascular alterations. The carnitine derivate, propionyl-L-carnitine (PLC), plays a key role in energy control. Our aim was to evaluate metabolic and cardiovascular effects of PLC in diet-induced obese mice. METHODS C57BL/6 mice were fed a high-fat diet for 9 weeks and then divided into two groups, receiving either free- (vehicle-HF) or PLC-supplemented water (200 mg/kg/day) during 4 additional weeks. Standard diet-fed animals were used as lean controls (vehicle-ST). Body weight and food intake were monitored. Glucose and insulin tolerance tests were assessed, as well as the HOMA(IR), the serum lipid profile, the hepatic and muscular mitochondrial activity and the tissue nitric oxide (NO) liberation. Systolic blood pressure, cardiac and endothelial functions were also evaluated. RESULTS Vehicle-HF displayed a greater increase of body weight compared to vehicle-ST that was completely reversed by PLC treatment without affecting food intake. PLC improved the insulin-resistant state and reversed the increased total cholesterol but not the increase in free fatty acid, triglyceride and HDL/LDL ratio induced by high-fat diet. Vehicle-HF exhibited a reduced cardiac output/body weight ratio, endothelial dysfunction and tissue decrease of NO production, all of them being improved by PLC treatment. Finally, the decrease of hepatic mitochondrial activity by high-fat diet was reversed by PLC. CONCLUSIONS Oral administration of PLC improves the insulin-resistant state developed by obese animals and decreases the cardiovascular risk associated to this metabolic alteration probably via correction of mitochondrial function.
Collapse
Affiliation(s)
- Carmen Mingorance
- Department of Pharmacology, School of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Lucie Duluc
- LUNAM Université, Anger, France
- INSERM U1063, Angers, France
| | | | - Gilles Simard
- LUNAM Université, Anger, France
- INSERM U1063, Angers, France
- Université d'Angers, CHU Angers, Department of Biochemistry, Angers, France
| | | | - Maria Dolores Herrera
- Department of Pharmacology, School of Pharmacy, University of Sevilla, Sevilla, Spain
| | | | | |
Collapse
|
14
|
Talero E, Alvarez de Sotomayor M, Sánchez-Fidalgo S, Motilva V. Vascular contribution of adrenomedullin to microcirculatory improvement in experimental colitis. Eur J Pharmacol 2011; 670:601-7. [PMID: 21958875 DOI: 10.1016/j.ejphar.2011.09.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 09/07/2011] [Accepted: 09/11/2011] [Indexed: 01/14/2023]
Abstract
The effect of adrenomedullin (AM), a peptide that has demonstrated vasodilatory activity, was studied in the colon and small mesenteric arteries of rats in a chronic model of inflammatory bowel disease. AM (50 ng/kg/day) was administered i.p. daily, starting 24h after trinitrobenzensulfonic acid (TNBS, 30 mg) instillation. After 14 days, rats were sacrificed, colons were macroscopically analyzed and biochemical parameters (myeloperoxidase activity, cytokines, cyclooxygenase-2 (COX-2) as well as inducible nitric oxide synthase (iNOS) expression) were determined. Vascular function of small mesenteric arteries was assessed by addition of phenylephrine (10⁻⁸ to 10⁻⁴ mol/L) and participation of COX and NOS pathways was also evaluated by using different inhibitors: indomethacin, NS-398, L-NNA, and 1400 w. Chronic AM treatment significantly reduced colonic macroscopic damage and inflammation markers. TNBS instillation induced COX-2 and iNOS expressions in colon and small mesenteric arteries; AM treatment decreased COX-2 expression only in microvessels from rats with colitis. An attenuation of phenylephrine-induced contraction was detected in small mesenteric arteries from both TNBS and AM-treated rats. COX and NOS inhibitors altered the contractile ability of phenylephrine in small mesenteric arteries from TNBS rats, suggesting the involvement of COX-2 and iNOS derived factors in the deleterious effect of TNBS on vascular reactivity; AM administration was able to reduce such alteration. Finally, treatment with the peptide significantly reduced colonic nitric oxide (NO) levels, without affecting plasma concentration. In conclusion, AM showed beneficial effects in the restoration of vascular function through the regulation of vasoactive products derived from COX-2 and iNOS.
Collapse
Affiliation(s)
- Elena Talero
- Department of Pharmacology, School of Pharmacy, University of Seville, Spain.
| | | | | | | |
Collapse
|
15
|
Mingorance C, Rodriguez-Rodriguez R, Justo ML, Herrera MD, de Sotomayor MA. Pharmacological effects and clinical applications of propionyl-L-carnitine. Nutr Rev 2011; 69:279-90. [PMID: 21521230 DOI: 10.1111/j.1753-4887.2011.00387.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Propionyl-L-carnitine (PLC) is a naturally occurring derivative of carnitine that plays an important role in the metabolism of both carbohydrates and lipids, leading to an increase of ATP generation. PLC, however, is not only a metabolic drug; it is also a potent antiradical agent and thus may protect tissues from oxidative damage. PLC has been demonstrated to exert a protective effect in different models of both cardiac and endothelial dysfunction, to prevent the progression of atherosclerosis, and, more recently, to improve some of the cardiometabolic alterations that frequently accompany insulin resistance. As a result, most of the clinical trials conducted in humans highlight PLC as a potential treatment option in cardiovascular diseases such as peripheral arterial disease, chronic heart failure, or stable angina, especially when type 2 diabetes mellitus or hyperglycemia (i.e., patients on hemodialysis) are also present. The aim of this review is to summarize the pharmacological effects and possible therapeutic applications of PLC, including the most recent findings to date.
Collapse
Affiliation(s)
- Carmen Mingorance
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | | | | | | | | |
Collapse
|
16
|
Conde MV, Gonzalez MC, Quintana-Villamandos B, Abderrahim F, Briones AM, Condezo-Hoyos L, Regadera J, Susin C, Gomez de Diego JJ, Delgado-Baeza E, Diaz-Gil JJ, Arribas SM. Liver growth factor treatment restores cell-extracellular matrix balance in resistance arteries and improves left ventricular hypertrophy in SHR. Am J Physiol Heart Circ Physiol 2011; 301:H1153-65. [PMID: 21642499 DOI: 10.1152/ajpheart.00886.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Liver growth factor (LGF) is an endogenous albumin-bilirubin complex with antihypertensive effects in spontaneously hypertensive rats (SHR). We assessed the actions of LGF treatment on SHR mesenteric resistance and intramyocardial arteries (MRA and IMA, respectively), heart, and vascular smooth muscle cells (VSMC). SHR and Wistar-Kyoto (WKY) rats treated with vehicle or LGF (4.5 μg LGF/rat, 4 ip injections over 12 days) were used. Intra-arterial blood pressure was measured in anesthetized rats. The heart was weighted and paraffin-embedded. Proliferation, ploidy, and fibronectin deposition were studied in carotid artery-derived VSMC by immunocytochemistry. In MRA, we assessed: 1) geometry and mechanics by pressure myography; 2) function by wire myography; 3) collagen by sirius red staining and polarized light microscopy, and 4) elastin, cell density, nitric oxide (NO), and superoxide anion by confocal microscopy. Heart sections were used to assess cell density and collagen content in IMA. Left ventricular hypertrophy (LVH) regression was assessed by echocardiography. LGF reduced blood pressure only in SHR. LGF in vitro or as treatment normalized the alterations in proliferation and fibronectin in SHR-derived VSMC with no effect on WKY cells. In MRA, LGF treatment normalized collagen, elastin, and VSMC content and passive mechanical properties. In addition, it improved NO availability through reduction of superoxide anion. In IMA, LGF treatment normalized perivascular collagen and VSMC density, improving the wall-to-lumen ratio. Paired experiments demonstrated a partial regression of SHR LVH by LGF treatment. The effective cardiovascular antifibrotic and regenerative actions of LGF support its potential in the treatment of hypertension and its complications.
Collapse
Affiliation(s)
- M Victoria Conde
- Facultad de Medicina, Departamentos de Fisiologia, Universidad Autonoma de Madrid, Madrid Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lapi D, Sabatino L, Altobelli GG, Mondola P, Cimini V, Colantuoni A. Effects of propionyl-L-carnitine on ischemia-reperfusion injury in hamster cheek pouch microcirculation. Front Physiol 2010; 1:132. [PMID: 21423374 PMCID: PMC3059950 DOI: 10.3389/fphys.2010.00132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 08/23/2010] [Indexed: 11/13/2022] Open
Abstract
Background and purpose Propionyl-l-carnitine (pLc) exerts protective effects in different experimental models of ischemia–reperfusion (I/R). The aim of the present study was to assess the effects of intravenously and topically applied pLc on microvascular permeability increase induced by I/R in the hamster cheek pouch preparation. Methods The hamster cheek pouch microcirculation was visualized by fluorescence microscopy. Microvascular permeability, leukocyte adhesion to venular walls, perfused capillary length, and capillary red blood cell velocity (VRBC) were evaluated by computer-assisted methods. E-selectin expression was assessed by in vitro analysis. Lipid peroxidation and reactive oxygen species (ROS) formation were determined by thiobarbituric acid-reactive substances (TBARS) and 2′-7′-dichlorofluorescein (DCF), respectively. Results In control animals, I/R caused a significant increase in permeability and in the leukocyte adhesion in venules. Capillary perfusion and VRBC decreased. TBARS levels and DCF fluorescence significantly increased compared with baseline. Intravenously infused pLc dose-dependently prevented leakage and leukocyte adhesion, preserved capillary perfusion, and induced vasodilation at the end of reperfusion, while ROS concentration decreased. Inhibition of nitric oxide synthase prior to pLc caused vasoconstriction and partially blunted the pLc-induced protective effects; inhibition of the endothelium-derived hyperpolarizing factor (EDHF) abolished pLc effects. Topical application of pLc on cheek pouch membrane produced the same effects as observed with intravenous administration. pLc decreased the E-selectin expression. Conclusions pLc prevents microvascular changes induced by I/R injury. The reduction of permeability increase could be mainly due to EDHF release induce vasodilatation together with NO. The reduction of E-selectin expression prevents leukocyte adhesion and permeability increase.
Collapse
Affiliation(s)
- Dominga Lapi
- Department of Neuroscience, "Federico II" University Medical School of Naples Naples, Italy.
| | | | | | | | | | | |
Collapse
|
18
|
Weston AH, Porter EL, Harno E, Edwards G. Impairment of endothelial SK(Ca) channels and of downstream hyperpolarizing pathways in mesenteric arteries from spontaneously hypertensive rats. Br J Pharmacol 2010; 160:836-43. [PMID: 20233221 DOI: 10.1111/j.1476-5381.2010.00657.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Previous studies have shown that endothelium-dependent hyperpolarization of myocytes is reduced in resistance arteries from spontaneously hypertensive rats (SHRs). The aim of the present study was to determine whether this reflects down-regulation of endothelial K(+) channels or their associated pathways. EXPERIMENTAL APPROACH Changes in vascular K(+) channel responses and expression were determined by a combination of membrane potential recordings and Western blotting. KEY RESULTS Endothelium-dependent myocyte hyperpolarizations induced by acetylcholine, 6,7-dichloro-1H-indole-2,3-dione 3-oxime (NS309) (opens small- and intermediate-conductance calcium-sensitive K(+) channels, SK(Ca) and IK(Ca), respectively) or cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-pyrimidin-4-yl]-amine (SK(Ca) opener) were reduced in mesenteric arteries from SHRs. After blocking SK(Ca) channels with apamin, hyperpolarizations to acetylcholine and NS309 in SHR arteries were similar to those of controls. Hyperpolarization to 5 mM KCl was reduced in SHR arteries due to loss of the Ba(2+)-sensitive, inward-rectifier channel (K(IR)) component; the contribution of ouabain-sensitive, Na(+)/K(+)-ATPases was unaffected. Protein expression of both SK(Ca) and K(IR) channels was reduced in SHR arteries; the caveolin-1 monomer/dimer ratio was increased. CONCLUSIONS AND IMPLICATIONS In SHRs, the distinct pathway that generates endothelium-dependent hyperpolarization in vascular myocyte by activation of IK(Ca) channels and Na(+)/K(+)-ATPases remains intact. The second pathway, initiated by endothelial SK(Ca) channel activation and amplified by K(IR) opening on both endothelial cells and myocytes is compromised in SHRs due to down-regulation of both SK(Ca) and K(IR) and to changes in caveolin-1 oligomers. These impairments in the SK(Ca)-K(IR) pathway shed new light on vascular control mechanisms and on the underlying vascular changes in hypertension.
Collapse
Affiliation(s)
- A H Weston
- Faculty of Life Sciences, Core Technology Facility, The University of Manchester, Manchester, UK
| | | | | | | |
Collapse
|
19
|
Abstract
Despite the apparent consensus on the existence of endothelial dysfunction in conduit and resistance arteries of spontaneously hypertensive rats (SHR), a commonly employed experimental model of hypertension, there are a number of reports showing that endothelium-dependent vasodilatory responses are similar, or even increased, in SHR compared with their normotensive counterparts. The present paper aims to discuss the rationale for these apparent discrepancies, including the effect of age, type of artery and methodological aspects. Data from the literature indicate that the age of the animal is a contributing factor and that endothelial dysfunction is likely to be a consequence of hypertension. In addition, the use of antioxidant additives, such as ascorbic acid or ethylene diaminetetraacetic acid, and differences in the level of initial arterial stretch, might also be of importance because they may modify the oxidative status of the artery and the levels of vasoactive factors released by the endothelium.
Collapse
|
20
|
O’Brien D, Chunduri P, Iyer A, Brown L. l-Carnitine Attenuates Cardiac Remodelling rather than Vascular Remodelling in Deoxycorticosterone Acetate-Salt Hypertensive Rats. Basic Clin Pharmacol Toxicol 2009; 106:296-301. [DOI: 10.1111/j.1742-7843.2009.00480.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
21
|
Effects of pomace olive oil-enriched diets on endothelial function of small mesenteric arteries from spontaneously hypertensive rats. Br J Nutr 2009; 102:1435-44. [DOI: 10.1017/s0007114509990754] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pomace olive oil (POM), an olive oil subproduct traditionally used in Spain, is a good source of minor components from the unsaponifiable fraction such as triterpenoids, mainly in the form of oleanolic acid, which induces vascular protection and vasodilatation. Our aim was to evaluate the effects of long-term intake of diets enriched in POM with high concentration in oleanolic acid on endothelial dysfunction associated to hypertension in small mesenteric arteries (SMA) from spontaneously hypertensive rats (SHR). During 12 weeks, rats (six rats per group) were fed either a control 2 % maize oil diet (BD), or high-fat diets containing 15 % refined olive oil (OL), pomace olive oil (POM), or pomace olive oil supplemented in oleanolic acid (POMO; up to 800 parts per million). Endothelial and vascular functions were assessed by relaxing or contracting responses to acetylcholine (ACh) or phenylephrine, respectively. The involvement of endothelium-derived relaxing factors in these responses was evaluated. In contrast to BD, SHR fed high-fat diets showed a biphasic response to ACh related to changes in eicosanoid metabolism. POM enhanced the endothelial function in SMA from SHR by increasing the endothelium-derived hyperpolarising factor (EDHF)-type component, whereas administration of POMO resulted in a similar contribution of NO/EDHF in the endothelial response to ACh. The present study shows that despite the lack of changes in blood pressure, consumption of POM improves endothelial function in SMA from SHR by improving the agonist-mediated EDHF/NO response. Thus, triterpenoids confer a protective role to POM against endothelial dysfunction in hypertension.
Collapse
|
22
|
Oral supplementation of propionyl-l-carnitine reduces body weight and hyperinsulinaemia in obese Zucker rats. Br J Nutr 2009; 102:1145-53. [PMID: 19545458 DOI: 10.1017/s0007114509389230] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Propionyl-L-carnitine (PLC) is an SCFA esterified to carnitine that plays an important role in fatty acid oxidation and energy expenditure, in addition to having a protective effect on the endothelium. In order to evaluate the effect of PLC on an animal model of obesity, insulin resistance and, consequently, endothelial dysfunction, lean and obese Zucker rats (OZR) received either vehicle- or PLC-supplemented drinking water (200 mg/kg per d) for 20 weeks. Body weight, food intake, systolic blood pressure and heart rate were controlled weekly and an oral glucose tolerance test was performed. Fasting glucose, TAG, cholesterol, HDL, NEFA, adiponectin and insulin were analysed in serum. Visceral adipose tissue and liver were weighed and liver TAG liver composition was evaluated. Endothelial and vascular functions were assessed in the aorta and small mesenteric arteries by response to acetylcholine, sodium nitroprusside and phenylephrine (Phe); NO participation was evaluated after incubation with the NO synthase (NOS) inhibitor NG-nitro-L-arginine methyl ester (L-NAME) and endothelial NOS protein expression by Western blotting. PLC decreased body-weight gain, food intake, adiposity, insulin serum concentration and TAG liver content and improved insulin resistance. Aortae from OZR receiving either vehicle or PLC exhibited a lower contractile response to Phe. PLC-treated OZR showed an enhanced release of endothelial NO upon the adrenergic stimulation. The protection of vascular function found after treatment with PLC in an animal model of insulin resistance supports the necessity of clinical trials showing the effect of L-carnitine supplements on metabolic disorders.
Collapse
|
23
|
Ustundag S, Sen S, Yalcin O, Ciftci S, Demirkan B, Ture M. L-Carnitine ameliorates glycerol-induced myoglobinuric acute renal failure in rats. Ren Fail 2009; 31:124-33. [PMID: 19212909 DOI: 10.1080/08860220802599130] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
There is increasing evidence indicating that oxidative stress plays an important role in the pathogenesis of rhabdomyolysis-induced myoglobinuric acute renal failure (ARF). During times of war and natural disasters, myoglobinuric ARF can assume epidemic proportions. Thus, early and effective renoprotective treatments are of utmost importance. It has been shown that L-carnitine, used as a safe and effective nutritional supplement for more than three decades, is effective in preventing renal injury in many renal injury models involving oxidative stress. The present study was performed to investigate the effects of L-carnitine in an experimental model of myoglobinuric ARF. Four groups of rats were employed in this study: group 1 served as a control; group 2 was given glycerol (10 mL/kg, i.m.); group 3 was given glycerol plus L-carnitine (100 mg/kg, i.p.), starting at the same time as the glycerol injection; group 4 was given glycerol plus L-carnitine (100 mg/kg, i.p.), starting 48h before the glycerol injection. After glycerol injections, the i.p. injections of L-carnitine were repeated every 24h for four days. Ninety-six hours after glycerol injections, blood samples and kidney tissues were taken from the anesthetized rats. Urea and creatinine levels in plasma, N-acetyl-beta-D-glucosaminidase activity in urine, and malondialdehyde levels and catalase enzyme activity in kidney tissue were determined. Histopathological changes and iron accumulation in the kidney tissue were evaluated. In this study, glycerol administration led to marked renal oxidative stress, as well as severe functional and morphological renal deterioration. L-carnitine, possibly via its antioxidant properties, ameliorates glycerol-induced myoglobinuric kidney injury.
Collapse
Affiliation(s)
- Sedat Ustundag
- Trakya University Faculty of Medicine, Department of Nephrology, Edirne, Turkey.
| | | | | | | | | | | |
Collapse
|
24
|
Hypertension increases middle cerebral artery resting tone in spontaneously hypertensive rats: role of tonic vasoactive factor availability. Clin Sci (Lond) 2008; 114:651-9. [DOI: 10.1042/cs20070361] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The present study explores the contribution of alterations in resting tone to cerebral artery narrowing in SHRs (spontaneously hypertensive rats) and the role of hypertension development. Young pre-hypertensive and adult fully hypertensive SHRs and age-matched Wistar–Kyoto rat controls were used. The contribution of basal vasoactive factors to resting tone was studied in middle cerebral arteries with pressure myography. Basal NO and O2− (superoxide anion) availability were determined with fluorescent indicators using confocal microscopy and lucigenin-enhanced chemiluminescence. Basal O2− was also assessed in mesenteric resistance arteries. Middle cerebral arteries from adult rats, but not young pre-hypertensive rats, had augmented myogenic responses and resting tone and decreased relaxation to sodium nitroprusside compared with their normotensive counterparts. Cerebral arteries from adult SHRs also had an increase in tonic NO associated with a decrease in basal O2− availability. Basal O2− was instead increased in mesenteric arteries from SHRs. The present results indicate that large cerebral arteries from SHRs have an increase in their resting tone as a consequence of sustained hypertension and that this is related to a decrease in NO responsiveness. We suggest that this increase in resting tone and myogenic responses could act as a protective mechanism against the development of stroke in SHRs. The present study also demonstrates some unusual findings regarding the current understanding of the NO/O2− balance in hypertension with important differences between vascular beds and draws attention to the complexity of this balance in cardiovascular health and disease.
Collapse
|