1
|
Seroussi E, Pitel F, Leroux S, Morisson M, Bornelöv S, Miyara S, Yosefi S, Cogburn LA, Burt DW, Anderson L, Friedman-Einat M. Mapping of leptin and its syntenic genes to chicken chromosome 1p. BMC Genet 2017; 18:77. [PMID: 28793857 PMCID: PMC5550943 DOI: 10.1186/s12863-017-0543-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 08/02/2017] [Indexed: 01/22/2023] Open
Abstract
Background Misidentification of the chicken leptin gene has hampered research of leptin signaling in this species for almost two decades. Recently, the genuine leptin gene with a GC-rich (~70%) repetitive-sequence content was identified in the chicken genome but without indicating its genomic position. This suggests that such GC-rich sequences are difficult to sequence and therefore substantial regions are missing from the current chicken genome assembly. Results A radiation hybrid panel of chicken-hamster Wg3hCl2 cells was used to map the genome location of the chicken leptin gene. Contrary to our expectations, based on comparative genome mapping and sequence characteristics, the chicken leptin was not located on a microchromosome, which are known to contain GC-rich and repetitive regions, but at the distal tip of the largest chromosome (1p). Following conserved synteny with other vertebrates, we also mapped five additional genes to this genomic region (ARF5, SND1, LRRC4, RBM28, and FLNC), bridging the genomic gap in the current Galgal5 build for this chromosome region. All of the short scaffolds containing these genes were found to consist of GC-rich (54 to 65%) sequences comparing to the average GC-content of 40% on chromosome 1. In this syntenic group, the RNA-binding protein 28 (RBM28) was in closest proximity to leptin. We deduced the full-length of the RBM28 cDNA sequence and profiled its expression patterns detecting a negative correlation (R = − 0.7) between the expression of leptin and of RBM28 across tissues that expressed at least one of the genes above the average level. This observation suggested a local regulatory interaction between these genes. In adipose tissues, we observed a significant increase in RBM28 mRNA expression in breeds with lean phenotypes. Conclusion Mapping chicken leptin together with a cluster of five syntenic genes provided the final proof for its identification as the true chicken ortholog. The high GC-content observed for the chicken leptin syntenic group suggests that other similar clusters of genes in GC-rich genomic regions are missing from the current genome assembly (Galgal5), which should be resolved in future assemblies of the chicken genome. Electronic supplementary material The online version of this article (doi:10.1186/s12863-017-0543-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eyal Seroussi
- Department of Animal Science, Agricultural Research Organization, Volcani Center, P.O. Box 15159, 7528809, Rishon LeTsiyon, Israel.
| | - Frédérique Pitel
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, 31326, Castanet Tolosan, France
| | - Sophie Leroux
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, 31326, Castanet Tolosan, France
| | - Mireille Morisson
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, 31326, Castanet Tolosan, France
| | - Susanne Bornelöv
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123, Uppsala, Sweden
| | - Shoval Miyara
- Department of Animal Science, Agricultural Research Organization, Volcani Center, P.O. Box 15159, 7528809, Rishon LeTsiyon, Israel
| | - Sara Yosefi
- Department of Animal Science, Agricultural Research Organization, Volcani Center, P.O. Box 15159, 7528809, Rishon LeTsiyon, Israel
| | - Larry A Cogburn
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA
| | - David W Burt
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Leif Anderson
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123, Uppsala, Sweden.,Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4458, USA.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-75007, Uppsala, Sweden
| | - Miriam Friedman-Einat
- Department of Animal Science, Agricultural Research Organization, Volcani Center, P.O. Box 15159, 7528809, Rishon LeTsiyon, Israel.
| |
Collapse
|
2
|
Schmid M, Smith J, Burt DW, Aken BL, Antin PB, Archibald AL, Ashwell C, Blackshear PJ, Boschiero C, Brown CT, Burgess SC, Cheng HH, Chow W, Coble DJ, Cooksey A, Crooijmans RPMA, Damas J, Davis RVN, de Koning DJ, Delany ME, Derrien T, Desta TT, Dunn IC, Dunn M, Ellegren H, Eöry L, Erb I, Farré M, Fasold M, Fleming D, Flicek P, Fowler KE, Frésard L, Froman DP, Garceau V, Gardner PP, Gheyas AA, Griffin DK, Groenen MAM, Haaf T, Hanotte O, Hart A, Häsler J, Hedges SB, Hertel J, Howe K, Hubbard A, Hume DA, Kaiser P, Kedra D, Kemp SJ, Klopp C, Kniel KE, Kuo R, Lagarrigue S, Lamont SJ, Larkin DM, Lawal RA, Markland SM, McCarthy F, McCormack HA, McPherson MC, Motegi A, Muljo SA, Münsterberg A, Nag R, Nanda I, Neuberger M, Nitsche A, Notredame C, Noyes H, O'Connor R, O'Hare EA, Oler AJ, Ommeh SC, Pais H, Persia M, Pitel F, Preeyanon L, Prieto Barja P, Pritchett EM, Rhoads DD, Robinson CM, Romanov MN, Rothschild M, Roux PF, Schmidt CJ, Schneider AS, Schwartz MG, Searle SM, Skinner MA, Smith CA, Stadler PF, Steeves TE, Steinlein C, Sun L, Takata M, Ulitsky I, Wang Q, Wang Y, et alSchmid M, Smith J, Burt DW, Aken BL, Antin PB, Archibald AL, Ashwell C, Blackshear PJ, Boschiero C, Brown CT, Burgess SC, Cheng HH, Chow W, Coble DJ, Cooksey A, Crooijmans RPMA, Damas J, Davis RVN, de Koning DJ, Delany ME, Derrien T, Desta TT, Dunn IC, Dunn M, Ellegren H, Eöry L, Erb I, Farré M, Fasold M, Fleming D, Flicek P, Fowler KE, Frésard L, Froman DP, Garceau V, Gardner PP, Gheyas AA, Griffin DK, Groenen MAM, Haaf T, Hanotte O, Hart A, Häsler J, Hedges SB, Hertel J, Howe K, Hubbard A, Hume DA, Kaiser P, Kedra D, Kemp SJ, Klopp C, Kniel KE, Kuo R, Lagarrigue S, Lamont SJ, Larkin DM, Lawal RA, Markland SM, McCarthy F, McCormack HA, McPherson MC, Motegi A, Muljo SA, Münsterberg A, Nag R, Nanda I, Neuberger M, Nitsche A, Notredame C, Noyes H, O'Connor R, O'Hare EA, Oler AJ, Ommeh SC, Pais H, Persia M, Pitel F, Preeyanon L, Prieto Barja P, Pritchett EM, Rhoads DD, Robinson CM, Romanov MN, Rothschild M, Roux PF, Schmidt CJ, Schneider AS, Schwartz MG, Searle SM, Skinner MA, Smith CA, Stadler PF, Steeves TE, Steinlein C, Sun L, Takata M, Ulitsky I, Wang Q, Wang Y, Warren WC, Wood JMD, Wragg D, Zhou H. Third Report on Chicken Genes and Chromosomes 2015. Cytogenet Genome Res 2015; 145:78-179. [PMID: 26282327 PMCID: PMC5120589 DOI: 10.1159/000430927] [Show More Authors] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Michael Schmid
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Meslin C, Desert C, Callebaut I, Djari A, Klopp C, Pitel F, Leroux S, Martin P, Froment P, Guilbert E, Gondret F, Lagarrigue S, Monget P. Expanding Duplication of Free Fatty Acid Receptor-2 (GPR43) Genes in the Chicken Genome. Genome Biol Evol 2015; 7:1332-48. [PMID: 25912043 PMCID: PMC4453067 DOI: 10.1093/gbe/evv072] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Free fatty acid receptors (FFAR) belong to a family of five G-protein coupled receptors that are involved in the regulation of lipid metabolism, so that their loss of function increases the risk of obesity. The aim of this study was to determine the expansion of genes encoding paralogs of FFAR2 in the chicken, considered as a model organism for developmental biology and biomedical research. By estimating the gene copy number using quantitative polymerase chain reaction, genomic DNA resequencing, and RNA sequencing data, we showed the existence of 23 ± 1.5 genes encoding FFAR2 paralogs in the chicken genome. The FFAR2 paralogs shared an identity from 87.2% up to 99%. Extensive gene conversion was responsible for this high degree of sequence similarities between these genes, and this concerned especially the four amino acids known to be critical for ligand binding. Moreover, elevated nonsynonymous/synonymous substitution ratios on some amino acids within or in close-vicinity of the ligand-binding groove suggest that positive selection may have reduced the effective rate of gene conversion in this region, thus contributing to diversify the function of some FFAR2 paralogs. All the FFAR2 paralogs were located on a microchromosome in a same linkage group. FFAR2 genes were expressed in different tissues and cells such as spleen, peripheral blood mononuclear cells, abdominal adipose tissue, intestine, and lung, with the highest rate of expression in testis. Further investigations are needed to determine whether these chicken-specific events along evolution are the consequence of domestication and may play a role in regulating lipid metabolism in this species.
Collapse
Affiliation(s)
- Camille Meslin
- UMR85 Physiologie de la Reproduction et des Comportements, INRA, Nouzilly, France UMR7247, CNRS, Nouzilly, France Université François Rabelais de Tours, France Institut Français du Cheval et de l'Equitation, Nouzilly, France
| | - Colette Desert
- INRA, UMR1348 Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'élevage, Saint-Gilles, France Agrocampus-Ouest, UMR1348, Rennes, France
| | - Isabelle Callebaut
- IMPMC, UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD UMR 206, Sorbonne Universités-UPMC Université Paris 06, France
| | - Anis Djari
- INRA, BIA, CS 52627, Castanet-Tolosan, France
| | | | - Frédérique Pitel
- UMR INRA/INPT ENSAT/INPT ENVT, UMR1388 Génétique, Physiologie et Systèmes d'élevage, INRA, Castanet Tolosan, France
| | - Sophie Leroux
- UMR INRA/INPT ENSAT/INPT ENVT, UMR1388 Génétique, Physiologie et Systèmes d'élevage, INRA, Castanet Tolosan, France
| | - Pascal Martin
- INRA, UR 0066 Pharmacologie-Toxicologie, Toulouse, France
| | - Pascal Froment
- UMR85 Physiologie de la Reproduction et des Comportements, INRA, Nouzilly, France UMR7247, CNRS, Nouzilly, France Université François Rabelais de Tours, France Institut Français du Cheval et de l'Equitation, Nouzilly, France
| | - Edith Guilbert
- UMR85 Physiologie de la Reproduction et des Comportements, INRA, Nouzilly, France UMR7247, CNRS, Nouzilly, France Université François Rabelais de Tours, France Institut Français du Cheval et de l'Equitation, Nouzilly, France
| | - Florence Gondret
- INRA, UMR1348 Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'élevage, Saint-Gilles, France Agrocampus-Ouest, UMR1348, Rennes, France
| | - Sandrine Lagarrigue
- INRA, UMR1348 Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'élevage, Saint-Gilles, France Agrocampus-Ouest, UMR1348, Rennes, France
| | - Philippe Monget
- UMR85 Physiologie de la Reproduction et des Comportements, INRA, Nouzilly, France UMR7247, CNRS, Nouzilly, France Université François Rabelais de Tours, France Institut Français du Cheval et de l'Equitation, Nouzilly, France
| |
Collapse
|
4
|
Pereira J, Johnson WE, O’Brien SJ, Jarvis ED, Zhang G, Gilbert MTP, Vasconcelos V, Antunes A. Evolutionary genomics and adaptive evolution of the Hedgehog gene family (Shh, Ihh and Dhh) in vertebrates. PLoS One 2014; 9:e74132. [PMID: 25549322 PMCID: PMC4280113 DOI: 10.1371/journal.pone.0074132] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/29/2013] [Indexed: 12/21/2022] Open
Abstract
The Hedgehog (Hh) gene family codes for a class of secreted proteins composed of two active domains that act as signalling molecules during embryo development, namely for the development of the nervous and skeletal systems and the formation of the testis cord. While only one Hh gene is found typically in invertebrate genomes, most vertebrates species have three (Sonic hedgehog – Shh; Indian hedgehog – Ihh; and Desert hedgehog – Dhh), each with different expression patterns and functions, which likely helped promote the increasing complexity of vertebrates and their successful diversification. In this study, we used comparative genomic and adaptive evolutionary analyses to characterize the evolution of the Hh genes in vertebrates following the two major whole genome duplication (WGD) events. To overcome the lack of Hh-coding sequences on avian publicly available databases, we used an extensive dataset of 45 avian and three non-avian reptilian genomes to show that birds have all three Hh paralogs. We find suggestions that following the WGD events, vertebrate Hh paralogous genes evolved independently within similar linkage groups and under different evolutionary rates, especially within the catalytic domain. The structural regions around the ion-binding site were identified to be under positive selection in the signaling domain. These findings contrast with those observed in invertebrates, where different lineages that experienced gene duplication retained similar selective constraints in the Hh orthologs. Our results provide new insights on the evolutionary history of the Hh gene family, the functional roles of these paralogs in vertebrate species, and on the location of mutational hotspots.
Collapse
Affiliation(s)
- Joana Pereira
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Warren E. Johnson
- Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, Virginia, United States of America
| | - Stephen J. O’Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia
- Oceanographic Center, N. Ocean Drive, Nova Southeastern University, Ft. Lauderdale, Florida, United States of America
| | - Erich D. Jarvis
- Howard Hughes Medical Institute, Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Guojie Zhang
- BGI-Shenzhen, Beishan Industrial Zoon, Yantian District, Shenzhen, China
| | - M. Thomas P. Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Vitor Vasconcelos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
5
|
Đaković N, Térézol M, Pitel F, Maillard V, Elis S, Leroux S, Lagarrigue S, Gondret F, Klopp C, Baeza E, Duclos MJ, Roest Crollius H, Monget P. The Loss of Adipokine Genes in the Chicken Genome and Implications for Insulin Metabolism. Mol Biol Evol 2014; 31:2637-46. [DOI: 10.1093/molbev/msu208] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
6
|
Lee MO, Yang E, Morisson M, Vignal A, Huang YZ, Cheng HH, Muir WM, Lamont SJ, Lillehoj HS, Lee SH, Womack JE. Mapping and genotypic analysis of the NK-lysin gene in chicken. Genet Sel Evol 2014; 46:43. [PMID: 25001618 PMCID: PMC4120735 DOI: 10.1186/1297-9686-46-43] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/13/2014] [Indexed: 11/10/2022] Open
Abstract
Background Antimicrobial peptides (AMP) are important elements of the first line of defence against pathogens in animals. NK-lysin is a cationic AMP that plays a critical role in innate immunity. The chicken NK-lysin gene has been cloned and its antimicrobial and anticancer activity has been described but its location in the chicken genome remains unknown. Here, we mapped the NK-lysin gene and examined the distribution of a functionally significant single nucleotide polymorphism (SNP) among different chicken inbred lines and heritage breeds. Results A 6000 rad radiation hybrid panel (ChickRH6) was used to map the NK-lysin gene to the distal end of chromosome 22. Two additional genes, the adipocyte enhancer-binding protein 1-like gene (AEBP1) and the DNA polymerase delta subunit 2-like (POLD2) gene, are located in the same NW_003779909 contig as NK-lysin, and were thus indirectly mapped to chromosome 22 as well. Previously, we reported a functionally significant SNP at position 271 of the NK-lysin coding sequence in two different chicken breeds. Here, we examined this SNP and found that the A allele appears to be more common than the G allele in these heritage breeds and inbred lines. Conclusions The chicken NK-lysin gene mapped to the distal end of chromosome 22. Two additional genes, AEBP1 and POLD2, were indirectly mapped to chromosome 22 also. SNP analyses revealed that the A allele, which encodes a peptide with a higher antimicrobial activity, is more common than the G allele in our tested inbred lines and heritage breeds.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - James E Womack
- Department of Veterinary Pathobiology, Texas A & M University, College Station, TX 77843, USA.
| |
Collapse
|
7
|
Miller MM, Robinson CM, Abernathy J, Goto RM, Hamilton MK, Zhou H, Delany ME. Mapping genes to chicken microchromosome 16 and discovery of olfactory and scavenger receptor genes near the major histocompatibility complex. J Hered 2013; 105:203-15. [PMID: 24336927 DOI: 10.1093/jhered/est091] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Trisomy mapping is a powerful method for assigning genes to chicken microchromosome 16 (GGA 16). The single chicken nucleolar organizer region (NOR), the 2 major histocompatibility complex regions (MHC-Y and MHC-B), and CD1 genes were all previously assigned to GGA 16 using trisomy mapping. Here, we combined array comparative genomic hybridization with trisomy mapping to screen unassigned genomic scaffolds (consigned temporarily to chrUn_random) for sequences originating from GGA 16. A number of scaffolds mapped to GGA 16. Among these were scaffolds that contain genes for olfactory (OR) and cysteine-rich domain scavenger (SRCR) receptors, along with a number of genes that encode putative immunoglobulin-like receptors and other molecules. We used high-resolution cytogenomic analyses to confirm assignment of OR and SRCR genes to GGA 16 and to pinpoint members of these gene families to the q-arm in partially overlapping regions between the centromere and the NOR. Southern blots revealed sequence polymorphism within the OR/SRCR region and linkage with the MHC-Y region, thereby providing evidence for conserved linkage between OR genes and the MHC within birds. This work localizes OR genes to the vicinity of the chicken MHC and assigns additional genes, including immune defense genes, to GGA 16.
Collapse
Affiliation(s)
- Marcia M Miller
- the Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010
| | | | | | | | | | | | | |
Collapse
|
8
|
Rao M, Morisson M, Faraut T, Bardes S, Fève K, Labarthe E, Fillon V, Huang Y, Li N, Vignal A. A duck RH panel and its potential for assisting NGS genome assembly. BMC Genomics 2012; 13:513. [PMID: 23020625 PMCID: PMC3496577 DOI: 10.1186/1471-2164-13-513] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 08/29/2012] [Indexed: 11/13/2022] Open
Abstract
Background Owing to the low cost of the high throughput Next Generation Sequencing (NGS) technology, more and more species have been and will be sequenced. However, de novo assemblies of large eukaryotic genomes thus produced are composed of a large number of contigs and scaffolds of medium to small size, having no chromosomal assignment. Radiation hybrid (RH) mapping is a powerful tool for building whole genome maps and has been used for several animal species, to help assign sequence scaffolds to chromosomes and determining their order. Results We report here a duck whole genome RH panel obtained by fusing female duck embryonic fibroblasts irradiated at a dose of 6,000 rads, with HPRT-deficient Wg3hCl2 hamster cells. The ninety best hybrids, having an average retention of 23.6% of the duck genome, were selected for the final panel. To allow the genotyping of large numbers of markers, as required for whole genome mapping, without having to cultivate the hybrid clones on a large scale, three different methods involving Whole Genome Amplification (WGA) and/or scaling down PCR volumes by using the Fluidigm BioMarkTM Integrated Fluidic Circuits (IFC) Dynamic ArrayTM for genotyping were tested. RH maps of APL12 and APL22 were built, allowing the detection of intrachromosomal rearrangements when compared to chicken. Finally, the panel proved useful for checking the assembly of sequence scaffolds and for mapping EST located on one of the smallest microchromosomes. Conclusion The Fluidigm BioMarkTM Integrated Fluidic Circuits (IFC) Dynamic ArrayTM genotyping by quantitative PCR provides a rapid and cost-effective method for building RH linkage groups. Although the vast majority of genotyped markers exhibited a picture coherent with their associated scaffolds, a few of them were discordant, pinpointing potential assembly errors. Comparative mapping with chicken chromosomes GGA21 and GGA11 allowed the detection of the first chromosome rearrangements on microchromosomes between duck and chicken. As in chicken, the smallest duck microchromosomes appear missing in the assembly and more EST data will be needed for mapping them. Altogether, this underlines the added value of RH mapping to improve genome assemblies.
Collapse
Affiliation(s)
- Man Rao
- UMR INRA/ENVT Laboratoire de Génétique Cellulaire, INRA, Castanet-Tolosan 31326, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Chojnowski JL, Braun EL. An unbiased approach to identify genes involved in development in a turtle with temperature-dependent sex determination. BMC Genomics 2012; 13:308. [PMID: 22793670 PMCID: PMC3434017 DOI: 10.1186/1471-2164-13-308] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 07/15/2012] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Many reptiles exhibit temperature-dependent sex determination (TSD). The initial cue in TSD is incubation temperature, unlike genotypic sex determination (GSD) where it is determined by the presence of specific alleles (or genetic loci). We used patterns of gene expression to identify candidates for genes with a role in TSD and other developmental processes without making a priori assumptions about the identity of these genes (ortholog-based approach). We identified genes with sexually dimorphic mRNA accumulation during the temperature sensitive period of development in the Red-eared slider turtle (Trachemys scripta), a turtle with TSD. Genes with differential mRNA accumulation in response to estrogen (estradiol-17β; E(2)) exposure and developmental stages were also identified. RESULTS Sequencing 767 clones from three suppression-subtractive hybridization libraries yielded a total of 581 unique sequences. Screening a macroarray with a subset of those sequences revealed a total of 26 genes that exhibited differential mRNA accumulation: 16 female biased and 10 male biased. Additional analyses revealed that C16ORF62 (an unknown gene) and MALAT1 (a long noncoding RNA) exhibited increased mRNA accumulation at the male producing temperature relative to the female producing temperature during embryonic sexual development. Finally, we identified four genes (C16ORF62, CCT3, MMP2, and NFIB) that exhibited a stage effect and five genes (C16ORF62, CCT3, MMP2, NFIB and NOTCH2) showed a response to E(2) exposure. CONCLUSIONS Here we report a survey of genes identified using patterns of mRNA accumulation during embryonic development in a turtle with TSD. Many previous studies have focused on examining the turtle orthologs of genes involved in mammalian development. Although valuable, the limitations of this approach are exemplified by our identification of two genes (MALAT1 and C16ORF62) that are sexually dimorphic during embryonic development. MALAT1 is a noncoding RNA that has not been implicated in sexual differentiation in other vertebrates and C16ORF62 has an unknown function. Our results revealed genes that are candidates for having roles in turtle embryonic development, including TSD, and highlight the need to expand our search parameters beyond protein-coding genes.
Collapse
Affiliation(s)
- Jena L Chojnowski
- Genetics Department, University of Georgia, 500 DW Brooks Dr., Coverdell Center Rm270, Athens, GA, 30602, USA
- Department of Biology, University of Florida, PO Box 118525, Gainesville, FL, 32607, USA
| | - Edward L Braun
- Department of Biology, University of Florida, PO Box 118525, Gainesville, FL, 32607, USA
| |
Collapse
|
10
|
Solinhac R, Leroux S, Galkina S, Chazara O, Feve K, Vignoles F, Morisson M, Derjusheva S, Bed'hom B, Vignal A, Fillon V, Pitel F. Integrative mapping analysis of chicken microchromosome 16 organization. BMC Genomics 2010; 11:616. [PMID: 21050458 PMCID: PMC3091757 DOI: 10.1186/1471-2164-11-616] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 11/04/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The chicken karyotype is composed of 39 chromosome pairs, of which 9 still remain totally absent from the current genome sequence assembly, despite international efforts towards complete coverage. Some others are only very partially sequenced, amongst which microchromosome 16 (GGA16), particularly under-represented, with only 433 kb assembled for a full estimated size of 9 to 11 Mb. Besides the obvious need of full genome coverage with genetic markers for QTL (Quantitative Trait Loci) mapping and major genes identification studies, there is a major interest in the detailed study of this chromosome because it carries the two genetically independent MHC complexes B and Y. In addition, GGA16 carries the ribosomal RNA (rRNA) genes cluster, also known as the NOR (nucleolus organizer region). The purpose of the present study is to construct and present high resolution integrated maps of GGA16 to refine its organization and improve its coverage with genetic markers. RESULTS We developed 79 STS (Sequence Tagged Site) markers to build a physical RH (radiation hybrid) map and 34 genetic markers to extend the genetic map of GGA16. We screened a BAC (Bacterial Artificial Chromosome) library with markers for the MHC-B, MHC-Y and rRNA complexes. Selected clones were used to perform high resolution FISH (Fluorescent In Situ Hybridization) mapping on giant meiotic lampbrush chromosomes, allowing meiotic mapping in addition to the confirmation of the order of the three clusters along the chromosome. A region with high recombination rates and containing PO41 repeated elements separates the two MHC complexes. CONCLUSIONS The three complementary mapping strategies used refine greatly our knowledge of chicken microchromosome 16 organisation. The characterisation of the recombination hotspots separating the two MHC complexes demonstrates the presence of PO41 repetitive sequences both in tandem and inverted orientation. However, this region still needs to be studied in more detail.
Collapse
Affiliation(s)
- Romain Solinhac
- UMR INRA/ENVT Laboratoire de Génétique Cellulaire, INRA, Castanet-Tolosan, 31326, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Pitel F, Faraut T, Bruneau G, Monget P. Is there a leptin gene in the chicken genome? Lessons from phylogenetics, bioinformatics and genomics. Gen Comp Endocrinol 2010; 167:1-5. [PMID: 19854194 DOI: 10.1016/j.ygcen.2009.10.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 10/15/2009] [Accepted: 10/17/2009] [Indexed: 11/30/2022]
|
12
|
Trukhina AV, Smirnov AF. Microsatellites from the linkage groups E26C13 and E50C23 are located on the Gallus gallus domesticus microchromosomes 20 and 21. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410040101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Wu CH, Jin W, Nomura K, Goldammer T, Hadfield T, Dalrymple BP, McWilliam S, Maddox JF, Cockett NE. A radiation hybrid comparative map of ovine chromosome 1 aligned to the virtual sheep genome. Anim Genet 2009; 40:435-55. [DOI: 10.1111/j.1365-2052.2009.01857.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Addition of the microchromosome GGA25 to the chicken genome sequence assembly through radiation hybrid and genetic mapping. BMC Genomics 2008; 9:129. [PMID: 18366813 PMCID: PMC2275740 DOI: 10.1186/1471-2164-9-129] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 03/17/2008] [Indexed: 12/01/2022] Open
Abstract
Background The publication of the first draft chicken sequence assembly became available in 2004 and was updated in 2006. However, this does not constitute a definitive and complete sequence of the chicken genome, since the microchromosomes are notably under-represented. In an effort to develop maps for the microchromosomes absent from the chicken genome assembly, we developed radiation hybrid (RH) and genetic maps with markers isolated from sequence currently assigned to "chromosome Unknown" (chrUn). The chrUn is composed of sequence contigs not assigned to named chromosomes. To identify and map sequence belonging to the microchromosomes we used a comparative mapping strategy, and we focused on the small linkage group E26C13. Results In total, 139 markers were analysed with the chickRH6 panel, of which 120 were effectively assigned to the E26C13 linkage group, the remainder mapping elsewhere in the genome. The final RH map is composed of 22 framework markers extending over a 245.6 cR distance. A corresponding genetic map was developed, whose length is 103 cM in the East Lansing reference population. The E26C13 group was assigned to GGA25 (Gallus gallus chromosome 25) by FISH (fluorescence in situ hybridisation) mapping. Conclusion The high-resolution RH framework map obtained here covers the entire chicken chromosome 25 and reveals the existence of a high number of intrachromosomal rearrangements when compared to the human genome. The strategy used here for the characterization of GGA25 could be used to improve knowledge on the other uncharacterized small, yet gene-rich microchromosomes.
Collapse
|