1
|
Tomczyk I, Rokicki M, Sieńko W, Rożek K, Nalepa A, Wiench J, Grzmil P. Mouse Pxt1 expression is regulated by Mir6996 miRNA. Theriogenology 2023; 210:9-16. [PMID: 37467697 DOI: 10.1016/j.theriogenology.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/21/2023]
Abstract
Mouse Pxt1 gene is expressed exclusively in male germ cells and encodes for a small, cell death inducing protein. However, upon PXT1 interaction with BAG6, cell death is prevented. In transiently transfected cell lines the PXT1 expression triggered massive cell death, thus we ask the question whether the interaction of PXT1 and BAG6 is the only mechanism preventing normal, developing male germ cells from being killed by PXT1. The Pxt1 gene contains a long 3'UTR thus we have hypothesized that Pxt1 can be regulated by miRNA. We have applied Pxt1 knockout and used Pxt1 transgenic mice that overexpressed this gene to shed more light on Pxt1 regulation. Using the ELISA assay we have demonstrated that PXT1 protein is expressed in adult mouse testis, though at low abundance. The application of dual-Glo luciferase assay and the 3'UTR cloned into p-MIR-Glo plasmid showed that Pxt1 is regulated by miRNA. Combining the use of mirDB and the site-directed mutagenesis further demonstrated that Pxt1 translation is suppressed by Mir6996-3p. Considering previous reports and our current results we propose a model for Pxt1 regulation in the mouse male germ cells.
Collapse
Affiliation(s)
- Igor Tomczyk
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Mikołaj Rokicki
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Wioleta Sieńko
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Katarzyna Rożek
- Department of Plant Ecology, Institute of Botany, Jagiellonian University, Gronostajowa 3, 30-387, Krakow, Poland
| | - Anna Nalepa
- Department of Chemical Technology and Environmental Analytics, Cracow University of Technology, Warszawska 24, 31-155, Krakow, Poland
| | - Jasmin Wiench
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Paweł Grzmil
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| |
Collapse
|
2
|
Lim D, Choe SH, Jin S, Lee S, Kim Y, Shin HC, Choi JS, Oh DB, Kim SJ, Seo J, Ku B. Structural basis for proapoptotic activation of Bak by the noncanonical BH3-only protein Pxt1. PLoS Biol 2023; 21:e3002156. [PMID: 37315086 DOI: 10.1371/journal.pbio.3002156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/10/2023] [Indexed: 06/16/2023] Open
Abstract
Bak is a critical executor of apoptosis belonging to the Bcl-2 protein family. Bak contains a hydrophobic groove where the BH3 domain of proapoptotic Bcl-2 family members can be accommodated, which initiates its activation. Once activated, Bak undergoes a conformational change to oligomerize, which leads to mitochondrial destabilization and the release of cytochrome c into the cytosol and eventual apoptotic cell death. In this study, we investigated the molecular aspects and functional consequences of the interaction between Bak and peroxisomal testis-specific 1 (Pxt1), a noncanonical BH3-only protein exclusively expressed in the testis. Together with various biochemical approaches, this interaction was verified and analyzed at the atomic level by determining the crystal structure of the Bak-Pxt1 BH3 complex. In-depth biochemical and cellular analyses demonstrated that Pxt1 functions as a Bak-activating proapoptotic factor, and its BH3 domain, which mediates direct intermolecular interaction with Bak, plays a critical role in triggering apoptosis. Therefore, this study provides a molecular basis for the Pxt1-mediated novel pathway for the activation of apoptosis and expands our understanding of the cell death signaling coordinated by diverse BH3 domain-containing proteins.
Collapse
Affiliation(s)
- Dahwan Lim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
- Department of Biochemistry, Chungnam National University, Daejeon, Korea
| | - So-Hui Choe
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Sein Jin
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Seulgi Lee
- Department of Biochemistry, Chungnam National University, Daejeon, Korea
| | - Younjin Kim
- Department of Biochemistry, Chungnam National University, Daejeon, Korea
| | - Ho-Chul Shin
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Joon Sig Choi
- Department of Biochemistry, Chungnam National University, Daejeon, Korea
| | - Doo-Byoung Oh
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, Korea
| | - Seung Jun Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, Daejeon, Korea
| | - Jinho Seo
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, Korea
| | - Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, Daejeon, Korea
| |
Collapse
|
3
|
Schrader TA, Carmichael RE, Schrader M. Immunolabeling for Detection of Endogenous and Overexpressed Peroxisomal Proteins in Mammalian Cells. Methods Mol Biol 2023; 2643:47-63. [PMID: 36952177 DOI: 10.1007/978-1-0716-3048-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Peroxisomes are dynamic subcellular organelles in mammals, playing essential roles in cellular lipid metabolism and redox homeostasis. They perform a wide spectrum of functions in human health and disease, with new roles, mechanisms, and regulatory pathways still being discovered. Recently elucidated biological roles of peroxisomes include as antiviral defense hubs, intracellular signaling platforms, immunomodulators, and protective organelles in sensory cells. Furthermore, peroxisomes are part of a complex inter-organelle interaction network, which involves metabolic cooperation and cross talk via membrane contacts. The detection of endogenous and/or overexpressed proteins within a cell by immunolabelling informs us about the organellar and even sub-organellar localization of both known and putative peroxisomal proteins. In turn, this can be exploited to characterize the effects of experimental manipulations on the morphology, distribution, and/or number of peroxisomes in a cell, which are key properties controlling peroxisome function. Here, we present a protocol used successfully in our laboratory for the immunolabelling of peroxisomal proteins in cultured mammalian cells. We present immunofluorescence and transfection techniques as well as reagents to determine the localization of endogenous and overexpressed peroxisomal proteins.
Collapse
Affiliation(s)
- Tina A Schrader
- Faculty of Health and Life Sciences, Biosciences, University of Exeter, Exeter, Devon, UK
| | - Ruth E Carmichael
- Faculty of Health and Life Sciences, Biosciences, University of Exeter, Exeter, Devon, UK
| | - Michael Schrader
- Faculty of Health and Life Sciences, Biosciences, University of Exeter, Exeter, Devon, UK.
| |
Collapse
|
4
|
Abstract
Peroxisomes are essential organelles in mammals which contribute to cellular lipid metabolism and redox homeostasis. The spectrum of their functions in human health and disease is far from being complete, and unexpected and novel roles of peroxisomes are being discovered. To date, those include novel biological roles in antiviral defence, as intracellular signaling platforms and as protective organelles in sensory cells. Furthermore, peroxisomes are part of a complex network of interacting subcellular compartments which involves metabolic cooperation, cross-talk and membrane contacts. As potentially novel peroxisomal proteins are continuously discovered, there is great interest in the verification of their peroxisomal localization. Here, we present protocols used successfully in our laboratory for the detection and immunolabeling of peroxisomal proteins in cultured mammalian cells. We present immunofluorescence and fluorescence-based techniques as well as reagents to determine peroxisome-specific targeting and localization of candidate proteins.
Collapse
Affiliation(s)
- Tina A Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, United Kingdom
| | - Markus Islinger
- Center for Biomedicine and Medical Technology Mannheim, Institute of Neuroanatomy, University of Heidelberg, Ludolf-Krehl Str. 13-17, 68137, Mannheim, Germany
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, United Kingdom.
| |
Collapse
|
5
|
Amaral A, Castillo J, Estanyol JM, Ballescà JL, Ramalho-Santos J, Oliva R. Human sperm tail proteome suggests new endogenous metabolic pathways. Mol Cell Proteomics 2012; 12:330-42. [PMID: 23161514 DOI: 10.1074/mcp.m112.020552] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Proteomic studies are contributing greatly to our understanding of the sperm cell, and more detailed descriptions are expected to clarify additional cellular and molecular sperm attributes. The aim of this study was to characterize the subcellular proteome of the human sperm tail and, hopefully, identify less concentrated proteins (not found in whole cell proteome studies). Specifically, we were interested in characterizing the sperm metabolic proteome and gaining new insights into the sperm metabolism issue. Sperm were isolated from normozoospermic semen samples and depleted of any contaminating leukocytes. Tail fractions were obtained by means of sonication followed by sucrose-gradient ultracentrifugation, and their purity was confirmed via various techniques. Liquid chromatography and tandem mass spectrometry of isolated sperm tail peptides resulted in the identification of 1049 proteins, more than half of which had not been previously described in human sperm. The categorization of proteins according to their function revealed two main groups: proteins related to metabolism and energy production (26%), and proteins related to sperm tail structure and motility (11%). Interestingly, a great proportion of the metabolic proteome (24%) comprised enzymes involved in lipid metabolism, including enzymes for mitochondrial beta-oxidation. Unexpectedly, we also identified various peroxisomal proteins, some of which are known to be involved in the oxidation of very long chain fatty acids. Analysis of our data using Reactome suggests that both mitochondrial and peroxisomal pathways might indeed be active in sperm, and that the use of fatty acids as fuel might be more preponderant than previously thought. In addition, incubation of sperm with the fatty acid oxidation inhibitor etomoxir resulted in a significant decrease in sperm motility. Contradicting a common concept in the literature, we suggest that the male gamete might have the capacity to obtain energy from endogenous pools, and thus to adapt to putative exogenous fluctuations.
Collapse
Affiliation(s)
- Alexandra Amaral
- Human Genetics Research Group, IDIBAPS, Faculty of Medicine, University of Barcelona, Casanova 143, 08036 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
6
|
Islinger M, Grille S, Fahimi HD, Schrader M. The peroxisome: an update on mysteries. Histochem Cell Biol 2012; 137:547-74. [DOI: 10.1007/s00418-012-0941-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2012] [Indexed: 12/31/2022]
|
7
|
Kaczmarek K, Studencka M, Meinhardt A, Wieczerzak K, Thoms S, Engel W, Grzmil P. Overexpression of peroxisomal testis-specific 1 protein induces germ cell apoptosis and leads to infertility in male mice. Mol Biol Cell 2011; 22:1766-79. [PMID: 21460186 PMCID: PMC3093327 DOI: 10.1091/mbc.e09-12-0993] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Peroxisomal testis-specific 1 gene (Pxt1) is the only male germ cell-specific gene that encodes a peroxisomal protein known to date. To elucidate the role of Pxt1 in spermatogenesis, we generated transgenic mice expressing a c-MYC-PXT1 fusion protein under the control of the PGK2 promoter. Overexpression of Pxt1 resulted in induction of male germ cells' apoptosis mainly in primary spermatocytes, finally leading to male infertility. This prompted us to analyze the proapoptotic character of mouse PXT1, which harbors a BH3-like domain in the N-terminal part. In different cell lines, the overexpression of PXT1 also resulted in a dramatic increase of apoptosis, whereas the deletion of the BH3-like domain significantly reduced cell death events, thereby confirming that the domain is functional and essential for the proapoptotic activity of PXT1. Moreover, we demonstrated that PXT1 interacts with apoptosis regulator BAT3, which, if overexpressed, can protect cells from the PXT1-induced apoptosis. The PXT1-BAT3 association leads to PXT1 relocation from the cytoplasm to the nucleus. In summary, we demonstrated that PXT1 induces apoptosis via the BH3-like domain and that this process is inhibited by BAT3.
Collapse
Affiliation(s)
- Karina Kaczmarek
- Institute of Human Genetics, Georg-August-University of Göttingen, 37073 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
Islinger M, Cardoso MJR, Schrader M. Be different--the diversity of peroxisomes in the animal kingdom. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:881-97. [PMID: 20347886 DOI: 10.1016/j.bbamcr.2010.03.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 03/15/2010] [Accepted: 03/18/2010] [Indexed: 10/19/2022]
Abstract
Peroxisomes represent so-called "multipurpose organelles" as they contribute to various anabolic as well as catabolic pathways. Thus, with respect to the physiological specialization of an individual organ or animal species, peroxisomes exhibit a functional diversity, which is documented by significant variations in their proteome. These differences are usually regarded as an adaptational response to the nutritional and environmental life conditions of a specific organism. Thus, human peroxisomes can be regarded as an in part physiologically unique organellar entity fulfilling metabolic functions that differ from our animal model systems. In line with this, a profound understanding on how peroxisomes acquired functional heterogeneity in terms of an evolutionary and mechanistic background is required. This review summarizes our current knowledge on the heterogeneity of peroxisomal physiology, providing insights into the genetic and cell biological mechanisms, which lead to the differential localization or expression of peroxisomal proteins and further gives an overview on peroxisomal biochemical pathways, which are specialized in different animal species and organs. Moreover, it addresses the impact of proteome studies on our understanding of differential peroxisome function describing the utility of mass spectrometry and computer-assisted algorithms to identify peroxisomal target sequences for the detection of new organ- or species-specific peroxisomal proteins.
Collapse
Affiliation(s)
- M Islinger
- Department of Anatomy and Cell Biology, Ruprecht-Karls University, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
9
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 1: Background to spermatogenesis, spermatogonia, and spermatocytes. Microsc Res Tech 2009; 73:241-78. [DOI: 10.1002/jemt.20783] [Citation(s) in RCA: 320] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|