1
|
Varela N, Lanas F, Salazar LA, Zambrano T. The Current State of MicroRNAs as Restenosis Biomarkers. Front Genet 2020; 10:1247. [PMID: 31998354 PMCID: PMC6967329 DOI: 10.3389/fgene.2019.01247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/13/2019] [Indexed: 12/21/2022] Open
Abstract
In-stent restenosis corresponds to the diameter reduction of coronary vessels following percutaneous coronary intervention (PCI), an invasive procedure in which a stent is deployed into the coronary arteries, producing profuse neointimal hyperplasia. The reasons for this process to occur still lack a clear answer, which is partly why it remains as a clinically significant problem. As a consequence, there is a vigorous need to identify useful non-invasive biomarkers to differentiate and follow-up subjects at risk of developing restenosis, and due to their extraordinary stability in several bodily fluids, microRNA research has received extensive attention to accomplish this task. This review depicts the current understanding, diagnostic potential and clinical challenges of microRNA molecules as possible blood-based restenosis biomarkers.
Collapse
Affiliation(s)
- Nelson Varela
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Department of Basic-Clinical Oncology, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Fernando Lanas
- Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.,Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Luis A Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Tomás Zambrano
- Department of Medical Technology, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
2
|
Wang J, Jin X, Huang Y, Ran X, Luo D, Yang D, Jia D, Zhang K, Tong J, Deng X, Wang G. Endovascular stent-induced alterations in host artery mechanical environments and their roles in stent restenosis and late thrombosis. Regen Biomater 2018; 5:177-187. [PMID: 29942650 PMCID: PMC6007795 DOI: 10.1093/rb/rby006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/11/2018] [Accepted: 03/08/2018] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular stent restenosis remains a major challenge in interventional treatment of cardiovascular occlusive disease. Although the changes in arterial mechanical environment due to stent implantation are the main causes of the initiation of restenosis and thrombosis, the mechanisms that cause this initiation are still not fully understood. In this article, we reviewed the studies on the issue of stent-induced alterations in arterial mechanical environment and discussed their roles in stent restenosis and late thrombosis from three aspects: (i) the interaction of the stent with host blood vessel, involve the response of vascular wall, the mechanism of mechanical signal transmission, the process of re-endothelialization and late thrombosis; (ii) the changes of hemodynamics in the lumen of the vascular segment and (iii) the changes of mechanical microenvironment within the vascular segment wall due to stent implantation. This review has summarized and analyzed current work in order to better solve the two main problems after stent implantation, namely in stent restenosis and late thrombosis, meanwhile propose the deficiencies of current work for future reference.
Collapse
Affiliation(s)
- Jinxuan Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Xuepu Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Yuhua Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Xiaolin Ran
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Desha Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Dongchuan Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Dongyu Jia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Kang Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Jianhua Tong
- Institute for Biomedical Engineering & Nano Science, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyan Deng
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| |
Collapse
|
3
|
Long-term effects of ACE inhibitor on vascular remodelling. Open Med (Wars) 2014. [DOI: 10.2478/s11536-013-0343-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe long-term pathomorphological changes of the injured vessels under angiotensin-converting-enzyme (ACE) inhibitor are still not known. Therefore, we assessed the alternations of vascular architecture after three-month therapy with ACE inhibitor and identified new target cells for this medication. Carotid arteries of spontaneously hypertensive rats underwent balloon angioplasty. 14 days prior intervention, half of the animals was treated with ACE inhibitor. After three months of vascular trauma, the injured vessels were explored by histomorphology and immunohistochemistry for angiotensin-II receptor (AT1R), dendritic and HSP47+ cells. The neointimal growth decreased significantly only up to 28 days under ACE inhibitor. In contrast, the reductive effect of ACE inhibitor on media area persisted up to three months after intervention. A significant fraction of early neointimal cells was of a dendritic cell type. The relevant portion of these cells showed an expression of AT1R and HSP47. AT1R was present in 70% and HSP47 in 18% of all early neointimal cells in both groups. ACE inhibitor may at least temporarily diminish remodelling processes in injured vessels. The detection of AT1R on dendritic cells identifies these cells as important targets for therapeutic strategies involving modulation of the renin-angiotensin system.
Collapse
|
4
|
Tuleta I, Reek D, Braun P, Bauriedel G, Nickenig G, Skowasch D, Andrié R. Influence of intimal Chlamydophila pneumoniae persistence on cardiovascular complications after coronary intervention. Infection 2014; 43:51-7. [DOI: 10.1007/s15010-014-0694-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 10/11/2014] [Indexed: 12/31/2022]
|
5
|
van den Akker NMS, Post MJ. Career switch for EC-CFU to modelling. Cardiovasc Res 2013; 100:175-7. [PMID: 24057135 DOI: 10.1093/cvr/cvt220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Nynke M S van den Akker
- Department of Physiology, CARIM, Maastricht University Medical Center, PO Box 616, 6200 MD Maastricht, The Netherlands
| | | |
Collapse
|
6
|
Buja LM. Vascular Responses to Percutaneous Coronary Intervention With Bare-Metal Stents and Drug-Eluting Stents. J Am Coll Cardiol 2011; 57:1323-6. [DOI: 10.1016/j.jacc.2010.11.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 11/21/2010] [Indexed: 11/30/2022]
|
7
|
Apoptosis-regulated survival of primarily extravascular cells in proliferative active poststent neointima. Cardiovasc Pathol 2010; 19:353-60. [DOI: 10.1016/j.carpath.2009.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 06/24/2009] [Accepted: 07/22/2009] [Indexed: 11/23/2022] Open
|
8
|
Siddique A, Shantsila E, Lip GY, Varma C. Endothelial progenitor cells: what use for the cardiologist? JOURNAL OF ANGIOGENESIS RESEARCH 2010; 2:6. [PMID: 20298532 PMCID: PMC2834645 DOI: 10.1186/2040-2384-2-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 02/22/2010] [Indexed: 12/28/2022]
Abstract
Endothelial Progenitor Cells (EPC) were first described in 1997 and have since been the subject of numerous investigative studies exploring the potential of these cells in the process of cardiovascular damage and repair. Whilst their exact definition and mechanism of action remains unclear, they are directly influenced by different cardiovascular risk factors and have a definite role to play in defining cardiovascular risk. Furthermore, EPCs may have important therapeutic implications and further understanding of their pathophysiology has enabled us to explore new possibilities in the management of cardiovascular disease. This review article aims to provide an overview of the vast literature on EPCs in relation to clinical cardiology.
Collapse
Affiliation(s)
- Aurangzeb Siddique
- Haemostasis, Thrombosis and Vascular Biology Unit, University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham, UK
| | - Eduard Shantsila
- Haemostasis, Thrombosis and Vascular Biology Unit, University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham, UK
| | - Gregory Yh Lip
- Haemostasis, Thrombosis and Vascular Biology Unit, University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham, UK
| | - Chetan Varma
- Department of Cardiology, City Hospital, Birmingham, UK
| |
Collapse
|