1
|
Figueroa-Angulo EE, Puente-Rivera J, Perez-Navarro YF, Condado EM, Álvarez-Sánchez ME. Epigenetic alteration in cervical cancer induced by human papillomavirus. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 390:25-66. [PMID: 39864896 DOI: 10.1016/bs.ircmb.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The critical role of a subset of Human Papillomavirus in cervical cancer has been widely acknowledged and studied. Despite progress in our understanding of the viral molecular mechanisms of pathogenesis, knowledge of how infection with HPV oncogenic variants progresses from latent infection to incurable cancer has not been completely elucidated. In this paper we reviewed the relationship between HPV infection and epigenetic mechanisms such as histone acetylation and deacetylation, DNA methylation and non-coding RNAs associated with this infection and the carcinogenic process.
Collapse
Affiliation(s)
- Elisa-Elvira Figueroa-Angulo
- Licenciatura en Ciencias Genómicas, Laboratorio de Patogénesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de la México, Ciudad de México, México
| | - Jonathan Puente-Rivera
- División de Investigación, Hospital Juárez De México, Ciudad de México, México; Posgrado en Ciencias Genómicas, Laboratorio de Patogenesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de México, Ciudad de México, México
| | - Yussel Fernando Perez-Navarro
- Posgrado en Ciencias Genómicas, Laboratorio de Patogenesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de México, Ciudad de México, México
| | - Edgar Mendieta Condado
- Laboratorio Estatal de Salud Pública, Secretaría de Salud de Jalisco, Guadalajara, Jalisco, México
| | - María-Elizbeth Álvarez-Sánchez
- Posgrado en Ciencias Genómicas, Laboratorio de Patogenesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de México, Ciudad de México, México.
| |
Collapse
|
2
|
Epigenetic Regulation of the Human Papillomavirus Life Cycle. Pathogens 2020; 9:pathogens9060483. [PMID: 32570816 PMCID: PMC7350343 DOI: 10.3390/pathogens9060483] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/20/2022] Open
Abstract
Persistent infection with certain types of human papillomaviruses (HPVs), termed high risk, presents a public health burden due to their association with multiple human cancers, including cervical cancer and an increasing number of head and neck cancers. Despite the development of prophylactic vaccines, the incidence of HPV-associated cancers remains high. In addition, no vaccine has yet been licensed for therapeutic use against pre-existing HPV infections and HPV-associated diseases. Although persistent HPV infection is the major risk factor for cancer development, additional genetic and epigenetic alterations are required for progression to the malignant phenotype. Unlike genetic mutations, the reversibility of epigenetic modifications makes epigenetic regulators ideal therapeutic targets for cancer therapy. This review article will highlight the recent advances in the understanding of epigenetic modifications associated with HPV infections, with a particular focus on the role of these epigenetic changes during different stages of the HPV life cycle that are closely associated with activation of DNA damage response pathways.
Collapse
|
3
|
Burley M, Roberts S, Parish JL. Epigenetic regulation of human papillomavirus transcription in the productive virus life cycle. Semin Immunopathol 2020; 42:159-171. [PMID: 31919577 PMCID: PMC7174255 DOI: 10.1007/s00281-019-00773-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022]
Abstract
Human papillomaviruses (HPV) are a large family of viruses which contain a circular, double-stranded DNA genome of approximately 8000 base pairs. The viral DNA is chromatinized by the recruitment of cellular histones which are subject to host cell-mediated post-translational epigenetic modification recognized as an important mechanism of virus transcription regulation. The HPV life cycle is dependent on the terminal differentiation of the target cell within epithelia-the keratinocyte. The virus life cycle begins in the undifferentiated basal compartment of epithelia where the viral chromatin is maintained in an epigenetically repressed state, stabilized by distal chromatin interactions between the viral enhancer and early gene region. Migration of the infected keratinocyte towards the surface of the epithelium induces cellular differentiation which disrupts chromatin looping and stimulates epigenetic remodelling of the viral chromatin. These epigenetic changes result in enhanced virus transcription and activation of the virus late promoter facilitating transcription of the viral capsid proteins. In this review article, we discuss the complexity of virus- and host-cell-mediated epigenetic regulation of virus transcription with a specific focus on differentiation-dependent remodelling of viral chromatin during the HPV life cycle.
Collapse
Affiliation(s)
- Megan Burley
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, University of Birmingham, B152TT, Birmingham, UK
| | - Sally Roberts
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, University of Birmingham, B152TT, Birmingham, UK
| | - Joanna L Parish
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, University of Birmingham, B152TT, Birmingham, UK.
| |
Collapse
|
4
|
He H, Lai Y, Hao Y, Liu Y, Zhang Z, Liu X, Guo C, Zhang M, Zhou H, Wang N, Luo XG, Huo L, Ma W, Zhang TC. Selective p300 inhibitor C646 inhibited HPV E6-E7 genes, altered glucose metabolism and induced apoptosis in cervical cancer cells. Eur J Pharmacol 2017; 812:206-215. [PMID: 28619596 DOI: 10.1016/j.ejphar.2017.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/29/2017] [Accepted: 06/07/2017] [Indexed: 11/27/2022]
Abstract
High risk HPV infection is a causative factor of cervical cancer. The constitutive expression of HPV E6-E7 genes is important for the maintenance of cancer phenotypes. The cellular transcription co-activator p300 plays a crucial role in the regulation of HPV genes thus it was targeted for the inhibition of HPV-associated cervical cancer. In the present study, HPV positive cervical cells were treated with C646, a selective inhibitor of p300, to investigate its influence on HPV E6-E7 expression and cancer cell growth. Results of RT-qPCR, Western-blot and promoter activity assays showed that C646 inhibited the transcription of HPV E6-E7, which was accompanied with the accumulation of p53 protein. Meanwhile, cell proliferation was suppressed, glucose metabolism was disrupted and apoptosis was induced via the intrinsic pathway. Generally, the anti-cervical cancer potential of C646 was demonstrated and a novel mechanism was proposed in this study.
Collapse
Affiliation(s)
- Hongpeng He
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yongwei Lai
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yunpeng Hao
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yupeng Liu
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zijiang Zhang
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xiang Liu
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Chenhong Guo
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Mengmeng Zhang
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Hao Zhou
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Nan Wang
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xue-Gang Luo
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Lihong Huo
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Wenjian Ma
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Tong-Cun Zhang
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Life Sciences, Wuhan University of Science and Technology, Wuhan 430081, PR China.
| |
Collapse
|
6
|
The use of a human papillomavirus 18 promoter for tissue-specific expression in cervical carcinoma cells. Cell Mol Biol Lett 2011; 16:477-92. [PMID: 21786035 PMCID: PMC6275744 DOI: 10.2478/s11658-011-0018-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 06/29/2011] [Indexed: 11/25/2022] Open
Abstract
The use of tissue-specific promoter elements in the treatment of cervical cancer has been explored in this paper. The P105 promoter of human papillomavirus 18 (HPV18) was utilised to direct tissue-specific expression in a number of cell types. Expression was examined in three cervical carcinoma cell lines: HeLa (HPV18 positive), SiHa (HPV16 positive), and C33A cells (HPV negative); the epithelial cell line, H1299; and the foetal fibroblast cell line, MRC5, utilising a luciferase expression vector. Expression was highest in the cervical cell lines by a factor of at least 80. The effect of a number of mutations in the P105 promoter on expression levels was examined. Three deletion constructs of the long control region (LCR) were investigated: an 800 bp fragment (LCR800), a 400 bp fragment (LCR400), and a 200 bp fragment (LCR200), as well as the full length product LCR of HPV18 (LCR1000). The LCR800 construct of the HPV18 P105 promoter had the highest level of expression in the cervical cell lines and was also highest in the HPV18-positive HeLa cell line. Site-directed mutagenesis was then employed on the LCR800 construct to create four further constructs that each had inactivating mutations in one of the four E2 binding sites (E2BSs). Overall, this study indicated that the LCR800 construct of the HPV18 P105 promoter could be utilised as a tissuerestricted promoter in cervical cancer cells.
Collapse
|
8
|
You J. Papillomavirus interaction with cellular chromatin. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1799:192-9. [PMID: 19786128 DOI: 10.1016/j.bbagrm.2009.09.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 09/14/2009] [Accepted: 09/17/2009] [Indexed: 11/26/2022]
Abstract
High-risk human papillomavirus (HPV) infection is the primary risk factor for cervical cancer. HPVs establish persistent infection by maintaining their genomes as extrachromosomal elements (episomes) that replicate along with host DNA in infected cells. The productive life cycle of HPV is intimately tied to the differentiation program of host squamous epithelium. This review examines the involvement of host chromatin in multiple aspects of the papillomavirus life cycle and the malignant progression of infected host cells. Papillomavirus utilizes host mitotic chromosomes as vehicles for transmitting its genetic materials across the cell cycle. By hitchhiking on host mitotic chromosomes, the virus ensures accurate segregation of the replicated viral episomes to the daughter cells during host cell division. This strategy allows persistent maintenance of the viral episome in the infected cells. In the meantime, the virus subverts the host chromatin-remodeling factors to promote viral transcription and efficient propagation of viral genomes. By associating with the host chromatin, papillomavirus redirects the normal cellular control of chromatin to create a cellular environment conducive to both its own survival and malignant progression of host cells. Comprehensive understanding of HPV-host chromatin interaction will offer new insights into the HPV life cycle as well as chromatin regulation. This virus-host interaction will also provide a paradigm for investigating other episomal DNA tumor viruses that share a similar mechanism for interacting with host chromatin.
Collapse
Affiliation(s)
- Jianxin You
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|