1
|
Chen M, Wang T, Yue F, Li X, Wang P, Li Y, Chan P, Yu S. Tea polyphenols alleviate motor impairments, dopaminergic neuronal injury, and cerebral α-synuclein aggregation in MPTP-intoxicated parkinsonian monkeys. Neuroscience 2014; 286:383-92. [PMID: 25498223 DOI: 10.1016/j.neuroscience.2014.12.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 01/08/2023]
Abstract
Tea polyphenols (TPs) are bioactive flavanol-related catechins that have been shown to protect dopaminergic (DAergic) neurons against neurotoxin-induced injury in mouse Parkinson's disease (PD) models. However, the neuroprotective efficacy of TP has not been investigated in nonhuman PD primates, which can more accurately model the neuropathology and motor impairments of human PD patients. Here, we show that oral administration of TP alleviates motor impairments and DAergic neuronal injury in the substantia nigra in N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated PD monkeys, indicating an association between protection against motor deficits and preservation of DAergic neurons. We also show a significant inhibition of MPTP-induced accumulation of neurotoxic α-synuclein (α-syn) oligomers in the striatum and other brain regions, which may contribute to the neuroprotection and improved motor function conferred by TP. The association between reduced α-syn oligomerization and neuroprotection was confirmed in cultured DAergic cells. The most abundant and bioactive TP in the mixture used in vivo, (-)-epigallocatechin-3-gallate, reduced intracellular levels of α-syn oligomers in neurons treated with α-syn oligomers, 1-methyl-4-phenylpyridiniumion, or both, accompanied by increased cell viability. The present study provides the first evidence that TP can alleviate motor impairments, DAergic neuronal injury, and α-syn aggregation in nonhuman primates.
Collapse
Affiliation(s)
- M Chen
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China; Department of Human Anatomy, School of Basic Medical Sciences, Guilin Medical University, Guilin, China
| | - T Wang
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - F Yue
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China; Key Laboratory of Neurodegenerative Diseases (Capital Medical University), Ministry of Education, Beijing, China
| | - X Li
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China; Key Laboratory of Neurodegenerative Diseases (Capital Medical University), Ministry of Education, Beijing, China
| | - P Wang
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China; Key Laboratory of Neurodegenerative Diseases (Capital Medical University), Ministry of Education, Beijing, China
| | - Y Li
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China; Key Laboratory of Neurodegenerative Diseases (Capital Medical University), Ministry of Education, Beijing, China
| | - P Chan
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China; Key Laboratory of Neurodegenerative Diseases (Capital Medical University), Ministry of Education, Beijing, China; Beijing Institute for Brain Disorders Parkinson's Disease Center, Beijing, China
| | - S Yu
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China; Key Laboratory of Neurodegenerative Diseases (Capital Medical University), Ministry of Education, Beijing, China; Beijing Institute for Brain Disorders Parkinson's Disease Center, Beijing, China.
| |
Collapse
|
2
|
Boger HA, Middaugh LD, Zaman V, Hoffer B, Granholm AC. Differential effects of the dopamine neurotoxin MPTP in animals with a partial deletion of the GDNF receptor, GFR alpha1, gene. Brain Res 2008; 1241:18-28. [PMID: 18822276 DOI: 10.1016/j.brainres.2008.09.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 08/30/2008] [Accepted: 09/08/2008] [Indexed: 11/19/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF), a member of the transforming growth factor beta (TGFbeta) superfamily, is a potent neurotrophic protein promoting the survival and maintenance of dopaminergic (DA) neurons in the substantia nigra during development and adulthood. DA neurons that project to the striatum in the nigrostriatal pathway express GDNF receptors, GFR alpha1. The purpose of this study was to determine whether these neurons are especially sensitive to neurotoxic insults. Therefore, we examined effects of the dopaminergic toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on locomotion and DA neurons in 26-month-old male GFR alpha1 heterozygous (GFR alpha1(+/-)) mice compared to aged-matched wild-type (WT) littermates. MPTP gave rise to increased locomotion, regardless of genotype, while GFR alpha1(+/-) mice treated with saline exhibited lower spontaneous locomotion, compared to WT mice. Moreover, GFR alpha1(+/-) saline mice had fewer TH-positive neurons, greater expression of inflammatory markers (CD45 immunostaining and phosphorylated p38 MAPK) in the nigra, and reduced striatal TH staining. MPTP exacerbated these effects, with the lowest density of striatal TH and highest density of nigral CD45 and phospho-p38 MAPK immunoreactivity observed in GFR alpha1(+/-) mice. The findings point to increased sensitivity of the DAergic system with age and neurotoxic exposure as a result of a genetic reduction of GFR alpha1.
Collapse
Affiliation(s)
- Heather A Boger
- Department of Neurosciences, Center on Aging, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | | | |
Collapse
|
3
|
Panchalingam S, Undie AS. SKF83959 exhibits biochemical agonism by stimulating [(35)S]GTP gamma S binding and phosphoinositide hydrolysis in rat and monkey brain. Neuropharmacology 2001; 40:826-37. [PMID: 11369036 DOI: 10.1016/s0028-3908(01)00011-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
SKF83959, a benzazepine with high affinity for aminergic receptors, elicits behaviors such as grooming and vacuous chewing that are characteristic of dopamine D(1)-like receptor stimulation in rodents. Unlike classical D(1) agonists, however, SKF83959 does not stimulate adenylyl cyclase. Knowing that some D(1)-like receptors are coupled to phospholipase C-mediated signaling cascades in the brain, the present study aimed to determine whether SKF83959 exhibits an agonistic action at the biochemical level and also whether this benzazepine can modulate phosphoinositide hydrolysis in a manner that would be consistent with the behavioral effects of the drug. Similar to dopamine and the selective D(1)-like agonist SKF38393, SKF83959 competitively displaced the receptor binding of [(3)H]dopamine in an agonist-like manner, significantly stimulated [(35)S]guanosine-5'-O-(3-thio)triphosphate binding, and potently enhanced phospholipase C-mediated phosphoinositide hydrolysis in rat and monkey brain tissues. SKF83959 was generally more potent than SKF38393, whereas SKF38393 consistently exhibited greater pharmacological efficacy. These findings may implicate a role for the phospholipase C signaling cascade in the agonistic behavioral and antiparkinsonian activity of SKF83959. Dopamine-sensitive phospholipase C signaling should probably be considered in subsequent formulations of mechanisms and models of dopaminergic function in the normal or diseased brain.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/analogs & derivatives
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Benzazepines/metabolism
- Brain/drug effects
- Brain/metabolism
- Cytidine Diphosphate Diglycerides/metabolism
- Dopamine/metabolism
- Dopamine Agonists/pharmacology
- Dose-Response Relationship, Drug
- Female
- Guanosine 5'-O-(3-Thiotriphosphate)/metabolism
- Inositol Phosphates/metabolism
- Macaca mulatta
- Male
- Phosphatidylinositols/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/metabolism
Collapse
Affiliation(s)
- S Panchalingam
- Neuropharmacology Laboratory, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore MD 21201, USA
| | | |
Collapse
|
4
|
Boraud T, Bezard E, Bioulac B, Gross CE. Dopamine agonist-induced dyskinesias are correlated to both firing pattern and frequency alterations of pallidal neurones in the MPTP-treated monkey. Brain 2001; 124:546-57. [PMID: 11222455 DOI: 10.1093/brain/124.3.546] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite the importance and frequency of levodopa-induced dyskinesias, little is known about their causal mechanisms. In this study, electrophysiological single-unit recordings of the neuronal activity of the globus pallidus internalis (GPi), the main basal ganglia output structure, and the globus pallidus externalis (GPe) were recorded continuously in both normal and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treated subhuman primates before and after the administration of three dopamine agonists--apomorphine (a dopaminergic mixed agonist), SKF-38393 (a D1 partial agonist) and piribedil (a D2/D3 agonist)--at doses known to induce dyskinesias in the parkinsonian monkey. Changes in both the firing frequency and the firing pattern were analysed in relation to behavioural modifications. In both the normal and the parkinsonian monkey, the three agonists induced a decrease in the mean firing frequency of GPi neurones, although dyskinesias were induced only in the parkinsonian animals. In this situation, the improvement of parkinsonian motor abnormalities was correlated with the decrease in GPi firing frequency, whereas firing pattern changes were concomitant with the onset of dyskinesias. Moreover, firing frequency seemed to be decreased excessively during dyskinesias. The results indicate that the electrophysiological mechanism of dyskinesia involves an excessive decrease in GPi firing frequency and a modification of the firing pattern. However, the similarity between the induced decrease in firing frequency in normal and parkinsonian animals underlines the need for dopamine depletion in the induction of dyskinesias.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Action Potentials/drug effects
- Action Potentials/physiology
- Animals
- Apomorphine/pharmacology
- Dopamine Agonists/pharmacology
- Dyskinesia, Drug-Induced/physiopathology
- Female
- Globus Pallidus/drug effects
- Globus Pallidus/physiopathology
- Macaca fascicularis
- Neural Pathways/drug effects
- Neural Pathways/physiopathology
- Neurons/drug effects
- Neurons/physiology
- Parkinsonian Disorders/drug therapy
- Parkinsonian Disorders/physiopathology
- Piribedil/pharmacology
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/agonists
- Receptors, Dopamine D2/metabolism
Collapse
Affiliation(s)
- T Boraud
- Basal Gang, CNRS UMR 5543, Université Victor Ségalen Bordeaux 2, 146, rue Léo Saignat, 33076 Bordeaux cedex, France
| | | | | | | |
Collapse
|
5
|
Meloni EG, Davis M. Enhancement of the acoustic startle response by dopamine agonists after 6-hydroxydopamine lesions of the substantia nigra pars compacta: corresponding changes in c-Fos expression in the caudate-putamen. Brain Res 2000; 879:93-104. [PMID: 11011010 DOI: 10.1016/s0006-8993(00)02753-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Rats with 6-hydroxydopamine (6-OHDA) lesions of the nigrostriatal pathway show enhanced locomotor and stereotyped behaviors when challenged with direct and indirect dopamine (DA) agonists due to the development of postsynaptic supersensitivity. To determine if this phenomenon generalizes to other motor behaviors, we have used this rat model of Parkinson's disease to examine the effects of the direct dopamine D(1) receptor agonist SKF 82958 and the indirect DA agonist L-3,4-dihydroxyphenylalanine (L-DOPA) on the acoustic startle response. In addition, we used the expression of c-Fos protein as a marker of neuronal activity to assess any corresponding drug-induced changes in the caudate-putamen (CPu) after L-DOPA administration. Male Sprague-Dawley rats received bilateral injections of 6-OHDA into the substantia nigra pars compacta and 1 week later were tested for startle after systemic administration of SKF 82958 (0.05 mg/kg) or L-DOPA (1, 5, 10 mg/kg). SKF 82958 produced a marked enhancement of startle with a rapid onset in 6-OHDA-lesioned but not SHAM animals. L-DOPA produced a dose- and time-dependent enhancement of startle in 6-OHDA-lesioned rats that had no effect in SHAM animals even at the highest dose (10 mg/kg). Furthermore, L-DOPA produced a dramatic induction of c-Fos in the CPu in 6-OHDA-lesioned animals. Consistent with other literature, these data suggest that neurons in the CPu become supersensitive to the effects of DA agonists after 6-OHDA-induced denervation of the nigrostriatal pathway and that supersensitive dopamine D(1) receptors may mediate the enhancement of startle seen in the present study.
Collapse
Affiliation(s)
- E G Meloni
- The Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA 30322, USA.
| | | |
Collapse
|
6
|
Black KJ, Hershey T, Gado MH, Perlmutter JS. Dopamine D(1) agonist activates temporal lobe structures in primates. J Neurophysiol 2000; 84:549-57. [PMID: 10899226 DOI: 10.1152/jn.2000.84.1.549] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Changes in the function of dopamine D(1)-influenced neuronal pathways may be important to the pathophysiology of several human diseases. We recently developed methods for averaging functional imaging data across nonhuman primate subjects; in this study, we apply this method for the first time to map brain responses to experimental dopamine agonists in vivo. Here we report the use of positron emission tomography (PET) in seven normal baboons to measure the regional cerebral blood flow (rCBF) responses produced by an acute dose of the dopamine D(1) full agonist SKF82958. The most significant rCBF increases were in bilateral temporal lobe, including amygdala and superior temporal sulcus (6-17%, P < 0.001). Blood flow decreased in thalamus, pallidum, and pons (4-7%, P = 0.001). Furthermore the rCBF responses were dose-dependent and had a half-life of approximately 30 min, similar to that reported for the drug's antiparkinsonian effects. Absolute whole-brain blood flow did not change, suggesting that these local changes in rCBF reflect neuronal rather than direct vascular effects of the agonist. The prominent temporal lobe response to a D(1) agonist supports and extends our recent observations that levodopa produces prominent amygdala activation both in humans and in other primates. We speculate that levodopa may exert its known effects on mood in humans through increased amygdala activity, mediated in part by D(1) receptors.
Collapse
Affiliation(s)
- K J Black
- Department of Psychiatry, Missouri 63110, USA.
| | | | | | | |
Collapse
|
7
|
Imbert C, Bezard E, Guitraud S, Boraud T, Gross CE. Comparison of eight clinical rating scales used for the assessment of MPTP-induced parkinsonism in the Macaque monkey. J Neurosci Methods 2000; 96:71-6. [PMID: 10704673 DOI: 10.1016/s0165-0270(99)00184-3] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The most valuable model of Parkinson's disease available at present is the primate model treated with 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine (MPTP), frequently used to study response to new drugs or surgical treatments. The evaluation of such therapies requires clinical rating scales which measure precisely motor behaviour in both normal and parkinsonian monkeys. It is obvious that such evaluation can only be valid if parallel studies are carried out under similar experimental conditions with well-defined objective criteria. Hence the need to compare and assess the different rating scales in use if we want to be able to compare the results of clinical studies. In order to give rise to some fresh thinking on the necessity of a certain uniformity of assessment, this study compares eight clinical rating scales and considers their capacity to express in quantitative terms both the severity of MPTP intoxication in five cynomolgus monkeys and the alleviation afforded by levodopa. None of the eight scales reaches all the criteria despite the Kurlan scale would appear as an interesting working basis for a further consensual definition of a worldwide used parkinsonian monkey clinical rating scale
Collapse
Affiliation(s)
- C Imbert
- Basal Gang, Laboratoire de Neurophysiologie, CNRS UMR 5543, Université de Bordeaux II, 146 rue Leo Saignat, 33076, Bordeaux, France
| | | | | | | | | |
Collapse
|
8
|
Bezard E, Imbert C, Gross CE. Experimental models of Parkinson's disease: from the static to the dynamic. Rev Neurosci 1998; 9:71-90. [PMID: 9711900 DOI: 10.1515/revneuro.1998.9.2.71] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The experimental models of Parkinson's disease (PD) available today can be divided into two categories according to the mode of action of the compound used: transient pharmacological impairment of dopaminergic transmission along the nigrostriatal pathway or selective destruction by a neurotoxic agent of the dopaminergic neurons of the substantia nigra pars compacta. The present article looks at the relative merits of each model, the clinical symptoms and neuronal impairment it induces, and the contribution it could make to the development of a truly dynamic model. It is becoming more and more clear that there is an urgent need for a chronic model integrating all the clinical features of PD including resting tremor, and reproducing the gradual but continuous nigral degeneration observed in the human pathology. Discrepancies have been reported several times between results obtained in classic animal models and those described in PD, and it would seem probable that such contradictions can be ascribed to the fact that animal models do not, as yet, reproduce the continuous evolution of the human disease. Dynamic experimental models which come closer to the progressive neurodegeneration and gradual intensification of motor disability so characteristic of human PD will enable us to investigate crucial aspects of the disease, such as compensatory mechanisms and dyskinesia.
Collapse
Affiliation(s)
- E Bezard
- Basal Gang, Laboratoire de Neurophysiologie, Université de Bordeaux II, France
| | | | | |
Collapse
|