1
|
Wang L, Liang P, Pan P, Su J, Qin J, Chen Z, Huang D, Sun W, Song P, Wei H. Prenatal chromosomal microarray analysis and karyotyping in fetuses with isolated choroid plexus cyst: A retrospective case-control study. Eur J Obstet Gynecol Reprod Biol 2024; 297:91-95. [PMID: 38603985 DOI: 10.1016/j.ejogrb.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/30/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
OBJECTIVES To evaluate the the diagnostic yield of chromosomal microarray analysis (CMA) in fetuses with isolated CPC (iCPC). METHODS A total of 315 fetuses with iCPC (iCPC group) and 364 fetuses without abnormal ultrasound findings (control group) were recruited between July 2014 to March 2018. RESULTS The overall diagnostic yield of chromosomal abnormalities by CMA and karyotyping in iCPC group was up to 4.1 %, higher than 1.4 % in the control group, p < 0.05. The detection rate of pathogenic or likely pathogenic copy number variants (CNVs) with clinical significance by CMA in iCPC group (1.3 %) was higher than in control group (0 %), p < 0.05. According to the type of chromosome abnormalities, the missed diagnosis rate of non-invasive prenatal testing (NIPT) was 1.6 % in our study. CONCLUSIONS The presence of iCPC on ultrasound examination suggests a potential indication for genetic counseling. Karyotyping and chromosomal microarray analysis may be considered for fetuses with iCPC. It is important to be aware of the limitations of non-invasive prenatal testing, as there is a possibility of residual risk.
Collapse
Affiliation(s)
- Linlin Wang
- Prenatal Diagnosis Center, The Maternal & Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China
| | - Ping Liang
- Prenatal Diagnosis Center, The Maternal & Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China
| | - Pingshan Pan
- Prenatal Diagnosis Center, The Maternal & Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China
| | - Jiasun Su
- Prenatal Diagnosis Center, The Maternal & Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China
| | - Jiayi Qin
- Prenatal Diagnosis Center, The Maternal & Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China
| | - Zhaoxia Chen
- Prenatal Diagnosis Center, The Maternal & Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China
| | - Dongbing Huang
- Prenatal Diagnosis Center, The Maternal & Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China
| | - Weijia Sun
- Prenatal Diagnosis Center, The Maternal & Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China
| | - Pengshu Song
- Prenatal Diagnosis Center, The Maternal & Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China
| | - Hongwei Wei
- Prenatal Diagnosis Center, The Maternal & Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China.
| |
Collapse
|
2
|
Clinical significance of soft markers in second trimesterr ultrasonography for pregnant Korean women: a multicenter study and literature review. Obstet Gynecol Sci 2022; 65:145-155. [PMID: 35184524 PMCID: PMC8942751 DOI: 10.5468/ogs.21216] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 01/17/2022] [Indexed: 11/23/2022] Open
Abstract
Objective To evaluate the clinical significance of soft markers for aneuploidy screening in Korean women. Methods We retrospectively reviewed the medical records of 5,428 singleton pregnant women who underwent sonography during the second trimester at seven institutions in South Korea. We evaluated the prevalence of the following soft markers: intracardiac echogenic focus, choroid plexus cysts, pyelectasis, echogenic bowel, and mild ventriculomegaly. We developed best-fitted regression equations for the fetal femur and humerus length using our data and defined a short femur and humerus as both long bones below the fifth centile. The results of genetic testing and postnatal outcomes were investigated in patients who had been diagnosed with aforementioned soft markers. Results The median maternal age of our study population was 33 years, and the median gestational age at the time of ultrasonographic examination was 21 weeks. We detected soft markers in 10.0% (n=540) of fetuses: 9.3% (n=504) were isolated cases and 0.7% (n=36) of cases had two or more markers. We identified only two aneuploides (trisomy 18, 46,XX,t[8;10][q22.1;p13]), of which one was clinically significant. We presented the neonatal outcomes of the fetuses with the respective soft markers. Preterm delivery, low birth weight, and small-for-gestational-age (SGA) were significantly more common in women with a shortened fetal femur (P<0.001, all). However, the presence of a shortened fetal humerus was not associated with those outcomes excluding SGA. Conclusion Soft markers in second-trimester ultrasonography have limited use in screening for fetal aneuploidy in Korean women. However, these markers can be used as a screening tool for adverse outcomes other than chromosomal abnormality.
Collapse
|
3
|
Kürten C, Knippel A, Verde P, Kozlowski P. A Bayesian risk analysis for Trisomy 21 in isolated choroid plexus cyst: combining a prenatal database with a meta-analysis. J Matern Fetal Neonatal Med 2019; 34:889-897. [PMID: 31113245 DOI: 10.1080/14767058.2019.1622666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE The purpose of this study was to quantify the possible additional risk of a fetus with an isolated choroid plexus cyst (ICPC) for Trisomy 21 by combining a large controlled cohort study with data from existent studies. METHODS We searched our prenatal database between 2000 and 2014 for all singleton pregnancies between 18 + 0 and 26 + 6 gestational weeks with either an isolated choroid plexus cyst (study group) or no abnormality found in the detailed ultrasound scan (control group). We assessed all prenatal karyotyping results if invasive testing was performed and attempted to collect the postnatal outcome reports of all patients. The prevalence of Down syndrome was calculated. By using previous studies that met our inclusion criteria, a meta-analysis following the Bayesian Independent Model was created. From this meta-analysis, we computed the posterior predictive distribution of the probability (Trisomy 21 | ICPC) = P1 including posterior means, standard deviations, quantiles (2.5, 50, and 97.5%). By calculating the posterior of the difference (Δ) between the probability (Trisomy 21 | ICPC) and the probability (Trisomy 21 | Normal Ultrasound) = P2, we investigated the additional risk of an ICPC (ΔB = P1-P2). RESULTS Overall, we detected 1220 fetuses with an isolated plexus cyst at 19-27 weeks of gestational age (GA). In our study group, the prevalence of Trisomy 21 was 2/1220 (0.16, 95% CI: 0.1-0.6%). The median of the pooled probability of Trisomy 21 given isolated PC across the studies included in the meta-analysis was 0.2% (CI: 0.1-0.4%). In the given periods (GA and time), 66,606 (74.8%) out of 89,056 investigated fetuses met the inclusion criteria and had a normal ultrasound result without any abnormality. The Δ between our study group and the control group was 0.08% (CIΔA: 0-0.5%). Including the meta-analysis, the median of the posterior distribution of Δ between P1 and P2 was 0.08% (CIΔB: 0-0.4%) (ΔB = P1-P2). CONCLUSION The posterior distribution of Δ between P1 and P2 including the meta-analysis corresponds to showing no difference between the cases and controls (95% CIΔB: 0-0.4%). The additional risk of a fetus with an ICPC for Trisomy 21 is 97.5% likely to be lower than 0.4% (about 1/250). However, in our collective, the positive predictive value of ICPC for Down syndrome was 0.16% (about 1/625). In prenatal counseling, the additional risk should be added to the individual risk (based on maternal age, earlier screening test results, and sonographic markers) and the diagnostic options including fetal DNA and diagnostic procedures should be discussed according to the posterior individual risk.
Collapse
Affiliation(s)
- Constanze Kürten
- Department of Gynecology and Obstetrics, Medizinische Fakultät, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | | | - Pablo Verde
- Koordinierungszentrum für klinische Studien, Universität Düsseldorf, Düsseldorf, Germany
| | - Peter Kozlowski
- Praenatal-Medizin und Genetik Düesseldorf, Düsseldorf, Germany
| |
Collapse
|
4
|
Petrikovsky BM, Terrani M, Sichinava LG. Natural History and Clinical Significance of Multiple Cysts in a Single Choroid Plexus. JOURNAL OF DIAGNOSTIC MEDICAL SONOGRAPHY 2018. [DOI: 10.1177/8756479318793846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Different types and locations of choroid plexus cysts (CPCs) have been described, including oversized and bilateral. It appears that the type, size, and number of CPCs are correlated with various degrees of aneuploidy risk. This report deals with the natural history and significance of CPCs filling only one choroid plexus. Multiple CPCs filling the entire choroid plexus were detected in 9 of 4211 consecutive second-trimester sonographic examinations. Karyotyping via amniocentesis or neonatal blood analysis was performed in all cases. CPCs in a single choroid plexus were associated with transient ventriculomegaly in five of nine fetuses. Resolution of CPCs took place between 25 and 33 weeks of pregnancy, with most resolving after the 30th week. Karyotyping revealed normal results in all cases. Favorable prognosis of newly described multiple CPCs in a single choroid plexus should be mentioned during patient counseling.
Collapse
Affiliation(s)
- B. M. Petrikovsky
- New York Downtown Hospital, New York, NY, USA
- Department of Ob/Gyn, Wyckoff Heights Medical Center, Brooklyn, NY, USA
| | | | - L. G. Sichinava
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
5
|
Alldred SK, Takwoingi Y, Guo B, Pennant M, Deeks JJ, Neilson JP, Alfirevic Z. First trimester ultrasound tests alone or in combination with first trimester serum tests for Down's syndrome screening. Cochrane Database Syst Rev 2017; 3:CD012600. [PMID: 28295158 PMCID: PMC6464518 DOI: 10.1002/14651858.cd012600] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Down's syndrome occurs when a person has three, rather than two copies of chromosome 21; or the specific area of chromosome 21 implicated in causing Down's syndrome. It is the commonest congenital cause of mental disability and also leads to numerous metabolic and structural problems. It can be life-threatening, or lead to considerable ill health, although some individuals have only mild problems and can lead relatively normal lives. Having a baby with Down's syndrome is likely to have a significant impact on family life.Non-invasive screening based on biochemical analysis of maternal serum or urine, or fetal ultrasound measurements, allows estimates of the risk of a pregnancy being affected and provides information to guide decisions about definitive testing.Before agreeing to screening tests, parents need to be fully informed about the risks, benefits and possible consequences of such a test. This includes subsequent choices for further tests they may face, and the implications of both false positive and false negative screening tests (i.e. invasive diagnostic testing, and the possibility that a miscarried fetus may be chromosomally normal). The decisions that may be faced by expectant parents inevitably engender a high level of anxiety at all stages of the screening process, and the outcomes of screening can be associated with considerable physical and psychological morbidity. No screening test can predict the severity of problems a person with Down's syndrome will have. OBJECTIVES To estimate and compare the accuracy of first trimester ultrasound markers alone, and in combination with first trimester serum tests for the detection of Down's syndrome. SEARCH METHODS We carried out extensive literature searches including MEDLINE (1980 to 25 August 2011), Embase (1980 to 25 August 2011), BIOSIS via EDINA (1985 to 25 August 2011), CINAHL via OVID (1982 to 25 August 2011), and The Database of Abstracts of Reviews of Effects (the Cochrane Library 2011, Issue 7). We checked reference lists and published review articles for additional potentially relevant studies. SELECTION CRITERIA Studies evaluating tests of first trimester ultrasound screening, alone or in combination with first trimester serum tests (up to 14 weeks' gestation) for Down's syndrome, compared with a reference standard, either chromosomal verification or macroscopic postnatal inspection. DATA COLLECTION AND ANALYSIS Data were extracted as test positive/test negative results for Down's and non-Down's pregnancies allowing estimation of detection rates (sensitivity) and false positive rates (1-specificity). We performed quality assessment according to QUADAS criteria. We used hierarchical summary ROC meta-analytical methods to analyse test performance and compare test accuracy. Analysis of studies allowing direct comparison between tests was undertaken. We investigated the impact of maternal age on test performance in subgroup analyses. MAIN RESULTS We included 126 studies (152 publications) involving 1,604,040 fetuses (including 8454 Down's syndrome cases). Studies were generally good quality, although differential verification was common with invasive testing of only high-risk pregnancies. Sixty test combinations were evaluated formed from combinations of 11 different ultrasound markers (nuchal translucency (NT), nasal bone, ductus venosus Doppler, maxillary bone length, fetal heart rate, aberrant right subclavian artery, frontomaxillary facial angle, presence of mitral gap, tricuspid regurgitation, tricuspid blood flow and iliac angle 90 degrees); 12 serum tests (inhibin A, alpha-fetoprotein (AFP), free beta human chorionic gonadotrophin (ßhCG), total hCG, pregnancy-associated plasma protein A (PAPP-A), unconjugated oestriol (uE3), disintegrin and metalloprotease 12 (ADAM 12), placental growth factor (PlGF), placental growth hormone (PGH), invasive trophoblast antigen (ITA) (synonymous with hyperglycosylated hCG), growth hormone binding protein (GHBP) and placental protein 13 (PP13)); and maternal age. The most frequently evaluated serum markers in combination with ultrasound markers were PAPP-A and free ßhCG.Comparisons of the 10 most frequently evaluated test strategies showed that a combined NT, PAPP-A, free ßhCG and maternal age test strategy significantly outperformed ultrasound markers alone (with or without maternal age) except nasal bone, detecting about nine out of every 10 Down's syndrome pregnancies at a 5% false positive rate (FPR). In both direct and indirect comparisons, the combined NT, PAPP-A, free ßhCG and maternal age test strategy showed superior diagnostic accuracy to an NT and maternal age test strategy (P < 0.0001). Based on the indirect comparison of all available studies for the two tests, the sensitivity (95% confidence interval) estimated at a 5% FPR for the combined NT, PAPP-A, free ßhCG and maternal age test strategy (69 studies; 1,173,853 fetuses including 6010 with Down's syndrome) was 87% (86 to 89) and for the NT and maternal age test strategy (50 studies; 530,874 fetuses including 2701 Down's syndrome pregnancies) was 71% (66 to 75). Combinations of NT with other ultrasound markers, PAPP-A and free ßhCG were evaluated in one or two studies and showed sensitivities of more than 90% and specificities of more than 95%.High-risk populations (defined before screening was done, mainly due to advanced maternal age of 35 years or more, or previous pregnancies affected with Down's syndrome) showed lower detection rates compared to routine screening populations at a 5% FPR. Women who miscarried in the over 35 group were more likely to have been offered an invasive test to verify a negative screening results, whereas those under 35 were usually not offered invasive testing for a negative screening result. Pregnancy loss in women under 35 therefore leads to under-ascertainment of screening results, potentially missing a proportion of affected pregnancies and affecting test sensitivity. Conversely, for the NT, PAPP-A, free ßhCG and maternal age test strategy, detection rates and false positive rates increased with maternal age in the five studies that provided data separately for the subset of women aged 35 years or more. AUTHORS' CONCLUSIONS Test strategies that combine ultrasound markers with serum markers, especially PAPP-A and free ßhCG, and maternal age were significantly better than those involving only ultrasound markers (with or without maternal age) except nasal bone. They detect about nine out of 10 Down's affected pregnancies for a fixed 5% FPR. Although the absence of nasal bone appeared to have a high diagnostic accuracy, only five out of 10 affected Down's pregnancies were detected at a 1% FPR.
Collapse
Affiliation(s)
- S Kate Alldred
- The University of LiverpoolDepartment of Women's and Children's HealthFirst Floor, Liverpool Women's NHS Foundation TrustCrown StreetLiverpoolUKL8 7SS
| | - Yemisi Takwoingi
- University of BirminghamInstitute of Applied Health ResearchEdgbastonBirminghamUKB15 2TT
| | - Boliang Guo
- University of NottinghamSchool of MedicineCLAHRC, C floor, IHM, Jubilee CampusUniversity of Nottingham, Triumph RoadNottinghamEast MidlandsUKNG7 2TU
| | - Mary Pennant
- Cambridgeshire County CouncilPublic Health DirectorateCambridgeUK
| | - Jonathan J Deeks
- University of BirminghamInstitute of Applied Health ResearchEdgbastonBirminghamUKB15 2TT
| | | | - Zarko Alfirevic
- The University of LiverpoolDepartment of Women's and Children's HealthFirst Floor, Liverpool Women's NHS Foundation TrustCrown StreetLiverpoolUKL8 7SS
| | | |
Collapse
|
6
|
Alldred SK, Takwoingi Y, Guo B, Pennant M, Deeks JJ, Neilson JP, Alfirevic Z. First and second trimester serum tests with and without first trimester ultrasound tests for Down's syndrome screening. Cochrane Database Syst Rev 2017; 3:CD012599. [PMID: 28295159 PMCID: PMC6464364 DOI: 10.1002/14651858.cd012599] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Down's syndrome occurs when a person has three copies of chromosome 21 (or the specific area of chromosome 21 implicated in causing Down's syndrome) rather than two. It is the commonest congenital cause of mental disability. Non-invasive screening based on biochemical analysis of maternal serum or urine, or fetal ultrasound measurements, allows estimates of the risk of a pregnancy being affected and provides information to guide decisions about definitive testing. Before agreeing to screening tests, parents need to be fully informed about the risks, benefits and possible consequences of such a test. This includes subsequent choices for further tests they may face, and the implications of both false positive (i.e. invasive diagnostic testing, and the possibility that a miscarried fetus may be chromosomally normal) and false negative screening tests (i.e. a fetus with Down's syndrome will be missed). The decisions that may be faced by expectant parents inevitably engender a high level of anxiety at all stages of the screening process, and the outcomes of screening can be associated with considerable physical and psychological morbidity. No screening test can predict the severity of problems a person with Down's syndrome will have. OBJECTIVES To estimate and compare the accuracy of first and second trimester serum markers with and without first trimester ultrasound markers for the detection of Down's syndrome in the antenatal period, as combinations of markers. SEARCH METHODS We conducted a sensitive and comprehensive literature search of MEDLINE (1980 to 25 August 2011), Embase (1980 to 25 August 2011), BIOSIS via EDINA (1985 to 25 August 2011), CINAHL via OVID (1982 to 25 August 2011), the Database of Abstracts of Reviews of Effectiveness (the Cochrane Library 25 August 2011), MEDION (25 August 2011), the Database of Systematic Reviews and Meta-Analyses in Laboratory Medicine (25 August 2011), the National Research Register (Archived 2007), and Health Services Research Projects in Progress database (25 August 2011). We did not apply a diagnostic test search filter. We did forward citation searching in ISI citation indices, Google Scholar and PubMed 'related articles'. We also searched reference lists of retrieved articles SELECTION CRITERIA: Studies evaluating tests of combining first and second trimester maternal serum markers in women up to 24 weeks of gestation for Down's syndrome, with or without first trimester ultrasound markers, compared with a reference standard, either chromosomal verification or macroscopic postnatal inspection. DATA COLLECTION AND ANALYSIS Data were extracted as test positive/test negative results for Down's and non-Down's pregnancies allowing estimation of detection rates (sensitivity) and false positive rates (1-specificity). We performed quality assessment according to QUADAS criteria. We used hierarchical summary ROC meta-analytical methods to analyse test performance and compare test accuracy. Analysis of studies allowing direct comparison between tests was undertaken. We investigated the impact of maternal age on test performance in subgroup analyses. MAIN RESULTS Twenty-two studies (reported in 25 publications) involving 228,615 pregnancies (including 1067 with Down's syndrome) were included. Studies were generally high quality, although differential verification was common with invasive testing of only high risk pregnancies. Ten studies made direct comparisons between tests. Thirty-two different test combinations were evaluated formed from combinations of eight different tests and maternal age; first trimester nuchal translucency (NT) and the serum markers AFP, uE3, total hCG, free βhCG, Inhibin A, PAPP-A and ADAM 12. We looked at tests combining first and second trimester markers with or without ultrasound as complete tests, and we also examined stepwise and contingent strategies.Meta-analysis of the six most frequently evaluated test combinations showed that a test strategy involving maternal age and a combination of first trimester NT and PAPP-A, and second trimester total hCG, uE3, AFP and Inhibin A significantly outperformed other test combinations that involved only one serum marker or NT in the first trimester, detecting about nine out of every 10 Down's syndrome pregnancies at a 5% false positive rate. However, the evidence was limited in terms of the number of studies evaluating this strategy, and we therefore cannot recommend one single screening strategy. AUTHORS' CONCLUSIONS Tests involving first trimester ultrasound with first and second trimester serum markers in combination with maternal age are significantly better than those without ultrasound, or those evaluating first trimester ultrasound in combination with second trimester serum markers, without first trimester serum markers. We cannot make recommendations about a specific strategy on the basis of the small number of studies available.
Collapse
Affiliation(s)
- S Kate Alldred
- The University of LiverpoolDepartment of Women's and Children's HealthFirst Floor, Liverpool Women's NHS Foundation TrustCrown StreetLiverpoolUKL8 7SS
| | - Yemisi Takwoingi
- University of BirminghamInstitute of Applied Health ResearchEdgbastonBirminghamUKB15 2TT
| | - Boliang Guo
- University of NottinghamSchool of MedicineCLAHRC, C floor, IHM, Jubilee CampusUniversity of Nottingham, Triumph RoadNottinghamEast MidlandsUKNG7 2TU
| | - Mary Pennant
- Cambridgeshire County CouncilPublic Health DirectorateCambridgeUK
| | - Jonathan J Deeks
- University of BirminghamInstitute of Applied Health ResearchEdgbastonBirminghamUKB15 2TT
| | | | - Zarko Alfirevic
- The University of LiverpoolDepartment of Women's and Children's HealthFirst Floor, Liverpool Women's NHS Foundation TrustCrown StreetLiverpoolUKL8 7SS
| | | |
Collapse
|
7
|
Alldred SK, Takwoingi Y, Guo B, Pennant M, Deeks JJ, Neilson JP, Alfirevic Z. First trimester serum tests for Down's syndrome screening. Cochrane Database Syst Rev 2015; 2015:CD011975. [PMID: 26617074 PMCID: PMC6465076 DOI: 10.1002/14651858.cd011975] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Down's syndrome occurs when a person has three, rather than two copies of chromosome 21; or the specific area of chromosome 21 implicated in causing Down's syndrome. It is the commonest congenital cause of mental disability and also leads to numerous metabolic and structural problems. It can be life-threatening, or lead to considerable ill health, although some individuals have only mild problems and can lead relatively normal lives. Having a baby with Down's syndrome is likely to have a significant impact on family life.Noninvasive screening based on biochemical analysis of maternal serum or urine, or fetal ultrasound measurements, allows estimates of the risk of a pregnancy being affected and provides information to guide decisions about definitive testing. However, no test can predict the severity of problems a person with Down's syndrome will have. OBJECTIVES The aim of this review was to estimate and compare the accuracy of first trimester serum markers for the detection of Down's syndrome in the antenatal period, both as individual markers and as combinations of markers. Accuracy is described by the proportion of fetuses with Down's syndrome detected by screening before birth (sensitivity or detection rate) and the proportion of women with a low risk (normal) screening test result who subsequently had a baby unaffected by Down's syndrome (specificity). SEARCH METHODS We conducted a sensitive and comprehensive literature search of MEDLINE (1980 to 25 August 2011), Embase (1980 to 25 August 2011), BIOSIS via EDINA (1985 to 25 August 2011), CINAHL via OVID (1982 to 25 August 2011), The Database of Abstracts of Reviews of Effectiveness (The Cochrane Library 25 August 2011), MEDION (25 August 2011), The Database of Systematic Reviews and Meta-Analyses in Laboratory Medicine (25 August 2011), The National Research Register (Archived 2007), Health Services Research Projects in Progress database (25 August 2011). We did forward citation searching ISI citation indices, Google Scholar and PubMed 'related articles'. We did not apply a diagnostic test search filter. We also searched reference lists and published review articles. SELECTION CRITERIA We included studies in which all women from a given population had one or more index test(s) compared to a reference standard (either chromosomal verification or macroscopic postnatal inspection). Both consecutive series and diagnostic case-control study designs were included. Randomised trials where individuals were randomised to different screening strategies and all verified using a reference standard were also eligible for inclusion. Studies in which test strategies were compared head-to-head either in the same women, or between randomised groups were identified for inclusion in separate comparisons of test strategies. We excluded studies if they included less than five Down's syndrome cases, or more than 20% of participants were not followed up. DATA COLLECTION AND ANALYSIS We extracted data as test positive or test negative results for Down's and non-Down's pregnancies allowing estimation of detection rates (sensitivity) and false positive rates (1-specificity). We performed quality assessment according to QUADAS (Quality Assessment of Diagnostic Accuracy Studies) criteria. We used hierarchical summary ROC meta-analytical methods or random-effects logistic regression methods to analyse test performance and compare test accuracy as appropriate. Analyses of studies allowing direct and indirect comparisons between tests were undertaken. MAIN RESULTS We included 56 studies (reported in 68 publications) involving 204,759 pregnancies (including 2113 with Down's syndrome). Studies were generally of good quality, although differential verification was common with invasive testing of only high-risk pregnancies. We evaluated 78 test combinations formed from combinations of 18 different tests, with or without maternal age; ADAM12 (a disintegrin and metalloprotease), AFP (alpha-fetoprotein), inhibin, PAPP-A (pregnancy-associated plasma protein A, ITA (invasive trophoblast antigen), free βhCG (beta human chorionic gonadotrophin), PlGF (placental growth factor), SP1 (Schwangerschafts protein 1), total hCG, progesterone, uE3 (unconjugated oestriol), GHBP (growth hormone binding protein), PGH (placental growth hormone), hyperglycosylated hCG, ProMBP (proform of eosinophil major basic protein), hPL (human placental lactogen), (free αhCG, and free ßhCG to AFP ratio. Direct comparisons between two or more tests were made in 27 studies.Meta-analysis of the nine best performing or frequently evaluated test combinations showed that a test strategy involving maternal age and a double marker combination of PAPP-A and free ßhCG significantly outperformed the individual markers (with or without maternal age) detecting about seven out of every 10 Down's syndrome pregnancies at a 5% false positive rate (FPR). Limited evidence suggested that marker combinations involving PAPP-A may be more sensitive than those without PAPP-A. AUTHORS' CONCLUSIONS Tests involving two markers in combination with maternal age, specifically PAPP-A, free βhCG and maternal age are significantly better than those involving single markers with and without age. They detect seven out of 10 Down's affected pregnancies for a fixed 5% FPR. The addition of further markers (triple tests) has not been shown to be statistically superior; the studies included are small with limited power to detect a difference.The screening blood tests themselves have no adverse effects for the woman, over and above the risks of a routine blood test. However some women who have a 'high risk' screening test result, and are given amniocentesis or chorionic villus sampling (CVS) have a risk of miscarrying a baby unaffected by Down's. Parents will need to weigh up this risk when deciding whether or not to have an amniocentesis or CVS following a 'high risk' screening test result.
Collapse
Affiliation(s)
- S Kate Alldred
- The University of LiverpoolDepartment of Women's and Children's HealthFirst Floor, Liverpool Women's NHS Foundation TrustCrown StreetLiverpoolUKL8 7SS
| | - Yemisi Takwoingi
- University of BirminghamPublic Health, Epidemiology and BiostatisticsEdgbastonBirminghamUKB15 2TT
| | - Boliang Guo
- University of NottinghamSchool of MedicineCLAHRC, C floor, IHM, Jubilee CampusUniversity of Nottingham, Triumph RoadNottinghamEast MidlandsUKNG7 2TU
| | - Mary Pennant
- Cambridgeshire County CouncilPublic Health DirectorateCambridgeUK
| | - Jonathan J Deeks
- University of BirminghamPublic Health, Epidemiology and BiostatisticsEdgbastonBirminghamUKB15 2TT
| | - James P Neilson
- The University of LiverpoolDepartment of Women's and Children's HealthFirst Floor, Liverpool Women's NHS Foundation TrustCrown StreetLiverpoolUKL8 7SS
| | - Zarko Alfirevic
- The University of LiverpoolDepartment of Women's and Children's HealthFirst Floor, Liverpool Women's NHS Foundation TrustCrown StreetLiverpoolUKL8 7SS
| | | |
Collapse
|
8
|
Casteleijn NF, Spithoven EM, Rookmaaker MB, Vergouwen MDI, Gansevoort RT. Bilateral cysts in the choroid plexus in a patient with autosomal dominant polycystic kidney disease. Nephrol Dial Transplant 2014; 30:859-60. [PMID: 25104083 DOI: 10.1093/ndt/gfu264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/03/2014] [Indexed: 11/14/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a genetic systemic disorder, which is associated with cyst formation in several organs, renal function decline and a higher prevalence of intracranial aneurysms. We report a 52-year-old, otherwise healthy, man with ADPKD who had asymptomatic, bilateral, multiple cysts in the choroid plexus, which is an extremely rare abnormality. Recent evidence suggests that the polycystin proteins, which are dysfunctional in ADPKD, are found in ciliated choroid plexus cells that are involved with regulation of cerebrospinal fluid homeostasis. We hypothesize therefore that choroid plexus cysts may be part of the ADPKD phenotype, which has not been described before.
Collapse
Affiliation(s)
- Niek F Casteleijn
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Edwin M Spithoven
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Maarten B Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Mervyn D I Vergouwen
- Department of Neurology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Ron T Gansevoort
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
9
|
Abstract
The trisomy 18 syndrome, also known as Edwards syndrome, is a common chromosomal disorder due to the presence of an extra chromosome 18, either full, mosaic trisomy, or partial trisomy 18q. The condition is the second most common autosomal trisomy syndrome after trisomy 21. The live born prevalence is estimated as 1/6,000-1/8,000, but the overall prevalence is higher (1/2500-1/2600) due to the high frequency of fetal loss and pregnancy termination after prenatal diagnosis. The prevalence of trisomy 18 rises with the increasing maternal age. The recurrence risk for a family with a child with full trisomy 18 is about 1%. Currently most cases of trisomy 18 are prenatally diagnosed, based on screening by maternal age, maternal serum marker screening, or detection of sonographic abnormalities (e.g., increased nuchal translucency thickness, growth retardation, choroid plexus cyst, overlapping of fingers, and congenital heart defects ). The recognizable syndrome pattern consists of major and minor anomalies, prenatal and postnatal growth deficiency, an increased risk of neonatal and infant mortality, and marked psychomotor and cognitive disability. Typical minor anomalies include characteristic craniofacial features, clenched fist with overriding fingers, small fingernails, underdeveloped thumbs, and short sternum. The presence of major malformations is common, and the most frequent are heart and kidney anomalies. Feeding problems occur consistently and may require enteral nutrition. Despite the well known infant mortality, approximately 50% of babies with trisomy 18 live longer than 1 week and about 5-10% of children beyond the first year. The major causes of death include central apnea, cardiac failure due to cardiac malformations, respiratory insufficiency due to hypoventilation, aspiration, or upper airway obstruction and, likely, the combination of these and other factors (including decisions regarding aggressive care). Upper airway obstruction is likely more common than previously realized and should be investigated when full care is opted by the family and medical team. The complexity and the severity of the clinical presentation at birth and the high neonatal and infant mortality make the perinatal and neonatal management of babies with trisomy 18 particularly challenging, controversial, and unique among multiple congenital anomaly syndromes. Health supervision should be diligent, especially in the first 12 months of life, and can require multiple pediatric and specialist evaluations.
Collapse
Affiliation(s)
- Anna Cereda
- Ambulatorio Genetica Clinica Pediatrica, Clinica Pediatrica Universita Milano Bicocca, Fondazione MBBM A.O, S, Gerardo Monza, Italy
| | | |
Collapse
|
10
|
|
11
|
Trawber R, Rao S, Srinivasjois R, Thonell S, Nagarajan L, French N, Jacoby P, McMichael J. Outcomes of preterm neonates with frontal horn cysts: a retrospective study. J Child Neurol 2010; 25:1377-81. [PMID: 20448250 DOI: 10.1177/0883073810366600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Isolated paraventricular frontal horn cysts are sometimes encountered on cranial ultrasound examinations of preterm neonates. The etiology and clinical significance of these lesions are unclear. The authors aimed to identify antenatal/intrapartum risk factors associated with the occurrence of these cysts and to assess developmental outcomes of preterm neonates with isolated frontal horn cysts. A retrospective cohort study with matched control design was used. A total of 28 cases were matched for gestation with 56 controls. No antenatal/intrapartum factors were associated with these cysts. At corrected age of 1 year, there was no difference in the mean general quotient between cases and controls (97.75 ± 17.28 vs 94.94 ± 9.86; P = .410). In all, 1 case and no controls had a diagnosis of cerebral palsy and 1 case and 3 controls had general quotients less than 80. The authors conclude that isolated paraventricular frontal horn cysts are benign, with no effect on neurodevelopment.
Collapse
Affiliation(s)
- Rory Trawber
- King Edward Memorial Hospital for Women, Perth, Western Australia.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Speevak MD, Dolling J, Terespolsky D, Blumenthal A, Farrell SA. An algorithm for the prenatal detection of chromosome anomalies by QF-PCR and G-banded analysis. Prenat Diagn 2008; 28:1221-6. [DOI: 10.1002/pd.2159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|