1
|
Bunyaratavej K, Phokaewvarangkul O, Wangsawatwong P. Placement accuracy of the second electrode in bilateral deep brain stimulation surgery. Br J Neurosurg 2024; 38:1078-1085. [PMID: 34939521 DOI: 10.1080/02688697.2021.2019677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/26/2021] [Accepted: 12/14/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Due to brain shift during bilateral deep brain stimulation (DBS) surgery, placement of the second electrode may be subjected to more error than that of the first electrode. The authors aimed to investigate the accuracy of second electrode placement in this setting. MATERIALS AND METHODS Fifty-five patients with Parkinson's disease who underwent bilateral DBS surgery (110 electrodes) were retrospectively evaluated. The targets were subthalamic nucleus (STN) and globus pallidus interna (GPi) in 40 and 15 cases, respectively. Preoperative planning and postoperative electrode images were co-registered to compare the error margin between the two sides. RESULTS There is a statistically significant difference in the directional axis error along the y axis only when comparing each laterality (posterior 0.04 ± 1.21 mm vs anterior 0.41 ± 1.07 mm, p = 0.006). There is no significant difference of other error parameters, final track location, and number of microelectrode recording passes between the two sides. In a subgroup analysis, there is a significant difference in directional axis error along the y axis only in the STN subgroup (posterior 0.40 ± 1.05 mm vs anterior 0.18 ± 1.04 mm, p = 0.003). CONCLUSION Although a statistically significant difference in directional axis error along the y axis was found between first and second electrode placements in the STN group but not in the GPi group, its magnitude is well below the clinically significant threshold.
Collapse
Affiliation(s)
- Krishnapundha Bunyaratavej
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Onanong Phokaewvarangkul
- Chulalongkorn Center of Excellence for Parkinson's Disease and Related Disorders, Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Piyanat Wangsawatwong
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
2
|
Xu Y, Qin G, Tan B, Fan S, An Q, Gao Y, Fan H, Xie H, Wu D, Liu H, Yang G, Fang H, Xiao Z, Zhang J, Zhang H, Shi L, Yang A. Deep Brain Stimulation Electrode Reconstruction: Comparison between Lead-DBS and Surgical Planning System. J Clin Med 2023; 12:jcm12051781. [PMID: 36902568 PMCID: PMC10002993 DOI: 10.3390/jcm12051781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Electrode reconstruction for postoperative deep brain simulation (DBS) can be achieved manually using a surgical planning system such as Surgiplan, or in a semi-automated manner using software such as the Lead-DBS toolbox. However, the accuracy of Lead-DBS has not been thoroughly addressed. METHODS In our study, we compared the DBS reconstruction results of Lead-DBS and Surgiplan. We included 26 patients (21 with Parkinson's disease and 5 with dystonia) who underwent subthalamic nucleus (STN)-DBS, and reconstructed the DBS electrodes using the Lead-DBS toolbox and Surgiplan. The electrode contact coordinates were compared between Lead-DBS and Surgiplan with postoperative CT and MRI. The relative positions of the electrode and STN were also compared between the methods. Finally, the optimal contact during follow-up was mapped onto the Lead-DBS reconstruction results to check for overlap between the contacts and the STN. RESULTS We found significant differences in all axes between Lead-DBS and Surgiplan with postoperative CT, with the mean variance for the X, Y, and Z coordinates being -0.13, -1.16, and 0.59 mm, respectively. Y and Z coordinates showed significant differences between Lead-DBS and Surgiplan with either postoperative CT or MRI. However, no significant difference in the relative distance of the electrode and the STN was found between the methods. All optimal contacts were located in the STN, with 70% of them located within the dorsolateral region of the STN in the Lead-DBS results. CONCLUSIONS Although significant differences in electrode coordinates existed between Lead-DBS and Surgiplan, our results suggest that the coordinate difference was around 1 mm, and Lead-DBS can capture the relative distance between the electrode and the DBS target, suggesting it is reasonably accurate for postoperative DBS reconstruction.
Collapse
Affiliation(s)
- Yichen Xu
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Guofan Qin
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Bojing Tan
- Department of Neurosurgery, Capital Institute of Pediatrics, Beijing 100020, China
| | - Shiying Fan
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Qi An
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yuan Gao
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Houyou Fan
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Hutao Xie
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Delong Wu
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Huanguang Liu
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150007, China
| | - Huaying Fang
- Beijing Advanced Innovation Center for Imaging Theory and Technology, Capital Normal University, Beijing 100089, China
- Academy for Multidisciplinary Studies, Capital Normal University, Beijing 100089, China
| | - Zunyu Xiao
- Molecular Imaging Research Center, Harbin Medical University, Harbin 150076, China
| | - Jianguo Zhang
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Hua Zhang
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Correspondence: (H.Z.); (L.S.); (A.Y.)
| | - Lin Shi
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Correspondence: (H.Z.); (L.S.); (A.Y.)
| | - Anchao Yang
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Correspondence: (H.Z.); (L.S.); (A.Y.)
| |
Collapse
|
3
|
Kawaguchi M, Miyagi Y, Kishimoto J, Samura K, Tokunaga Y, Watari M, Eguchi H, Ueda S, Iihara K. Development of Quality of Life Questionnaire for Patients with Parkinson's Disease Undergoing STN-DBS. Neurol Med Chir (Tokyo) 2021; 61:475-483. [PMID: 34148942 PMCID: PMC8365237 DOI: 10.2176/nmc.oa.2020-0388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In device-aided therapy (DAT) for Parkinson’s disease (PD), factors such as device-related adverse effects, psychological and lifestyle changes, and specific disease progression can affect the quality of life (QoL) of patients with advanced PD. However, there is no existing QoL scale that includes the effects of therapeutic devices. From a semi-structured interview with patients with PD undergoing deep brain stimulation (DBS), we extracted the content of utterances that were thought to affect the QoL and created a draft questionnaire consisting of 113 items. This questionnaire was administered to 54 other patients undergoing DBS, whose data were examined for reliability and validity by factor analysis, and finally, a 24-item PD QoL questionnaire for patients on DAT (PDQ-DAT) was developed. Presently, the PDQ-DAT is the only scale that can assess the QoL of patients on DAT, including the influence treatment devices have on them. In the future, it might be used to help in shared decision-making in medicine by incorporating the patient’s sense of burden and values in the selection of treatment methods.
Collapse
Affiliation(s)
- Minako Kawaguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University
| | - Yasushi Miyagi
- Department of Stereotactic and Functional Neurosurgery, Medical Co. LTA Fukuoka Mirai Hospital
| | - Junji Kishimoto
- Center for Clinical and Translational Research, Kyushu University
| | | | - Yutaka Tokunaga
- Department of Education and Clinical Psychology, Faculty of Humanities, Fukuoka University
| | - Mari Watari
- Department of Neurology, Medical Co. LTA Fukuoka Mirai Hospital
| | - Hiroko Eguchi
- Department of Nursing, Medical Co. LTA Fukuoka Mirai Hospital
| | - Shintaro Ueda
- Telemedicine Development Center of Asia, International Medical Department, Kyushu University Hospital
| | | |
Collapse
|
4
|
Peng T, Kramer DR, Lee MB, Barbaro MF, Ding L, Liu CY, Kellis S, Lee B. Comparison of Intraoperative 3-Dimensional Fluoroscopy With Standard Computed Tomography for Stereotactic Frame Registration. Oper Neurosurg (Hagerstown) 2020; 18:698-709. [PMID: 31584102 PMCID: PMC7225008 DOI: 10.1093/ons/opz296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 07/19/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Three-dimensional fluoroscopy via the O-arm (Medtronic, Dublin, Ireland) has been validated for intraoperative confirmation of successful lead placement in stereotactic electrode implantation. However, its role in registration and targeting has not yet been studied. After frame placement, many stereotactic neurosurgeons obtain a computed tomography (CT) scan and merge it with a preoperative magnetic resonance imaging (MRI) scan to generate planning coordinates; potential disadvantages of this practice include increased procedure time and limited scanner availability. OBJECTIVE To evaluate whether the second-generation O-arm (O2) can be used in lieu of a traditional CT scan to obtain accurate frame-registration scans. METHODS In 7 patients, a postframe placement CT scan was merged with preoperative MRI and used to generate lead implantation coordinates. After implantation, the fiducial box was again placed on the patient to obtain an O2 confirmation scan. Vector, scalar, and Euclidean differences between analogous X, Y, and Z coordinates from fused O2/MRI and CT/MRI scans were calculated for 33 electrode target coordinates across 7 patients. RESULTS Marginal means of difference for vector (X = -0.079 ± 0.099 mm; Y = -0.076 ± 0.134 mm; Z = -0.267 ± 0.318 mm), scalar (X = -0.146 ± 0.160 mm; Y = -0.306 ± 0.106 mm; Z = 0.339 ± 0.407 mm), and Euclidean differences (0.886 ± 0.190 mm) remained within the predefined equivalence margin differences of -2 mm and 2 mm. CONCLUSION This study demonstrates that O2 may emerge as a viable alternative to the traditional CT scanner for generating planning coordinates. Adopting the O2 as a perioperative tool may offer reduced transport risks, decreased anesthesia time, and greater surgical efficiency.
Collapse
Affiliation(s)
- Terrance Peng
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Daniel R Kramer
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Morgan B Lee
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Michael F Barbaro
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Li Ding
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Charles Y Liu
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
- USC Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Spencer Kellis
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
- USC Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, California
- T&C Chen BMI Center, Chen Institute for Neuroscience, California Institute of Technology, Pasadena, California
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| | - Brian Lee
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
- USC Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
5
|
The effects of chronic subthalamic stimulation on nonmotor symptoms in advanced Parkinson's disease, revealed by an online questionnaire program. Acta Neurochir (Wien) 2020; 162:247-255. [PMID: 31897728 DOI: 10.1007/s00701-019-04182-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/12/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND This study was designed to detect and assess the frequency and severity of nonmotor symptoms (NMSs) in advanced Parkinson's disease (PD) and to investigate the effects of subthalamic nucleus deep brain stimulation (STN-DBS) on NMSs. METHODS We developed an online PC-based questionnaire program to assess NMSs in PD. Twenty-six PD patients who underwent bilateral STN-DBS were assessed. The NMS questionnaire consisted of 54 NMSs in three categories, based on Witjas et al. (2002). For each NMS, the patients were asked whether or not it was present, whether or not the fluctuating manifestations correlated with the timing of levodopa-induced motor fluctuations, and how severe the NMS was. Patients were assessed by this system before surgery and at the follow-up visit, 3 to 6 months after surgery. At the postoperative assessment, patients were also assessed on preoperative NMSs using recall. RESULTS The most frequent preoperative NMSs were constipation and visual disorders, while the most frequent postoperative NMSs were difficulty in memorizing and pollakiuria. The ranking of most frequent NMSs changed from before to after surgery. NMSs of drenching sweats, dysphagia, and constipation were significantly ameliorated, while NMSs of dyspnea and slowness of thinking were significantly deteriorated after surgery. The preoperative assessment by postoperative recall gave very different results from that of the preoperative assessment. CONCLUSION An online questionnaire system to assess NMSs in patients with advanced PD suggested that STN-DBS might influence the frequencies of some kinds of NMSs.
Collapse
|
6
|
Eleopra R, Rinaldo S, Devigili G, Mondani M, D’Auria S, Lettieri C, Ius T, Skrap M. Frameless Deep Brain Stimulation Surgery: A Single-Center Experience and Retrospective Analysis of Placement Accuracy of 220 Electrodes in a Series of 110 Patients. Stereotact Funct Neurosurg 2020; 97:337-346. [DOI: 10.1159/000503335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 09/13/2019] [Indexed: 11/19/2022]
|
7
|
Structural Imaging and Target Visualization. Stereotact Funct Neurosurg 2020. [DOI: 10.1007/978-3-030-34906-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Xia J, He P, Cai X, Zhang D, Xie N. Magnetic resonance and computed tomography image fusion technology in patients with Parkinson's disease after deep brain stimulation. J Neurol Sci 2017; 381:250-255. [PMID: 28991693 DOI: 10.1016/j.jns.2017.08.3267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 10/18/2022]
Abstract
Electrode position after deep brain stimulation (DBS) for Parkinson's disease (PD) needs to be confirmed, but there are concerns about the risk of postoperative magnetic resonance imaging (MRI) after DBS. These issues could be avoided by fusion images obtained from preoperative MRI and postoperative computed tomography (CT). This study aimed to investigate image fusion technology for displaying the position of the electrodes compared with postoperative MRI. This was a retrospective study of 32 patients with PD treated with bilateral subthalamic nucleus (STN) DBS between April 2015 and March 2016. The postoperative (same day) CT and preoperative MRI were fused using the Elekta Leksell 10.1 planning workstation (Elekta Instruments, Stockholm, Sweden). The position of the electrodes was compared between the fusion images and postoperative 1-2-week MRI. The position of the electrodes was highly correlated between the fusion and postoperative MRI (all r between 0.865 and 0.996; all P<0.001). The differences of the left electrode position in the lateral and vertical planes was significantly different between the two methods (0.30 and 0.24mm, respectively, both P<0.05), but there were no significant differences for the other electrode and planes (all P>0.05). The position of the electrodes was highly correlated between the fusion and postoperative MRI. The CT-MRI fusion images could be used to avoid the potential risks of MRI after DBS in patients with PD.
Collapse
Affiliation(s)
- Jun Xia
- Department of Radiology, Shenzhen Second People's Hospital (the First Affiliated Hospital of Shenzhen University), Shenzhen 518035, China
| | - Pin He
- Department of Radiology, Shenzhen Second People's Hospital (the First Affiliated Hospital of Shenzhen University), Shenzhen 518035, China
| | - Xiaodong Cai
- Department of Neurosurgery, Shenzhen Second People's Hospital (the First Affiliated Hospital of Shenzhen University), Shenzhen 518035, China
| | - Doudou Zhang
- Department of Neurosurgery, Shenzhen Second People's Hospital (the First Affiliated Hospital of Shenzhen University), Shenzhen 518035, China
| | - Ni Xie
- Central Laboratory, Shenzhen Second People's Hospital (the First Affiliated Hospital of Shenzhen University), Shenzhen 518035, China.
| |
Collapse
|
9
|
Pozzi NG, Arnulfo G, Canessa A, Steigerwald F, Nickl R, Homola GA, Fato MM, Matthies C, Pacchetti C, Volkmann J, Isaias IU. Distinctive neuronal firing patterns in subterritories of the subthalamic nucleus. Clin Neurophysiol 2016; 127:3387-3393. [DOI: 10.1016/j.clinph.2016.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 08/11/2016] [Accepted: 09/04/2016] [Indexed: 11/15/2022]
|
10
|
Sammartino F, Krishna V, King NKK, Bruno V, Kalia S, Hodaie M, Marras C, Lozano AM, Fasano A. Sequence of electrode implantation and outcome of deep brain stimulation for Parkinson's disease. J Neurol Neurosurg Psychiatry 2016; 87:859-63. [PMID: 26354942 DOI: 10.1136/jnnp-2015-311426] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/17/2015] [Indexed: 11/03/2022]
Abstract
INTRODUCTION The effect of the variability of electrode placement on outcomes after bilateral deep brain stimulation of subthalamic nucleus has not been sufficiently studied, especially with respect to the sequence of hemisphere implantation. METHODOLOGY We retrospectively analysed the clinical and radiographic data of all the consecutive patients with Parkinson's disease who underwent surgery at our centre and completed at least 1 year follow-up. The dispersion in electrode location was calculated by the square of deviation from population mean, and the direction of deviation was analysed by comparing the intended and final implantation coordinates. Linear regression analysis was performed to analyse the predictors of postoperative improvement of the motor condition, also controlling for the sequence of implanted hemisphere. RESULTS 76 patients (mean age 58±7.2 years) were studied. Compared with the first side, the second side electrode tip had significantly higher dispersion as an overall effect (5.6±21.6 vs 2.2±4.9 mm(2), p=0.04), or along the X-axis (4.1±15.6 vs 1.4±2.4 mm(2), p=0.03) and Z-axis (4.9±11.5 vs 2.9±3.6 mm(2), p=0.02); the second side stimulation was also associated with a lower threshold for side effects (contact 0, p<0.001 and contact 3, p=0.004). In the linear regression analysis, the significant predictors of outcome were baseline activities of daily living (p=0.010) and dispersion of electrode on the second side (p=0.005). CONCLUSIONS We observed a higher dispersion for the electrode on the second implanted side, which also resulted to be a significant predictor of motor outcome at 1 year.
Collapse
Affiliation(s)
- Francesco Sammartino
- Division of Neurosurgery, University of Toronto, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Vibhor Krishna
- Division of Neurosurgery, University of Toronto, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Nicolas Kon Kam King
- Division of Neurosurgery, University of Toronto, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Veronica Bruno
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital - UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Suneil Kalia
- Division of Neurosurgery, University of Toronto, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Mojgan Hodaie
- Division of Neurosurgery, University of Toronto, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Connie Marras
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital - UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Andres M Lozano
- Division of Neurosurgery, University of Toronto, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Alfonso Fasano
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital - UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Saleh C, Dooms G, Berthold C, Hertel F. Post-operative imaging in deep brain stimulation: A controversial issue. Neuroradiol J 2016; 29:244-9. [PMID: 27029393 PMCID: PMC4978322 DOI: 10.1177/1971400916639960] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In deep brain stimulation (DBS), post-operative imaging has been used on the one hand to assess complications, such as haemorrhage; and on the other hand, to detect misplaced contacts. The post-operative determination of the accurate location of the final electrode plays a critical role in evaluating the precise area of effective stimulation and for predicting the potential clinical outcome; however, safety remains a priority in postoperative DBS imaging. A plethora of diverse post-operative imaging methods have been applied at different centres. There is neither a consensus on the most efficient post-operative imaging methodology, nor is there any standardisation for the automatic or manual analysis of the images within the different imaging modalities. In this article, we give an overview of currently applied post-operative imaging modalities and discuss the current challenges in post-operative imaging in DBS.
Collapse
Affiliation(s)
- Christian Saleh
- Department of Neurology, Centre Hospitalier de Luxembourg, Luxembourg
| | - Georges Dooms
- Department of Neuroradiology, Centre Hospitalier de Luxembourg, Luxembourg
| | | | - Frank Hertel
- Department of Neurosurgery, Centre Hospitalier de Luxembourg, Luxembourg
| |
Collapse
|
12
|
Carlson JD, McLeod KE, McLeod PS, Mark JB. Stereotactic Accuracy and Surgical Utility of the O-Arm in Deep Brain Stimulation Surgery. Oper Neurosurg (Hagerstown) 2016; 13:96-107. [DOI: 10.1227/neu.0000000000001326] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 04/17/2016] [Indexed: 12/26/2022] Open
Abstract
Abstract
BACKGROUND: The stereotactic accuracy of intraoperative imaging is critical to clinical outcome, particularly in “asleep” deep brain stimulation (DBS) surgery that typically forgoes neurophysiological techniques. Different intraoperative imaging modalities and associated accuracies have been reported, including magnetic resonance imaging (MRI), computed tomography (CT), and O-arm.
OBJECTIVE: To analyze intraoperative O-arm imaging accuracy and to evaluate the utility of microelectrode mapping.
METHODS: O-arm images of DBS electrodes were collected during implantation in the subthalamic nucleus in patients with Parkinson disease. Images were fused to postoperative MRI and postoperative CT scans. Stereotactic coordinates for the electrode tip were measured independently. Radial distances between the images were compared. The impact of microelectrode mapping on final DBS electrode positioning was also evaluated.
RESULTS: In 71 consecutive DBS electrodes, the average radial error of the electrode tip between the O-arm and MRI was 1.55 ± 0.58 mm. The average radial error between the O-arm and CT was 1.03 ± 0.61 mm. Thus, the O-arm images accurately depicted the position of the electrode. However, in 14% of cases, microelectrode mapping revised the DBS electrode position beyond the preoperative direct target in combination with accurate intraoperative imaging.
CONCLUSION: Intraoperative O-arm images reliably and accurately displayed the location of the DBS electrode compared with postoperative CT and MRI images. Microelectrode mapping provided superior subnuclear resolution to imaging. Both intraoperative imaging and microelectrode mapping are effective tools that can be synergistically combined for optimal DBS electrode placement.
Collapse
|
13
|
Sharma M, Deogaonkar M. Accuracy and safety of targeting using intraoperative “O-arm” during placement of deep brain stimulation electrodes without electrophysiological recordings. J Clin Neurosci 2016; 27:80-6. [DOI: 10.1016/j.jocn.2015.06.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 06/16/2015] [Accepted: 06/20/2015] [Indexed: 10/22/2022]
|
14
|
Barnaure I, Pollak P, Momjian S, Horvath J, Lovblad KO, Boëx C, Remuinan J, Burkhard P, Vargas MI. Evaluation of electrode position in deep brain stimulation by image fusion (MRI and CT). Neuroradiology 2015; 57:903-8. [PMID: 26022355 DOI: 10.1007/s00234-015-1547-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/21/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Imaging has an essential role in the evaluation of correct positioning of electrodes implanted for deep brain stimulation (DBS). Although MRI offers superior anatomic visualization of target sites, there are safety concerns in patients with implanted material; imaging guidelines are inconsistent and vary. The fusion of postoperative CT with preoperative MRI images can be an alternative for the assessment of electrode positioning. The purpose of this study was to assess the accuracy of measurements realized on fused images (acquired without a stereotactic frame) using a manufacturer-provided software. METHODS Data from 23 Parkinson's disease patients who underwent bilateral electrode placement for subthalamic nucleus (STN) DBS were acquired. Preoperative high-resolution T2-weighted sequences at 3 T, and postoperative CT series were fused using a commercially available software. Electrode tip position was measured on the obtained images in three directions (in relation to the midline, the AC-PC line and an AC-PC line orthogonal, respectively) and assessed in relation to measures realized on postoperative 3D T1 images acquired at 1.5 T. RESULTS Mean differences between measures carried out on fused images and on postoperative MRI lay between 0.17 and 0.97 mm. CONCLUSION Fusion of CT and MRI images provides a safe and fast technique for postoperative assessment of electrode position in DBS.
Collapse
Affiliation(s)
- I Barnaure
- Department of Neuroradiology, Geneva University Hospital, Gabrielle Perret Gentil, 4, 1211, Geneva 14, Switzerland
| | - P Pollak
- Department of Neurology, Geneva University Hospital, Geneva, Switzerland
| | - S Momjian
- Department of Neurosurgery, Geneva University Hospital, Geneva, Switzerland
| | - J Horvath
- Department of Neurology, Geneva University Hospital, Geneva, Switzerland
| | - K O Lovblad
- Department of Neuroradiology, Geneva University Hospital, Gabrielle Perret Gentil, 4, 1211, Geneva 14, Switzerland
| | - C Boëx
- Department of Neurology, Geneva University Hospital, Geneva, Switzerland
| | - J Remuinan
- Department of Radiology, Geneva University Hospital, Geneva, Switzerland
| | - P Burkhard
- Department of Neurology, Geneva University Hospital, Geneva, Switzerland
| | - M I Vargas
- Department of Neuroradiology, Geneva University Hospital, Gabrielle Perret Gentil, 4, 1211, Geneva 14, Switzerland.
| |
Collapse
|
15
|
Mirzadeh Z, Chapple K, Lambert M, Dhall R, Ponce FA. Validation of CT-MRI fusion for intraoperative assessment of stereotactic accuracy in DBS surgery. Mov Disord 2014; 29:1788-95. [DOI: 10.1002/mds.26056] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 07/09/2014] [Accepted: 09/19/2014] [Indexed: 12/21/2022] Open
Affiliation(s)
- Zaman Mirzadeh
- Division of Neurological Surgery, Barrow Neurological Institute; St. Joseph's Hospital and Medical Center; Phoenix Arizona
| | - Kristina Chapple
- Division of Neurological Surgery, Barrow Neurological Institute; St. Joseph's Hospital and Medical Center; Phoenix Arizona
| | - Meg Lambert
- Division of Neurological Surgery, Barrow Neurological Institute; St. Joseph's Hospital and Medical Center; Phoenix Arizona
| | - Rohit Dhall
- Division of Neurological Surgery, Barrow Neurological Institute; St. Joseph's Hospital and Medical Center; Phoenix Arizona
| | - Francisco A. Ponce
- Division of Neurological Surgery, Barrow Neurological Institute; St. Joseph's Hospital and Medical Center; Phoenix Arizona
| |
Collapse
|
16
|
|
17
|
Holloway K, Docef A. A quantitative assessment of the accuracy and reliability of O-arm images for deep brain stimulation surgery. Neurosurgery 2013; 72:47-57. [PMID: 22986604 DOI: 10.1227/neu.0b013e318273a090] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) surgery has an average accuracy of 2 to 3 mm (range, 0-6 mm). Intraoperative detection of track location may be useful in interpreting physiological results and thus limit the number of brain penetrations as well as decrease the incidence of reoperations. The O-arm has been used to identify the DBS lead position; however, early results have indicated a significant discrepancy with lead position on postoperative imaging. OBJECTIVE This prospective study was conducted to determine the accuracy and reliability of fiducial and track localization and to assess the accuracy of O-arm image-based registration. The computed tomography (CT) image was considered the gold standard, and so for this study, the locations of all objects on the O-arm image were compared with their CT location. METHODS Thirty-three DBS surgeries were performed using the O-arm to image each track with detailed analysis of fiducial and track localization accuracy. Twenty-one subsequent surgeries were performed using O-arm registration. Only the final lead position was assessed in these individuals. RESULTS The measurement error of the system was 0.7 mm, with a maximum error of 1.9 mm. Twenty-two percent of the parallel tracks through the BenGun exceeded this error and demonstrated the ability of the O-arm to detect these skewed tracks. The accuracy of final lead position was 2.04 mm in procedures with registration based on an O-arm image. This was not significantly different from CT-based registration at 2.16 mm. CONCLUSION The O-arm was able to detect skewed tracks and provide registration accuracy equivalent to a CT scan.
Collapse
Affiliation(s)
- Kathryn Holloway
- Department of Neurosurgery, Virginia Commonwealth University and Parkinson's Disease Research, Education, and Clinical Care Center at the McGuire VAMC, Richmond, Virginia 23298, USA.
| | | |
Collapse
|
18
|
Thani NB, Bala A, Swann GB, Lind CRP. Accuracy of postoperative computed tomography and magnetic resonance image fusion for assessing deep brain stimulation electrodes. Neurosurgery 2013; 69:207-14; discussion 214. [PMID: 21792120 DOI: 10.1227/neu.0b013e318218c7ae] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Knowledge of the anatomic location of the deep brain stimulation (DBS) electrode in the brain is essential in quality control and judicious selection of stimulation parameters. Postoperative computed tomography (CT) imaging coregistered with preoperative magnetic resonance imaging (MRI) is commonly used to document the electrode location safely. The accuracy of this method, however, depends on many factors, including the quality of the source images, the area of signal artifact created by the DBS lead, and the fusion algorithm. OBJECTIVE To calculate the accuracy of determining the location of active contacts of the DBS electrode by coregistering postoperative CT image to intraoperative MRI. METHODS Intraoperative MRI with a surrogate marker (carbothane stylette) was digitally coregistered with postoperative CT with DBS electrodes in 8 consecutive patients. The location of the active contact of the DBS electrode was calculated in the stereotactic frame space, and the discrepancy between the 2 images was assessed. RESULTS The carbothane stylette significantly reduces the signal void on the MRI to a mean diameter of 1.4 ± 0.1 mm. The discrepancy between the CT and MRI coregistration in assessing the active contact location of the DBS lead is 1.6 ± 0.2 mm, P < .001 with iPlan (BrainLab AG, Erlangen, Germany) and 1.5 ± 0.2 mm, P < .001 with Framelink (Medtronic, Minneapolis, Minnesota) software. CONCLUSION CT/MRI coregistration is an acceptable method of identifying the anatomic location of DBS electrode and active contacts.
Collapse
Affiliation(s)
- Nova B Thani
- West Australian Neurosurgical Service, Sir Charles Gairdner Hospital, Perth, Australia
| | | | | | | |
Collapse
|
19
|
Lumsden DE, Ashmore J, Charles-Edwards G, Lin JP, Ashkan K, Selway R. Accuracy of stimulating electrode placement in paediatric pallidal deep brain stimulation for primary and secondary dystonia. Acta Neurochir (Wien) 2013; 155:823-36. [PMID: 23430231 DOI: 10.1007/s00701-013-1629-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 01/24/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND Accuracy of electrode placement is an important determinant of outcome following deep brain stimulation (DBS) surgery. Data on accuracy of electrode placement into the globus pallidum interna (GPi) in paediatric patients is limited, particularly those with non-primary dystonia who often have smaller GPi. Pallidal DBS is known to be more effective in the treatment of primary dystonia compared with secondary dystonia. OBJECTIVES We aimed to determine if accuracy of pallidal electrode placement differed between primary, secondary and NBIA (neuronal degeneration and brain iron accumulation) associated dystonia and how this related to motor outcome following surgery. METHODS A retrospective review of a consecutive cohort of children and young people undergoing DBS surgery in a single centre. Fused in frame preoperative planning magnetic resonance imaging (MRI) and postoperative computed tomography (CT) brain scans were used to determine the accuracy of placement of DBS electrode tip in Leskell stereotactic system compared with the planned target. The differences along X, Y, and Z coordinates were calculated, as was the Euclidean distance of electrode tip from the target. The relationship between proximity to target and change in Burke-Fahn-Marsden Dystonia Rating Scale at 1 year was also measured. RESULTS Data were collected from 88 electrodes placed in 42 patients (14 primary dystonia, 18 secondary dystonia and 10 NBIA associated dystonia). Median differences between planned target and actual position were: left-side X-axis 1.05 mm, Y-axis 0.85 mm, Z-axis 0.94 mm and Euclidean difference 2.04 mm; right-side X-axis 1.28 mm, Y-axis 0.70 mm, Z-axis 0.70 mm and Euclidean difference 2.45 mm. Accuracy did not differ between left and right-sided electrodes. No difference in accuracy was seen between primary, secondary or NBIA associated dystonia. Dystonia reduction at 1 year post surgery did not appear to relate to proximity of implanted electrode to surgical target across the cohort. CONCLUSIONS Accuracy of surgical placement did not differ between primary, secondary or NBIA associated dystonia. Decreased efficacy of pallidal DBS in secondary and NBIA associated dystonia is unlikely to be related to difficulties in achieving the planned electrode placement.
Collapse
Affiliation(s)
- Daniel E Lumsden
- Complex Motor Disorders Service, Evelina Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, Lambeth Palace Road, London, SE1 7EH, UK.
| | | | | | | | | | | |
Collapse
|
20
|
Intraoperative microelectrode recording for the delineation of subthalamic nucleus topography in Parkinson’s disease. Brain Stimul 2012; 5:378-387. [DOI: 10.1016/j.brs.2011.06.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 06/01/2011] [Accepted: 06/09/2011] [Indexed: 11/20/2022] Open
|
21
|
Hebb AO, Miller KJ. Semi-automatic stereotactic coordinate identification algorithm for routine localization of Deep Brain Stimulation electrodes. J Neurosci Methods 2010; 187:114-9. [DOI: 10.1016/j.jneumeth.2009.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 12/08/2009] [Accepted: 12/21/2009] [Indexed: 10/20/2022]
|