1
|
Wang W, Yang Y, Tan S, Zhou T, Liu Y, Tian C, Bao L, Xing D, Su B, Wang J, Zhang Y, Liu S, Shi H, Gao D, Dunham R, Liu Z. Genomic imprinting-like monoallelic paternal expression determines sex of channel catfish. SCIENCE ADVANCES 2022; 8:eadc8786. [PMID: 36542716 PMCID: PMC9770954 DOI: 10.1126/sciadv.adc8786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The X and Y chromosomes of channel catfish have the same gene contents. Here, we report allelic hypermethylation of the X chromosome within the sex determination region (SDR). Accordingly, the X-borne hydin-1 gene was silenced, whereas the Y-borne hydin-1 gene was expressed, making monoallelic expression of hydin-1 responsible for sex determination, much like genomic imprinting. Treatment with a methylation inhibitor, 5-aza-dC, erased the epigenetic marks within the SDR and caused sex reversal of genetic females into phenotypic males. After the treatment, hydin-1 and six other genes related to cell cycle control and proliferative growth were up-regulated, while three genes related to female sex differentiation were down-regulated in genetic females, providing additional support for epigenetic sex determination in catfish. This mechanism of sex determination provides insights into the plasticity of genetic sex determination in lower vertebrates and its connection with temperature sex determination where DNA methylation is broadly involved.
Collapse
Affiliation(s)
- Wenwen Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Suxu Tan
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Changxu Tian
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Lisui Bao
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - De Xing
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Baofeng Su
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Jinhai Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Yu Zhang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Huitong Shi
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Dongya Gao
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, USA
| | - Rex Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Zhanjiang Liu
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, USA
| |
Collapse
|
2
|
Ansai S, Montenegro J, Masengi KWA, Nagano AJ, Yamahira K, Kitano J. Diversity of sex chromosomes in Sulawesian medaka fishes. J Evol Biol 2022; 35:1751-1764. [DOI: 10.1111/jeb.14076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/30/2022] [Accepted: 07/14/2022] [Indexed: 12/16/2022]
Affiliation(s)
- Satoshi Ansai
- Graduate School of Life Sciences Tohoku University Sendai Japan
| | - Javier Montenegro
- Tropical Biosphere Research Center University of the Ryukyus Nishihara Japan
| | | | - Atsushi J. Nagano
- Faculty of Agriculture Ryukoku University Otsu Japan
- Institute for Advanced Biosciences Keio University Tsuruoka Japan
| | - Kazunori Yamahira
- Tropical Biosphere Research Center University of the Ryukyus Nishihara Japan
| | - Jun Kitano
- Ecological Genetics Laboratory National Institute of Genetics Shizuoka Japan
| |
Collapse
|
3
|
Begum S, Gnanasree SM, Anusha N, Senthilkumaran B. Germ cell markers in fishes - A review. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Ngamniyom A, Sriyapai T, Sriyapai P. Molecular analysis of population and De Novo transcriptome sequencing of Thai medaka, Oryzias minutillus (Teleostei: Adrianichthyidae). Heliyon 2020; 6:e03079. [PMID: 31909257 PMCID: PMC6938829 DOI: 10.1016/j.heliyon.2019.e03079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/13/2019] [Accepted: 12/16/2019] [Indexed: 12/27/2022] Open
Abstract
Thai medaka (Oryzias minutillus) are alternatively known as Thai rice-fish or dwarf medaka, and they widely inhabit natural freshwater environments in all regions of Thailand. In this study, we aimed to investigate the molecular genetics of the Thai medaka population in Thailand inferred from the mitochondrial control region (D-loop) and the cytochrome c oxidase subunit 1 (coxI) sequences. Furthermore, we examined RNA sequencing (RNA-seq) of adult males and females was performed with next-generation sequencing. Together, the combination of the D-loop and coxI sequences clearly distinguished the Thai medaka populations into 2 groups, such as group 1, which generally included samples from the central, northern, western, and eastern regions of the northeastern region. In this group, the fish populations seem to be a little monophyly in which the first subpopulation comprised the main samples from the northern and central regions. The second subpopulation commonly contained fish from the eastern region and specimens from the southern part of the central region near the Gulf of Thailand. Although these subgroups related to geographical distribution, bootstrap values were low in branch considered significant for both subgroups. Group 2 consisted of almost all samples from the southern population and those from the central and southern part of the northeastern region. Group 2 was found that it was made of samples from the northeastern region and samples from the southern population. A total of 73551 unigenes were identified after gene annotation. Signal transduction was the predominant protein classification among the Thai medaka orthologous groups. A differentially expressed gene (DEG) analysis identified 6 subclusters between both sexes that were composed of 257, 131, 364, 386, 114 and 108 genes. Phototransduction was the most enriched pathway and was highly expressed in males, while viral carcinogenesis, oocyte genesis, and the complement and coagulation cascades were highly expressed in females. Further details of these DEGs are discussed below. These results suggest that Thai medaka may genetically exhibit independent populations in the geographic habitats of Thailand. Moreover, these fish also reveal the genes that are conserved in other organisms and those that may be specific to this species.
Collapse
Affiliation(s)
- Arin Ngamniyom
- Major in Environment, Faculty of Environmental Culture and Eco-tourism, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Thayat Sriyapai
- Major in Environment, Faculty of Environmental Culture and Eco-tourism, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Pichapack Sriyapai
- Department of Microbiology, Faculty of Sciences, Srinakharinwirot University, Bangkok, 10110, Thailand
| |
Collapse
|
5
|
Pan Q, Feron R, Yano A, Guyomard R, Jouanno E, Vigouroux E, Wen M, Busnel JM, Bobe J, Concordet JP, Parrinello H, Journot L, Klopp C, Lluch J, Roques C, Postlethwait J, Schartl M, Herpin A, Guiguen Y. Identification of the master sex determining gene in Northern pike (Esox lucius) reveals restricted sex chromosome differentiation. PLoS Genet 2019; 15:e1008013. [PMID: 31437150 PMCID: PMC6726246 DOI: 10.1371/journal.pgen.1008013] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 09/04/2019] [Accepted: 07/26/2019] [Indexed: 01/17/2023] Open
Abstract
Teleost fishes, thanks to their rapid evolution of sex determination mechanisms, provide remarkable opportunities to study the formation of sex chromosomes and the mechanisms driving the birth of new master sex determining (MSD) genes. However, the evolutionary interplay between the sex chromosomes and the MSD genes they harbor is rather unexplored. We characterized a male-specific duplicate of the anti-Müllerian hormone (amh) as the MSD gene in Northern Pike (Esox lucius), using genomic and expression evidence as well as by loss-of-function and gain-of-function experiments. Using RAD-Sequencing from a family panel, we identified Linkage Group (LG) 24 as the sex chromosome and positioned the sex locus in its sub-telomeric region. Furthermore, we demonstrated that this MSD originated from an ancient duplication of the autosomal amh gene, which was subsequently translocated to LG24. Using sex-specific pooled genome sequencing and a new male genome sequence assembled using Nanopore long reads, we also characterized the differentiation of the X and Y chromosomes, revealing a small male-specific insertion containing the MSD gene and a limited region with reduced recombination. Our study reveals an unexpectedly low level of differentiation between a pair of sex chromosomes harboring an old MSD gene in a wild teleost fish population, and highlights both the pivotal role of genes from the amh pathway in sex determination, as well as the importance of gene duplication as a mechanism driving the turnover of sex chromosomes in this clade. In stark contrast to mammals and birds, a high proportion of teleosts have homomorphic sex chromosomes and display a high diversity of sex determining genes. Yet, population level knowledge of both the sex chromosome and the master sex determining gene is only available for the Japanese medaka, a model species. Here we identified and provided functional proofs of an old duplicate of anti-Müllerian hormone (Amh), a member of the Tgf- β family, as the male master sex determining gene in the Northern pike, Esox lucius. We found that this duplicate, named amhby (Y-chromosome-specific anti-Müllerian hormone paralog b), was translocated to the sub-telomeric region of the new sex chromosome, and now amhby shows strong sequence divergence as well as substantial expression pattern differences from its autosomal paralog, amha. We assembled a male genome sequence using Nanopore long reads and identified a restricted region of differentiation within the sex chromosome pair in a wild population. Our results provide insight on the conserved players in sex determination pathways, the mechanisms of sex chromosome turnover, and the diversity of levels of differentiation between homomorphic sex chromosomes in teleosts.
Collapse
Affiliation(s)
- Qiaowei Pan
- INRA, UR1037 LPGP, Campus de Beaulieu, Rennes, France
- Department of Ecology and Evolution, University of Lausanne,1015, Lausanne, Switzerland
| | - Romain Feron
- INRA, UR1037 LPGP, Campus de Beaulieu, Rennes, France
- Department of Ecology and Evolution, University of Lausanne,1015, Lausanne, Switzerland
| | - Ayaka Yano
- INRA, UR1037 LPGP, Campus de Beaulieu, Rennes, France
| | - René Guyomard
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | | | - Ming Wen
- INRA, UR1037 LPGP, Campus de Beaulieu, Rennes, France
| | - Jean-Mickaël Busnel
- Fédération d’Ille-et-Vilaine pour la pêche et la protection du milieu aquatique (FDPPMA35), CS 26713, Rennes, France
| | - Julien Bobe
- INRA, UR1037 LPGP, Campus de Beaulieu, Rennes, France
| | - Jean-Paul Concordet
- INSERM U1154, CNRS UMR7196, MNHN, Muséum National d'Histoire Naturelle, France
| | - Hugues Parrinello
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Laurent Journot
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Christophe Klopp
- Plate-forme bio-informatique Genotoul, Mathématiques et Informatique Appliquées de Toulouse, INRA, Castanet Tolosan, France
- SIGENAE, GenPhySE, Université de Toulouse, INRA, ENVT, Castanet Tolosan, France
| | - Jérôme Lluch
- INRA, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Céline Roques
- INRA, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - John Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Manfred Schartl
- University of Wuerzburg, Physiological Chemistry, Biocenter, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University Hospital, Würzburg, Germany
- Hagler Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Amaury Herpin
- INRA, UR1037 LPGP, Campus de Beaulieu, Rennes, France
| | - Yann Guiguen
- INRA, UR1037 LPGP, Campus de Beaulieu, Rennes, France
- * E-mail:
| |
Collapse
|
6
|
Anastasiadi D, Vandeputte M, Sánchez-Baizán N, Allal F, Piferrer F. Dynamic epimarks in sex-related genes predict gonad phenotype in the European sea bass, a fish with mixed genetic and environmental sex determination. Epigenetics 2018; 13:988-1011. [PMID: 30265213 PMCID: PMC6284782 DOI: 10.1080/15592294.2018.1529504] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/10/2018] [Accepted: 09/22/2018] [Indexed: 12/13/2022] Open
Abstract
The integration of genomic and environmental influences into methylation patterns to bring about a phenotype is of central interest in developmental epigenetics, but many details are still unclear. The sex ratios of the species used here, the European sea bass, are determined by genetic and temperature influences. We created four families from parents known to produce offspring with different sex ratios, exposed larvae to masculinizing temperatures and examined, in juvenile gonads, the DNA methylation of seven genes related to sexual development by a targeted sequencing approach. The genes most affected by both genetics and environment were cyp19a1a and dmrt1, with contrasting sex-specific methylation and temperature responses. The relationship between cyp19a1a methylation and expression is relevant to the epigenetic regulation of vertebrate sex, and we report the evidence of such relationship only below a methylation threshold, ~ 80%, and that it was sex-specific: negatively correlated in females but positively correlated in males. From parents to offspring, the methylation in gonads was midway between oocytes and sperm, with bias towards oocytes for amh-r2, er-β2, fsh-r and cyp19a1a. In contrast, dmrt1 levels resembled those of sperm. The methylation of individual CpGs from foxl2, er-β2 and nr3c1 were conserved from parents to offspring, whereas those of cyp19a1a, dmrt1 and amh-r2 were affected by temperature. Utilizing a machine-learning procedure based on the methylation levels of a selected set of CpGs, we present the first, to our knowledge, system based on epigenetic marks capable of predicting sex in an animal with ~ 90% accuracy and discuss possible applications.
Collapse
Affiliation(s)
- Dafni Anastasiadi
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Marc Vandeputte
- MARBEC, Univ. Montpellier, Ifremer-CNRS-IRD, Palavas-les-Flots, France
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Núria Sánchez-Baizán
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - François Allal
- MARBEC, Univ. Montpellier, Ifremer-CNRS-IRD, Palavas-les-Flots, France
| | - Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
7
|
Gammerdinger WJ, Kocher TD. Unusual Diversity of Sex Chromosomes in African Cichlid Fishes. Genes (Basel) 2018; 9:E480. [PMID: 30287777 PMCID: PMC6210639 DOI: 10.3390/genes9100480] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 11/30/2022] Open
Abstract
African cichlids display a remarkable assortment of jaw morphologies, pigmentation patterns, and mating behaviors. In addition to this previously documented diversity, recent studies have documented a rich diversity of sex chromosomes within these fishes. Here we review the known sex-determination network within vertebrates, and the extraordinary number of sex chromosomes systems segregating in African cichlids. We also propose a model for understanding the unusual number of sex chromosome systems within this clade.
Collapse
Affiliation(s)
- William J Gammerdinger
- Institute of Science and Technology (IST) Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
8
|
Abstract
Sex chromosomes and the sex-determining (SD) gene are variable in vertebrates. In particular, medaka fishes in the genus Oryzias show an extremely large diversity in sex chromosomes and the SD gene, providing a good model to study the evolutionary process by which they turnover. Here, we investigated the sex determination system and sex chromosomes in six celebensis group species. Our sex-linkage analysis demonstrated that all species had an XX-XY sex determination system, and that the Oryzias marmoratus and O. profundicola sex chromosomes were homologous to O. latipes linkage group (LG) 10, while those of the other four species, O. celebensis, O. matanensis, O. wolasi, and O. woworae, were homologous to O. latipes LG 24. The phylogenetic relationship suggested a turnover of the sex chromosomes from O. latipes LG 24 to LG 10 within this group. Six sex-linkage maps showed that the former two and the latter four species shared a common SD locus, respectively, suggesting that the LG 24 acquired the SD function in a common ancestor of the celebensis group, and that the LG 10 SD function appeared in a common ancestor of O. marmoratus and O. profundicola after the divergence of O. matanensis. Additionally, fine mapping and association analysis in the former two species revealed that Sox3 on the Y chromosome is a prime candidate for the SD gene, and that the Y-specific 430-bp insertion might be involved in its SD function.
Collapse
|
9
|
Takehana Y, Matsuda M, Myosho T, Suster ML, Kawakami K, Shin-I T, Kohara Y, Kuroki Y, Toyoda A, Fujiyama A, Hamaguchi S, Sakaizumi M, Naruse K. Co-option of Sox3 as the male-determining factor on the Y chromosome in the fish Oryzias dancena. Nat Commun 2014; 5:4157. [PMID: 24948391 DOI: 10.1038/ncomms5157] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/19/2014] [Indexed: 12/21/2022] Open
Abstract
Sex chromosomes harbour a primary sex-determining signal that triggers sexual development of the organism. However, diverse sex chromosome systems have been evolved in vertebrates. Here we use positional cloning to identify the sex-determining locus of a medaka-related fish, Oryzias dancena, and find that the locus on the Y chromosome contains a cis-regulatory element that upregulates neighbouring Sox3 expression in developing gonad. Sex-reversed phenotypes in Sox3(Y) transgenic fish, and Sox3(Y) loss-of-function mutants all point to its critical role in sex determination. Furthermore, we demonstrate that Sox3 initiates testicular differentiation by upregulating expression of downstream Gsdf, which is highly conserved in fish sex differentiation pathways. Our results not only provide strong evidence for the independent recruitment of Sox3 to male determination in distantly related vertebrates, but also provide direct evidence that a novel sex determination pathway has evolved through co-option of a transcriptional regulator potentially interacted with a conserved downstream component.
Collapse
Affiliation(s)
- Yusuke Takehana
- 1] Laboratory of Bioresources, National Institute for Basic Biology, Okazaki 444-8585, Japan [2] Department of Basic Biology, the Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Masaru Matsuda
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan
| | - Taijun Myosho
- Institute of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Maximiliano L Suster
- 1] Neural Circuits and Behaviour Group, Uni Research AS, Bergen 5008, Norway [2] Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima 411-8540, Japan
| | - Koichi Kawakami
- 1] Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima 411-8540, Japan [2] Department of Genetics, the Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
| | - Tadasu Shin-I
- Center for Genetic Resource Information, National Institute of Genetics, Mishima 411-8540, Japan
| | - Yuji Kohara
- Center for Genetic Resource Information, National Institute of Genetics, Mishima 411-8540, Japan
| | - Yoko Kuroki
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Sendai 980-8573, Japan
| | - Atsushi Toyoda
- 1] Department of Genetics, the Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan [2] Comparative Genomics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Asao Fujiyama
- 1] Department of Genetics, the Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan [2] Comparative Genomics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan [3] National Institute of Informatics, Tokyo 101-8430, Japan
| | - Satoshi Hamaguchi
- Institute of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Mitsuru Sakaizumi
- Institute of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Kiyoshi Naruse
- 1] Laboratory of Bioresources, National Institute for Basic Biology, Okazaki 444-8585, Japan [2] Department of Basic Biology, the Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| |
Collapse
|
10
|
Abstract
Three sex-determining (SD) genes, SRY (mammals), Dmy (medaka), and DM-W (Xenopus laevis), have been identified to date in vertebrates. However, how and why a new sex-determining gene appears remains unknown, as do the switching mechanisms of the master sex-determining gene. Here, we used positional cloning to search for the sex-determining gene in Oryzias luzonensis and found that GsdfY (gonadal soma derived growth factor on the Y chromosome) has replaced Dmy as the master sex-determining gene in this species. We found that GsdfY showed high expression specifically in males during sex differentiation. Furthermore, the presence of a genomic fragment that included GsdfY converts XX individuals into fertile XX males. Luciferase assays demonstrated that the upstream sequence of GsdfY contributes to the male-specific high expression. Gsdf is downstream of Dmy in the sex-determining cascade of O. latipes, suggesting that emergence of the Dmy-independent Gsdf allele led to the appearance of this novel sex-determining gene in O. luzonensis.
Collapse
|
11
|
Cioffi MB, Sánchez A, Marchal JA, Kosyakova N, Liehr T, Trifonov V, Bertollo LA. Cross-species chromosome painting tracks the independent origin of multiple sex chromosomes in two cofamiliar Erythrinidae fishes. BMC Evol Biol 2011; 11:186. [PMID: 21718509 PMCID: PMC3141436 DOI: 10.1186/1471-2148-11-186] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 06/30/2011] [Indexed: 11/13/2022] Open
Abstract
Background The Erythrinidae fish family is characterized by a large variation with respect to diploid chromosome numbers and sex-determining systems among its species, including two multiple X1X2Y sex systems in Hoplias malabaricus and Erythrinus erythrinus. At first, the occurrence of a same sex chromosome system within a family suggests that the sex chromosomes are correlated and originated from ancestral XY chromosomes that were either homomorphic or at an early stage of differentiation. To identify the origin and evolution of these X1X2Y sex chromosomes, we performed reciprocal cross-species FISH experiments with two sex-chromosome-specific probes designed from microdissected X1 and Y chromosomes of H. malabaricus and E. erythrinus, respectively. Results Our results yield valuable information regarding the origin and evolution of these sex chromosome systems. Our data indicate that these sex chromosomes evolved independently in these two closed related Erythrinidae species. Different autosomes were first converted into a poorly differentiated XY sex pair in each species, and additional chromosomal rearrangements produced both X1X2Y sex systems that are currently present. Conclusions Our data provide new insights into the origin and evolution of sex chromosomes, which increases our knowledge about fish sex chromosome evolution.
Collapse
Affiliation(s)
- Marcelo B Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil.
| | | | | | | | | | | | | |
Collapse
|
12
|
Charlesworth D, Mank JE. The birds and the bees and the flowers and the trees: lessons from genetic mapping of sex determination in plants and animals. Genetics 2010; 186:9-31. [PMID: 20855574 PMCID: PMC2940314 DOI: 10.1534/genetics.110.117697] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The ability to identify genetic markers in nonmodel systems has allowed geneticists to construct linkage maps for a diversity of species, and the sex-determining locus is often among the first to be mapped. Sex determination is an important area of study in developmental and evolutionary biology, as well as ecology. Its importance for organisms might suggest that sex determination is highly conserved. However, genetic studies have shown that sex determination mechanisms, and the genes involved, are surprisingly labile. We review studies using genetic mapping and phylogenetic inferences, which can help reveal evolutionary pattern within this lability and potentially identify the changes that have occurred among different sex determination systems. We define some of the terminology, particularly where confusion arises in writing about such a diverse range of organisms, and highlight some major differences between plants and animals, and some important similarities. We stress the importance of studying taxa suitable for testing hypotheses, and the need for phylogenetic studies directed to taxa where the patterns of changes can be most reliably inferred, if the ultimate goal of testing hypotheses regarding the selective forces that have led to changes in such an essential trait is to become feasible.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford OX1 3PS, United Kingdom.
| | | |
Collapse
|
13
|
Ser JR, Roberts RB, Kocher TD. Multiple interacting loci control sex determination in lake Malawi cichlid fish. Evolution 2009; 64:486-501. [PMID: 19863587 DOI: 10.1111/j.1558-5646.2009.00871.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Several models have been proposed to suggest how the evolution of sex-determining mechanisms might contribute to speciation. Here, we describe the inheritance of sex in 19 fish species from the rapidly evolving flock of cichlids in Lake Malawi, Africa. We found that many of these species have a male heterogametic (XY) system on linkage group 7. Some species also segregate for a female heterogametic (ZW) system on linkage group 5 that is coincident with a dominant orange-blotch (OB) color pattern in females. The ZW system is epistatically dominant to the XY system when both are segregating within a family. Several lines of evidence suggest that additional sex-determining loci are segregating in some species. These results are consistent with the idea that genetic conflicts play an important role in the evolution of these species flocks and suggest that evolution of sex-determining mechanisms has contributed to the radiation of cichlid fish in East Africa.
Collapse
Affiliation(s)
- Jennifer R Ser
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA
| | | | | |
Collapse
|
14
|
Abstract
Sex chromosomes have evolved multiple times in many taxa. The recent explosion in the availability of whole genome sequences from a variety of organisms makes it possible to investigate sex chromosome evolution within and across genomes. Comparative genomic studies have shown that quite distant species may share fundamental properties of sex chromosome evolution, while very similar species can evolve unique sex chromosome systems. Furthermore, within-species genomic analyses can illuminate chromosome-wide sequence and expression polymorphisms. Here, we explore recent advances in the study of vertebrate sex chromosomes achieved using genomic analyses.
Collapse
Affiliation(s)
- Melissa A Wilson
- Center for Comparative Genomics and Bioinformatics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | |
Collapse
|
15
|
Takehana Y, Hamaguchi S, Sakaizumi M. Different origins of ZZ/ZW sex chromosomes in closely related medaka fishes, Oryzias javanicus and O. hubbsi. Chromosome Res 2008; 16:801-11. [PMID: 18607761 DOI: 10.1007/s10577-008-1227-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/05/2008] [Accepted: 05/05/2008] [Indexed: 11/30/2022]
Abstract
Although the sex-determining gene DMY has been identified on the Y chromosome in the medaka, Oryzias latipes, this gene is absent in most Oryzias species. Recent comparative studies have demonstrated that, in the javanicus species group, Oryzias dancena and Oryzias minutillus have an XX/XY sex determination system, while Oryzias hubbsi has a ZZ/ZW system. Furthermore, sex chromosomes were not homologous in these species. Here, we investigated the sex determination mechanism in Oryzias javanicus, another species in the javanicus group. Linkage analysis of isolated sex-linked DNA markers showed that this species has a ZZ/ZW sex determination system. The sex-linkage map showed a conserved synteny to the linkage group 16 of O. latipes, suggesting that the sex chromosomes in O. javanicus are not homologous to those in any other Oryzias species. Fluorescence in-situ hybridization analysis confirmed that the ZW sex chromosomes of O. javanicus and O. hubbsi are not homologous, and showed that O. javanicus has the morphologically heteromorphic sex chromosomes, in which the W chromosome has 4,6-diamino-2-phenylindole-positive heterochromatin at the centromere. These findings suggest the repeated evolution of new sex chromosomes from autosomes in Oryzias, probably through the emergence of new sex-determining genes.
Collapse
Affiliation(s)
- Yusuke Takehana
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki, Japan.
| | | | | |
Collapse
|