1
|
Souweine JS, Pasquier G, Kuster N, Rodriguez A, Patrier L, Morena M, Badia E, Raynaud F, Chalabi L, Raynal N, Ohresser I, Hayot M, Mercier J, Quintrec ML, Gouzi F, Cristol JP. Dynapaenia and sarcopaenia in chronic haemodialysis patients: do muscle weakness and atrophy similarly influence poor outcome? Nephrol Dial Transplant 2021; 36:1908-1918. [PMID: 33306128 DOI: 10.1093/ndt/gfaa353] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Sarcopaenia, defined as a decline in both muscle mass and function, has been recognized as a major determinant of poor outcome in haemodialysis (HD) patients. It is generally assumed that sarcopaenia is driven by muscle atrophy related to protein-energy wasting. However, dynapaenia, defined as weakness without atrophy, has been characterized by a different disease phenotype from sarcopaenia. The aim of this study was to compare the characteristics and prognosis of sarcopaenic and dynapaenic patients among a prospective cohort of chronic HD (CHD) patients. METHODS Two hundred and thirty-two CHD patients were enrolled from January to July 2016 and then followed prospectively until December 2018. At inclusion, weakness and atrophy were, respectively, evaluated by maximal voluntary force (MVF) and creatinine index (CI). Sarcopaenia was defined as the association of weakness and atrophy (MVF and CI below the median) while dynapaenia was defined as weakness not related to atrophy (MVF below the median, and CI above the median). RESULTS From a total of 187 prevalent CHD patients [65% of men, age 65.3 (49.7-82.0) years], 44 died during the follow-up period of 23.7 (12.4-34.9) months. Sarcopaenia and dynapaenia were observed in 33.7 and 16% of the patients, respectively. Compared with patients with sarcopaenia, patients with dynapaenia were younger and with a lower Charlson score. In contrast, mortality rate was similar in both groups (38 and 27%, respectively). After adjustment for age, sex, lean tissue index, serum albumin, high-sensitivity C-reactive protein (hs-CRP), haemoglobin (Hb), normalized protein catabolic rate (nPCR), dialysis vintage and Charlson score, only patients with dynapaenia were at increased risk of death [hazard ratio (HR) = 2.99, confidence interval 1.18-7.61; P = 0.02]. CONCLUSIONS Screening for muscle functionality is highly warranted to identify patients with muscle functional impairment without muscle atrophy. In contrast to sarcopaenia, dynapaenia should appear as a phenotype induced by uraemic milieu, characterized by young patients with low Charlson score and poor prognosis outcome independently of serum albumin, hs-CRP, Hb, nPCR and dialysis vintage.
Collapse
Affiliation(s)
- Jean-Sébastien Souweine
- Department of Biochemistry, University Hospital of Montpellier, University of Montpellier, Montpellier, France.,PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Grégoire Pasquier
- Department of Biochemistry, University Hospital of Montpellier, University of Montpellier, Montpellier, France
| | - Nils Kuster
- Department of Biochemistry, University Hospital of Montpellier, University of Montpellier, Montpellier, France.,PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | | | | | - Marion Morena
- Department of Biochemistry, University Hospital of Montpellier, University of Montpellier, Montpellier, France.,PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Eric Badia
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Fabrice Raynaud
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | | | | | | | - Maurice Hayot
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France.,Department of Physiology, University Hospital of Montpellier, University of Montpellier, Montpellier, France
| | - Jacques Mercier
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France.,Department of Physiology, University Hospital of Montpellier, University of Montpellier, Montpellier, France
| | - Moglie Le Quintrec
- Department of Nephrology, University Hospital of Montpellier, University of Montpellier, Montpellier, France
| | - Fares Gouzi
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France.,Department of Physiology, University Hospital of Montpellier, University of Montpellier, Montpellier, France
| | - Jean-Paul Cristol
- Department of Biochemistry, University Hospital of Montpellier, University of Montpellier, Montpellier, France.,PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| |
Collapse
|
2
|
Palomo M, Vera M, Martin S, Torramadé‐Moix S, Martinez‐Sanchez J, Belen Moreno A, Carreras E, Escolar G, Cases A, Díaz‐Ricart M. Up-regulation of HDACs, a harbinger of uraemic endothelial dysfunction, is prevented by defibrotide. J Cell Mol Med 2020; 24:1713-1723. [PMID: 31782253 PMCID: PMC6991634 DOI: 10.1111/jcmm.14865] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/24/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022] Open
Abstract
Endothelial dysfunction is an earlier contributor to the development of atherosclerosis in chronic kidney disease (CKD), in which the role of epigenetic triggers cannot be ruled out. Endothelial protective strategies, such as defibrotide (DF), may be useful in this scenario. We evaluated changes induced by CKD on endothelial cell proteome and explored the effect of DF and the mechanisms involved. Human umbilical cord vein endothelial cells were exposed to sera from healthy donors (n = 20) and patients with end-stage renal disease on haemodialysis (n = 20). Differential protein expression was investigated by using a proteomic approach, Western blot and immunofluorescence. HDAC1 and HDAC2 overexpression was detected. Increased HDAC1 expression occurred at both cytoplasm and nucleus. These effects were dose-dependently inhibited by DF. Both the HDACs inhibitor trichostatin A and DF prevented the up-regulation of the endothelial dysfunction markers induced by the uraemic milieu: intercellular adhesion molecule-1, surface Toll-like receptor-4, von Willebrand Factor and reactive oxygen species. Moreover, DF down-regulated HDACs expression through the PI3/AKT signalling pathway. HDACs appear as key modulators of the CKD-induced endothelial dysfunction as specific blockade by trichostatin A or by DF prevents endothelial dysfunction responses to the CKD insult. Moreover, DF exerts its endothelial protective effect by inhibiting HDAC up-regulation likely through PI3K/AKT.
Collapse
Affiliation(s)
- Marta Palomo
- HematopathologyCentre Diagnòstic Biomèdic (CDB)Hospital ClinicInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Universitat de Barcelona (UB)BarcelonaSpain
- Josep Carreras Leukaemia Research InstituteHospital Clinic/University of Barcelona CampusBarcelonaSpain
- Barcelona Endothelium Team (BET)BarcelonaSpain
| | - Manel Vera
- Nephrology DepartmentHospital ClinicInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Universitat de Barcelona (UB)BarcelonaSpain
| | - Susana Martin
- HematopathologyCentre Diagnòstic Biomèdic (CDB)Hospital ClinicInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Universitat de Barcelona (UB)BarcelonaSpain
| | - Sergi Torramadé‐Moix
- HematopathologyCentre Diagnòstic Biomèdic (CDB)Hospital ClinicInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Universitat de Barcelona (UB)BarcelonaSpain
| | - Julia Martinez‐Sanchez
- HematopathologyCentre Diagnòstic Biomèdic (CDB)Hospital ClinicInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Universitat de Barcelona (UB)BarcelonaSpain
- Josep Carreras Leukaemia Research InstituteHospital Clinic/University of Barcelona CampusBarcelonaSpain
- Barcelona Endothelium Team (BET)BarcelonaSpain
| | - Ana Belen Moreno
- HematopathologyCentre Diagnòstic Biomèdic (CDB)Hospital ClinicInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Universitat de Barcelona (UB)BarcelonaSpain
| | - Enric Carreras
- Josep Carreras Leukaemia Research InstituteHospital Clinic/University of Barcelona CampusBarcelonaSpain
- Barcelona Endothelium Team (BET)BarcelonaSpain
| | - Ginés Escolar
- HematopathologyCentre Diagnòstic Biomèdic (CDB)Hospital ClinicInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Universitat de Barcelona (UB)BarcelonaSpain
| | - Aleix Cases
- Nephrology DepartmentHospital ClinicInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Universitat de Barcelona (UB)BarcelonaSpain
| | - Maribel Díaz‐Ricart
- HematopathologyCentre Diagnòstic Biomèdic (CDB)Hospital ClinicInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Universitat de Barcelona (UB)BarcelonaSpain
- Barcelona Endothelium Team (BET)BarcelonaSpain
| |
Collapse
|
3
|
Virzì GM, Clementi A, Brocca A, de Cal M, Ronco C. Molecular and Genetic Mechanisms Involved in the Pathogenesis of Cardiorenal Cross Talk. Pathobiology 2016; 83:201-10. [DOI: 10.1159/000444502] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/04/2016] [Indexed: 11/19/2022] Open
|
4
|
Ghigolea AB, Moldovan RA, Gherman-Caprioara M. DNA methylation: hemodialysis versus hemodiafiltration. Ther Apher Dial 2014; 19:119-24. [PMID: 25404498 DOI: 10.1111/1744-9987.12238] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aberrant DNA methylation is an emerging characteristic of chronic kidney disease including dialysis patients. It appears to be associated to inflammation. We compared the global DNA methylation status in 10 control subjects compared to 80 dialysis patients (N = 40 on-line hemodiafiltration, N = 40 high-flux hemodialysis) in relation to the dialysis technique and inflammation. Whole blood DNA methylation was assessed with a 5-mc DNA enzyme linked immunosorbent assay Kit. Global DNA methylation was higher in hemodialysis (HD) compared to on-line hemodiafiltration (HDF) patients (0.045 vs. 0.039; P < 0.0001) and controls (0.045 vs. 0.0284; P = 0.0002 for HD; 0.039 vs. 0.0284; P = 0.0254 for on-line HDF). To study the influence of the dialysis technique on DNA methylation we divided dialysis patients according to the median value of 5-mC. DNA methylation was highest in inflamed patients on hemodialysis. The dialysis technique was the only independent predictor of global DNA methylation in dialysis patients. On-line HDF could be associated with a favorable DNA methylation profile.
Collapse
Affiliation(s)
- Adrian-Bogdan Ghigolea
- "Iuliu Haţieganu" University of Medicine and Pharmacy, Department of Nephrology, Alba-Iulia, Alba, Romania; Alba-Iulia Nefromed Dialysis Center, Alba-Iulia, Alba, Romania; Alba-Iulia Emergency County Hospital, Alba-Iulia, Alba, Romania
| | | | | |
Collapse
|
5
|
Campos B, Lee T, Roy-Chaudhury P. Arteriovenous fistula failure: is there a role for epigenetic regulation? Semin Nephrol 2014; 33:400-6. [PMID: 24011582 DOI: 10.1016/j.semnephrol.2013.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epigenetics is the study of heritable changes in gene expression or cellular phenotype that occur without alterations in the DNA sequence. In the past decade, epigenetics has been identified as a key regulator of gene expression and therefore is likely to play a major role in multiple disease processes. More importantly, we now recognize epigenetics to be a sensitive, dynamic, and reversible process that has opened the door to multiple novel diagnostic, prognostic, and therapeutic strategies for human diseases. The focus of this review, however, is to explore the potential role of epigenetics in arteriovenous fistula (AVF) maturation. AVF maturation failure is currently the single most important cause of dialysis vascular access dysfunction and most important is the result of a peri-anastomotic stenosis thought to be caused by a combination of neointimal hyperplasia and inadequate outward remodeling. At a pathogenetic level, however, AVF maturation failure is likely the end result of the interaction between hemodynamic stressors (injury) and the vascular response to these stressors; the latter being influenced by uremia, oxidative stress, and inflammation. Interestingly, these same factors (hemodynamic shear stress, oxidative stress, inflammation, and uremia) are also important mediators of epigenetic modifications. We therefore believe that epigenetic factors potentially could play an important role in the pathogenesis of AVF maturation failure. The current review therefore tries to unravel some of these critical biological connections, with an emphasis on the future development of epigenetic-based diagnostic and therapeutic strategies for AVF maturation failure (a clinical problem for which there are currently no effective therapeutic interventions).
Collapse
Affiliation(s)
- Begoña Campos
- Dialysis Vascular Access Research Group, Division of Nephrology and Hypertension, Department of Medicine, University of Cincinnati, Cincinnati, OH
| | | | | |
Collapse
|
6
|
Sui WG, Tan QP, Yan Q, Yang M, Ou ML, Xue W, Chen JJ, Zou TX, Cao CH, Sun YF, Cui ZZ, Dai Y. Genome-wide analysis of DNA 5-hmC in peripheral blood of uremia by hMeDIP-chip. Ren Fail 2014; 36:937-45. [PMID: 24697287 DOI: 10.3109/0886022x.2014.900406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Treatment of uremia is now dominated by dialysis; in some cases, patients are treated with dialysis for decades, but overall outcomes are disappointing. A number of studies have confirmed the relevance of several experimental insights to the pathogenesis of uremia, but the specific biomarkers of uremia have not been fully elucidated. To date, our knowledge about the alterations in DNA 5-hydroxymethylcytosine (5-hmC) in uremia is unclear, to investigate the role of DNA 5-hmC in the onset of uremia, we performed hMeDIP-chip between the uremia patients and the normal controls from the experiment to identify differentially expressed 5-hmC in uremia-associated samples. METHODS Extract genomic DNA, using hMeDIP-chip technology of Active Motif companies for the analysis of genome-wide DNA 5-hmC, and quantitative real-time PCR confirmation to identify differentially expressed 5-hmC level in uremia-associated samples. RESULTS There were 1875 genes in gene Promoter, which displayed significant 5-hmC differences in uremia patients compared with normal controls. Among these genes, 960 genes displayed increased 5-hmC and 915 genes decreased 5-hmC. 4063 genes in CpG Islands displayed significant 5-hmC differences in uremia patients compared with normal controls. Among these genes, 1780 genes displayed increased 5-hmC and 2283 genes decreased 5-hmC. Three positive genes, HMGCR, THBD, and STAT3 were confirmed by quantitative real-time PCR. CONCLUSION Our studies indicate the significant alterations of 5-hmC. There is a correlation of gene modification 5-hmC in uremia patients. Such novel findings show the significance of 5-hmC as a potential biomarker or promising target for epigenetic-based uremia therapies.
Collapse
Affiliation(s)
- Wei-Guo Sui
- Guangxi Key Laboratory of Metabolic Diseases Research, Central Laboratory of Guilin 181st Hospital , Guilin , China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Zawada AM, Rogacev KS, Heine GH. Clinical relevance of epigenetic dysregulation in chronic kidney disease-associated cardiovascular disease. Nephrol Dial Transplant 2013; 28:1663-71. [PMID: 23512108 DOI: 10.1093/ndt/gft042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Across the spectrum of clinical medicine, the field of epigenetics has gained substantial scientific interest in recent years. Epigenetics refers to modifications in gene expression which are not explained by changes in DNA sequence. Classical components of epigenetic regulation comprise DNA methylation, histone modifications and RNA interference. In chronic kidney disease (CKD), several features of uraemia, such as hyperhomocysteinemia and inflammation, may contribute to changes in epigenetic gene regulation. It has been suggested that these changes may affect genes related to cardiovascular disease. Thereby, a uraemia-associated disturbance in epigenetic regulation may contribute to the substantial increase in cardiovascular morbidity in CKD patients. The present review aims to summarize current knowledge of epigenetic dysregulation in cardiovascular disease from a nephrological perspective, with a special focus on DNA methylation. We first describe the impact of altered epigenetic regulation in non-CKD-associated arteriosclerosis, and next characterize uraemic features which may affect epigenetic gene regulation in the context of cardiovascular disease. Finally, we conclude that substantial additional work is needed before epigenetic regulatory mechanisms may become therapeutic targets in CKD-associated cardiovascular disease.
Collapse
Affiliation(s)
- Adam M Zawada
- Department of Internal Medicine IV, Saarland University Medical Center, D-66421 Homburg, Germany
| | | | | |
Collapse
|
8
|
Zawada AM, Rogacev KS, Hummel B, Grün OS, Friedrich A, Rotter B, Winter P, Geisel J, Fliser D, Heine GH. SuperTAG methylation-specific digital karyotyping reveals uremia-induced epigenetic dysregulation of atherosclerosis-related genes. ACTA ACUST UNITED AC 2012; 5:611-20. [PMID: 23074332 DOI: 10.1161/circgenetics.112.963207] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Accelerated atherosclerosis is a hallmark of chronic kidney disease (CKD). Although the role of epigenetic dysregulation in atherosclerosis is increasingly appreciated, only a few studies focused on epigenetics in CKD-associated cardiovascular disease, virtually all of which assessed epigenetic dysregulation globally. We hypothesized that gene-specific epigenetic dysregulation in CKD exists, affecting genes pertinent to inflammation and atherosclerosis. METHODS AND RESULTS Ten clinically stable patients undergoing hemodialysis therapy and 10 healthy age- and sex-matched controls were recruited. Genome-wide analysis of DNA methylation was performed by SuperTAG methylation-specific digital karyotyping, in order to identify genes differentially methylated in CKD. Analysis of 27 043 436 tags revealed 4288 genomic loci with differential DNA methylation (P<10(-10)) between hemodialysis patients and control subjects. Annotation of UniTags to promoter databases allowed us to identify 52 candidate genes associated with cardiovascular disease and 97 candidate genes associated with immune/infection diseases. These candidate genes could be classified to distinct proatherogenic processes, including lipid metabolism and transport (eg, HMGCR, SREBF1, LRP5, EPHX2, and FDPS), cell proliferation and cell-cycle regulation (eg, MIK67, TP53, and ALOX12), angiogenesis (eg, ANGPT2, ADAMTS10, and FLT4), and inflammation (eg, TNFSF10, LY96, IFNGR1, HSPA1A, and IL12RB1). CONCLUSIONS We provide a comprehensive analysis of genome-wide epigenetic alterations in CKD, identifying candidate genes associated with proatherogenic and inflammatory processes. These results may spur further research in the field of epigenetics in kidney disease and point to new therapeutic strategies in CKD-associated atherosclerotic disease.
Collapse
Affiliation(s)
- Adam M Zawada
- Department of Internal Medicine IV, Saarland University Medical Center, Homburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhang L, Dai Y, Wang L, Peng W, Zhang Y, Ou Y, Lu J. CpG array analysis of histone H3 lysine 4 trimethylation in peripheral blood mononuclear cells of uremia patients. DNA Cell Biol 2011; 30:179-86. [PMID: 21155670 DOI: 10.1089/dna.2010.1076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Studies of the epigenome have attracted little interest in nephrology, especially in uremia. Several lines of evidence have suggested that there are links between genomic DNA hypomethylation and cardiovascular complications in uremia patients. However, to date, our knowledge about the alterations in histone methylation in uremia is unknown. H3K4me3 variations were analyzed in peripheral blood mononuclear cells from 20 uremia patients and 20 healthy subjects, using chromatin immunoprecipitation microarray (ChIP-chip) approach. ChIP-real-time polymerase chain reaction (PCR) was used to validate the microarray results. mRNA expression and DNA methylation status can be further analyzed by quantitative (q) reverse transcription (RT)-PCR and methyl-DNA immunoprecipitation (MeDIP)-qPCR, respectively. Seven hundred twenty-six increased and 218 decreased H3K4me3 genes displaying significant H3K4me3 differences were found in uremia patients compared with healthy subjects. The results of ChIP-real-time PCR coincided well with microarray results. Expression analysis by qRT-PCR revealed positive correlations between mRNA and H3K4me3 levels. Aberrant DNA methylation can also be found on selected positive genes (CNOT1 PLTP EDG1 TCF3 KIR3DL2). In addition, we even found that there is an inverse relationship between H3K4me3 and promoter DNA methylation in uremia patients. Our studies indicate that there are significant alterations of H3K4me3 in uremia patients; these significant H3K4me3 candidates may help to explain the immunological disturbance and high cardiovascular complications in uremia patients. Such novel findings show the significance of H3K4me3 as a potential biomarker or promising target for epigenetic-based uremia therapies.
Collapse
Affiliation(s)
- Li Zhang
- Department of Nephrology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Krenning G, Dankers PYW, Drouven JW, Waanders F, Franssen CFM, van Luyn MJA, Harmsen MC, Popa ER. Endothelial progenitor cell dysfunction in patients with progressive chronic kidney disease. Am J Physiol Renal Physiol 2009; 296:F1314-22. [PMID: 19339628 DOI: 10.1152/ajprenal.90755.2008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endothelial progenitor cells (EPC) contribute to repair and maintenance of the vascular system, but in patients with chronic kidney disease (CKD), the number and function of EPC may be affected by kidney dysfunction. We assessed numbers and the angiogenic function of EPC from patients with CKD in relation to disease progression. In a cross-sectional, prospective study, 50 patients with varying degrees of CKD, including 20 patients undergoing dialysis and 10 healthy controls, were included. Mononuclear cells were isolated, and circulating EPC were quantified by flow cytometry based on expression of CD14 and CD34. EPC were cultured on fibronectin-coated supramolecular films of oligocaprolactone under angiogenic conditions to determine their angiogenic capacity and future use in regenerative medicine. CKD patients had normal numbers of circulating CD14+ EPC but reduced numbers of circulating CD34+ EPC. Furthermore, EPC from patients with CKD displayed functional impairments, i.e., hampered adherence, reduced endothelial outgrowth potential, and reduced antithrombogenic function. These impairments were already observed at stage 1 CKD and became more apparent when CKD progressed. Dialysis treatment only partially ameliorated EPC impairments in patients with CKD. In conclusion, EPC number and function decrease with advancing CKD, which may hamper physiological vascular repair and can add to the increased risk for cardiovascular diseases observed in CKD patients.
Collapse
Affiliation(s)
- Guido Krenning
- Stem Cell and Tissue Engineering Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11 NL-9713GZ, Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Kidney dysfunction leads to disturbed renal metabolic activities and to impaired glomerular filtration, resulting in the retention of toxic solutes affecting all organs of the body. Cardiovascular disease (CVD) and infections are the main causes for the increased occurrence of morbidity and mortality among patients with chronic kidney disease (CKD). Both complications are directly or indirectly linked to a compromised immune defense. The specific coordinated roles of polymorphonuclear leukocytes (PMNLs), monocytes/macrophages, lymphocytes and antigen-presenting cells (APCs) in maintaining an efficient immune response are affected. Their normal response can be impaired, giving rise to infectious diseases or pre-activated/primed, leading to inflammation and consequently to CVD. Whereas the coordinated removal via apoptosis of activated immune cells is crucial for the resolution of inflammation, inappropriately high apoptotic rates lead to a diminished immune response. In uremia, the balance between pro- and anti-inflammatory and between pro- and anti-apoptotic factors is disturbed. This review summarizes the interrelated parameters interfering with the immune response in uremia, with a special focus on the non-specific immune response and the role of uremic toxins.
Collapse
Affiliation(s)
- Gerald Cohen
- Abteilung für Nephrologie und Dialyse, Univ.-Klinik für Innere Medizin III, Währinger Gürtel 18-20, Wien A-1090, Austria.
| | | |
Collapse
|